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MATHsAiD: a Mathematical Theorem Discovery Tool∗

Roy L. McCasland † Alan Bundy ‡
School of Informatics
University of Edinburgh
Edinburgh, Scotland, UK

Abstract

In the field of automated reasoning, one of the most chal-
lenging (even if, perhaps, somewhat overlooked) problems
thus far has been to develop a means of discerning, from
amongst all the truths that can be discovered and proved,
those which are either useful or interesting enough to be
worth recording. As for human reasoning, mathematicians
are well known for their predilection towards designating
certain discoveries as theorems, lemmas, corollaries, etc.,
whilst relegating all others as relatively unimportant. How-
ever, precisely how mathematicians determine which re-
sults to keep, and which to discard, is perhaps not so well
known. Nevertheless, this practice is an essential part of the
mathematical process, as it allows mathematicians to man-
age what would otherwise be an overwhelming amount of
knowledge.
MATHsAiD is a system intended for use by research

mathematicians, and is designed to produce high quality
theorems, as recognised by mathematicians, within a given
theory. The only input required is a set of axioms and de-
finitions for each theory. In this paper we brie�y describe
some of the more important methods used by MATHsAiD,
most of which are based primarily on the human mathemat-
ical process.

1 Introduction

In this paper we brie�y describe some of the more im-
portant methods used by MATHsAiD (an acronym for
Mechanically Ascertaining Theorems from Hypotheses,
Axioms and Definitions) in attempting to produce, for a
given mathematical theory, the sorts of theorems – and only
those theorems – one might expect to find in a mathematics
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textbook on the theory. In our view, an automated mathe-
matical theorem discovery tool should incorporate as much
of the human mathematical process as is both possible and
prudent. The point being that the human process enables
mathematicians to discover and store that data which rep-
resents the “essence” of the given theory. This “essence”
not only aids mathematicians in their understanding of the
theory discovered thus far, but also aids them in discover-
ing and proving still more of the truths contained within the
theory. It is reasonable to expect that an automated reason-
ing system would likewise benefit from a similar ability to
capture the essential truths.
A sample of the results produced byMATHsAiD, as well

as an account of the philosophy behind the system, can
be found in [7]. The authors are aware of other systems
(see, for example, [2], [3], [4], and [6]) and procedures that
have similar aims; perhaps most notable among the latter
is the Knuth-Bendix procedure [5]. However, there are sev-
eral significant differences in the methods employed (for in-
stance, MATHsAiD does not need any examples provided,
it does not try to directly measure “interestingness”, it does
not count usages of potential “lemmas”, nor does it first
prove a specific result, and only look for lemmas after that
proof is complete).

2 The System

The code for MATHsAiD is written in two languages:
most of what one might consider to be the mathemati-
cal process is carried out in Prolog; the rest is written in
Java. The three main components of MATHsAiD are the
automatic hypothesis generator (HG), the theorem gener-
ator (TG), and the theorem filter (TF). (It is important
to note, however, that some filtering is already built-in to
the theorem generating phase, making the overall process
more efficient. See Figure 1.) In addition, there is a
GUI that, among other things, facilitates the input of ax-
ioms/definitions (which we shall henceforth refer to merely
as “axioms”), presents the resulting Theorems (i.e., the re-
sults that mathematicians would – hopefully, at least – refer



Figure 1. Component Diagram

to as either theorems, lemmas, corollaries, etc.; as opposed
to the logicians’ typical usage of the word “theorems”) to
the user, and allows the user to manually suggest various hy-
potheses and “terms of interest” for further exploration. (By
“terms of interest” we mean any term that the user might
want to find one or more Theorems pertaining to; for in-
stance, given the hypotheses that A and B are sets, the user
could designate the term A ∩ B as a “term of interest”, in
hopes of finding the Theorem that A∩B = B ∩A). It also
presents the user with a list of the theories already existing
in MATHsAiD, and offers an opportunity for the user to be-
gin a new theory. Once the user chooses a theory, he (or she,
as the reader prefers) may at any time add new axioms to the
database. He may also select any collection of axioms from
within this theory, in order to initiate the Theorem discovery
process.
Once the selection of axioms is made, the HG builds a

sequence of inputs, each of which is fed, in turn, to the TG.
From each input, the TG derives whatever conclusions it
can, subject to numerous constraints, and sends its results
to the TF. The TF then determines which, if any, of these
conclusions should be recorded as Theorems. Once the TF
has made its determination, the TG takes the next input from
the HG, and the process continues, until the end of the se-
quence.
In storing each Theorem, and for that matter, each ax-

iom, as a Prolog clause, we adopt the mathematicians’ habit
of partitioning each into a (possibly empty) set of hypothe-
ses and a conclusion. This is, of course, well-suited to the

standard Prolog “if, then” format.

2.1 Automatic Hypothesis Generator

The main purpose of the HG is to build a sequence
of sets of hypotheses (each hypothesis typically involves
one or more fixed, but arbitrary objects), and couple
each set of hypotheses with certain judiciously chosen
axioms or terms of interest. (For a sample of these
sequences, see http://dream.inf.ed.ac.uk/projects/mathsaid/
MATHsAiDResults.html). This allows MATHsAiD to fo-
cus, at any given time, on various local aspects of the theory
under development, and thus, new Theorems may more eas-
ily be built up in layers, rather than be discovered all at one
time. This not only makes it easier to discover new Theo-
rems, but at any given time, the previously discovered The-
orems can (and perhaps, as we argue later, should) be used
to help determine which newly-discovered results should be
stored, and which should be discarded.
Since the HG is meant to work across a broad spectrum

of theories, it aims to facilitate the TG in discovering the
more “routine” Theorems, such as commutativity and asso-
ciativity for operations, and properties such as re�exivity,
symmetry, and transitivity for relations, etc. In addition, for
each axiom or Theorem for which ‘converse’ makes sense,
one would like to know whether the converse is indeed true;
thus the HG also identifies each such converse, to be pro-
vided to the TG towards the end of the sequence. As for any
non-routine Theorems the user might wish to find (assum-
ing they have not been found automatically), these are left
to the user to provide the necessary hypotheses and terms
of interest. We hope in future to expand MATHsAiD in
this latter regard, either by coupling it with an interactive
automated theorem prover, or by providing more extensive
interactive capabilities within the system itself.
It is important to note that, only in the ‘converse’ case

does the HG provide a conjecture for the TG to attempt to
prove – in all other cases, the TG is simply given one or more
axioms or terms of interest upon which to focus, plus the
accompanying hypotheses, and then left to discover what-
ever Theorems it can. For instance, in order for MATHsAiD
to discover that intersection of sets is commutative, the HG
need only specify the hypotheses that A and B (say) are
sets, and designate the definition of intersection as the ax-
iom to consider (alternatively, one could provide the term of
interestA∩B). For another example, consider the situation
a < b, where a and b are natural numbers. One might wish
to determine, for any number c, whether the terms a+c and
b + c compare similarly. In this case, the HG specifies the
hypotheses that a, b, c ∈ N and a < b, and designates a+ c
and b+ c as the terms of interest.
We remark that, regarding the sequence of inputs con-

structed by the HG, the ordering is rather important. The



HG provides, as a rule, the simpler hypotheses to the TG,
before feeding it the more complicated hypotheses. For ex-
ample, in our study of set theory, MATHsAiD discovers,
early on, that for any set A, then A = ∅, iff ∀x, x /∈ A.
If this Theorem were not discovered and stored, then sub-
sequent investigations would result in “Theorems” such as,
∀x, x /∈ A∩∅ and ∀x, x /∈ A−A (whereA is a set). While
both of these statements are true, we would much prefer the
simpler (corresponding) Theorems that A ∩ ∅ = ∅ and
A−A = ∅.
More importantly, each recorded Theorem is available to

be used in the filtering phase (see section 2.3). Thus, the
absence of certain Theorems, in the early stages, can rather
adversely affect the numbers of recorded “Theorems” in lat-
ter stages. For example, once the system records the The-
orem A ∩ A = A (for a set A), then it will not allow any
subsequent statement, involving the termX∩X (for any set
X), to be recorded as a Theorem (preferring instead state-
ments where X ∩X has been replaced with X). However,
if this initial result is not discovered in a timely manner,
then the corresponding restriction is not enforced, resulting
in numerous (bogus) “Theorems”.

2.2 Theorem Generator

The theorem generating phase begins after the HG fin-
ishes building a finite sequence of sets of hypotheses
{Hi}ni=1 coupled with their corresponding terms or axioms
of interest. The latter are used primarily to restrict the
search space, as we shall soon see. We remind the reader
that, for each set of hypotheses Hk (1 ≤ k ≤ n), we
conduct an entire generating and filtering process, before
moving on to the hypotheses Hk+1. This means that for
each k, the hypotheses within Hk are asserted, in the Pro-
log sense, and thereafter, a forward-chaining process is used
to produce whatever conclusions can be derived – using the
theorem prover built in to the TG – from these hypotheses.
However, the TG only asserts those conclusions that satisfy
certain constraints, which we shall soon discuss. When no
more new conclusions can be found, subject to these con-
straints, the (final) filtering stage begins, and provided that
any conclusions are deemed by the TF to be worth record-
ing, then each such conclusion is paired with Hk, and the
resulting Theorems are added to the database. Any such
Theorems are therefore available in all subsequent generat-
ing and filtering processes.
The most important constraint, for a conclusion to be as-

serted by the TG, is that it should not be ‘trivial’. A full
discussion as to the nature of ‘trivial’ is well beyond the
scope of this paper, and indeed, we do not attempt to give a
precise definition here. We point out, however, that trivial-
ness is a dynamic, rather than a static property, in the sense
that, for any given time, what is trivial depends a great deal

on what is known at that time. And just as human mathe-
maticians do not, as a rule, bother writing down everything
that they can prove, regardless how trivial it might be, so
too does MATHsAiD refrain from asserting everything that
it can prove. In this sense, then, a great deal of filtering is
being done throughout the theorem generation process.
As one example, consider the fact that intersection of sets

is a commutative operation. In set theory, this is non-trivial,
and is indeed regarded as a Theorem. However, in group
theory, this property is considered trivial. This is evidenced
by the fact that, while most (undergraduate) texts on group
theory include the Theorem that, for subgroups A and B of
a group G, then A ∩ B is likewise a subgroup of G, nev-
ertheless, one would be hard-pressed to find any textbook
that has a Theorem stating that both A ∩ B and B ∩ A are
subgroups.
Therefore, for our theorem generating phase, it is use-

ful to think in terms of having two theories, each of which
varies with k – one to derive whatever conclusions can be
proven from Hk, and the other to determine the trivialities
among them. Hence, for each k (1 ≤ k ≤ n), we let Gk de-
note the ‘generating’ theory, and we choose another theory
Tk, which represents the ‘trivial’ theory. As noted earlier,
there is considerable �exibility in the choice of each the-
ory, for each k. Nevertheless, we recommend that certain
principles be followed, as outlined here, which are applied
in MATHsAiD. The first principle is that, for all k, both
Gk and Tk contain ‘mere logic’ (as viewed by many math-
ematicians). In the case of Gk, all previously discovered
Theorems, and at least some of the ‘mathematics axioms’
are represented as well; this is where the aforementioned
axioms and terms of interest come into play. As for Tk,
it is more than just a theory of pure logic; it is sufficient to
eliminate all instances of ‘simple’ conclusions of the ‘math-
ematics axioms’ (i.e., all cσ such that ∃h.(h → c) ∈ A,
where A is the set of non-logical axioms). Moreover, while
Tk clearly ought not contain all possible combinations of
axioms (else, every conclusion would be trivial), it does
contain simple combinations of certain (e.g., commutativ-
ity and associativity) axioms.
Somewhat similarly, Tk contains at least some of the

conclusions of previously catalogued Theorems; however,
there are definite differences, when it comes to trivialities,
between axioms and Theorems. A mathematician would
never consider a conclusion of an axiom to be a Theorem
(it’s an axiom!); but many corollaries are, in fact, specific
instances of Theorems. It is not yet entirely clear to us
precisely what ought to distinguish a trivial from a non-
trivial use of a Theorem. For the time being, a conclusion
of a Theorem is considered trivial, if the verification of the
Theorem’s hypotheses does not require the use of any other
Theorem. While this is not entirely satisfactory, from either
a mathematical or a logical point of view, it nevertheless



seems thus far to work reasonably well.
We remark that in MATHsAiD, while Gk and Tk vary

with the circumstances, the (relatively simple) rules which
determine each theory do not vary. In both cases, the vari-
ance is due primarily to the “knowledge” at hand – the set
of axioms provided by the user, and the Theorems that have
been discovered and stored. In the case of Gk, its contents
are also in�uenced by the axioms/terms of interest included
in the generated set of hypotheses Hk. The simplicity of
this approach, and the evolving nature of the theories Gk
and Tk, bodes well for MATHsAiD’s potential in working
with many mathematical domains, including scaling up to
domains that are more involved than those we have thus far
studied.
Once the theories Gk and Tk have been determined, the

TG generates – i.e., proves – a preliminary set of theorems
(conclusions),

Ck = {c : Hk `Gk c andHk 0Tk c} .

In order to ensure that Ck is finite, it suffices to impose
an upper bound on the number of functors (in the Prolog
sense) allowed for each c ∈ Ck. Each such c ∈ Ck is given
a unique identifying number, and, coupled with its ‘proof
list’, is asserted by the TG. By ‘proof list’, we mean a list
(proof script) that records all the steps involved in the proof
of the given statement. This proof list becomes important in
the final theorem-filtering stage.
We recognise that some conclusions might fail one or

more of the constraints, and therefore not be theorems worth
recording, yet they could conceivably still be useful in ad-
vancing the knowledge at the moment. In these cases, such
conclusions are marked as “valid”, and are made available
to the TG for the duration of that session. These “valid”
conclusions do not, however, reach the TF.
It is perhaps worth pointing out that all equalities and

logical equivalences are stored, for the duration of the k ses-
sion, in equivalence classes; each class is named by its ‘sim-
plest’ member (as defined in section 2.3). Each time a new
equality or equivalence is to be asserted, the relevant classes
are tested for overlaps; if any are found, then the appropri-
ate classes are merged accordingly, and renamed, if neces-
sary. When the TG has finished generating Ck, then this
set is modified in the following manner: for each equiva-
lence class, the ‘simplest’ member is paired with each other
member of that class, joined of course by the appropriate
equivalence relation. Our experience shows that any Theo-
rem involving an equivalence relation is likely to be of this
form (i.e., one term will be the ‘simplest’ member of the rel-
evant equivalence class). And besides, this technique gives
us an effective way of dealing with the symmetry and tran-
sitivity issues, and ensures that we do not end up stating the
obvious conclusion that an object is equivalent to itself.

2.3 Theorem Filter

As stated earlier, a considerable amount of theorem fil-
tering has already taken place, before any conclusions reach
the TF. Nevertheless, not all conclusions that make it this
far should be regarded as Theorems. Thus, the conclusions
sent to the TF are run through a (fairly small) number of
tests (see Figure 2), not all of which will be discussed here.
Any conclusion that fails a test is immediately discarded.
At the completion of the testing phase, each conclusion that
remains is coupled with the hypotheses, and recorded as a
Theorem.
We should point out that – given the way MATHsAiD

deals with conclusions involving equivalence relations, by
first converting the information into equivalence classes,
and then converting back into (albeit different) conclusions
– some trivialities will almost inevitably have been intro-
duced. However, this is easily remedied, by removing
from Ck all (new equivalence-type) conclusions c such that
Hk `Tk c.We are convinced that the advantages gained in
handling equivalences this way, far outweigh this temporary
disadvantage.

2.3.1 Irredundancy Test

The first test, following the conversion of equivalence
classes, is to determine whether all the hypotheses in Hk

are actually required for a given conclusion c. If not, then
c is discarded – on the grounds that if it were a Theorem,
it should have been found earlier (i.e., for some j such that
j < k). This of course presumes that the HG has done a
proper job of building the sequence of sets of hypotheses.
In the notation of the preceding section, we remove from
Ck all c such that

A `Gk c for some A ( Hk .

The set of conclusions that remain at this point will be
denoted by C 0k.

2.3.2 Simplicity Test

It is at this point that our interpretation of ‘simplest’ plays its
most important role (having previously been used to deter-



mine the name of each equivalence class). Each conclusion
in C 0k is measured, according to the following variant (de-
noted m(t)) on the standard size measure on expressions.
Namely,

m(v) ::= 0; where v is a variable

m(f(s1, . . . , sn)) ::= 1 +
nP
i=1

m(si); where f is a

function or a non- ‘=’ predicate

m(a = b) ::=
1

2
+m(a) +m(b)

m(Qx.t) ::= 1 +m(t); where Q is either ∃ or ∀ .

Regarding ‘simplicity’, we only compare members that are
related by one of their respective proof lists being embedded
contiguously in the other. The motivation behind this is as
follows: a proof list represents, in some sense, a ‘line of rea-
soning’. In our experience in conducting mathematics re-
search, such a line of reasoning is pursued, until one reaches
a satisfactory conclusion – usually, the simplest conclusion
found during that particular pursuit. (One might imagine a
mathematician working with an expression/conclusion that,
while somewhat interesting in its own right, nevertheless
should be further examined/manipulated, in order to deter-
mine whether a better/more interesting representation can
be found). While this simplest conclusion, and therefore
the Theorem of choice, more often than not corresponds to
the embedding (longer) proof list, there are occasions where
the embedded (shorter) proof list provides the better The-
orem. The latter case represents a situation where, once
a non-trivial conclusion has been reached, any attempts to
continue pursuing that line of thought, succeed only in fur-
ther complicating matters.
To be more precise, for a conclusion c ∈ C 0k, let pl(c)

denote the proof list of c. Then for s, t ∈ C0k, we say that
s and t are comparable, denoted comp(s, t), if either pl(s)
is contiguously embedded in pl(t) (denoted by pl(s) /→
pl(t)), or the other way round. In other words,

comp(s, t)⇐⇒ pl(s) /→ pl(t) or pl(t) /→ pl(s) .

We are now ready to define the lexicographic order ¿
on the set C0k, that is used in the final determination of
Theorem-hood.

Definition 1 Using the above notation, for s, t ∈ C 0k, then

s¿ t ::=

⎧⎨⎩ > comp(s, t) andm(s) < m(t)
> m(s) = m(t) and pl(t) /→ pl(s)
⊥ otherwise .

Finally, the Theorems are simply the minimal elements
of C 0k, relative to¿ .

3 Conclusions and Future Work

The results (see http://dream.inf.ed.ac.uk/projects/
mathsaid/MATHsAiDResults.html, in addition to [7])
produced by MATHsAiD thus far have been excellent, in
that a high percentage – typically at least 80% – of its
Theorems can be found in at least some textbooks, and
likewise, a similar percentage of textbook Theorems –
amongst those that can be proven with the axioms provided
thus far to MATHsAiD – are indeed among its Theorems.
Admittedly, the system has as yet only been applied to
a few domains (e.g., set theory, the positive integers and
group theory), and only to a rather rudimentary level in
each. It is, of course, impossible to know whether we
can achieve the same quality of results in all areas of
mathematics, until we try them. That said, it is not at all
clear that the criteria for Theorem-hood should change,
from one mathematical domain to the next. Moreover, since
the methods employed in this system are rather simple,
and indeed, quite comparable to the human mathematical
process, the prospects for this system seem, at the very
least, encouraging.
As for future work, we plan to automate the discovery

of theorems which are typically proved by mathematical in-
duction; for example, theorems involving integer-exponents
of group elements. We also intend to develop sufficient un-
derlying theories, as to enable the study of module-theory,
and perhaps Zariski Spaces. Another possible topic of study
is the theory of Groebner Bases (see, for example, [1]). In
the more distant future, assuming that our studies of these
algebraic structures (our areas of expertise) are successful,
we plan to move into the analytic branch of mathematics.
In order to handle a broad range of domains, however, the
automatic hypothesis generator (HG) needs to first be en-
hanced. In addition, we intend to combineMATHsAiDwith
one or more interactive theorem-proving systems, anticipat-
ing that the ability to discover high-quality Theorems will
considerably improve the performance of these systems.
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