Scheme—Based Systematic Exploration of Natural Numbers *

Madalina Hodorog and Adrian Craciun
Institute e-Austria
Timigoara, Romania
{mhodorog, acraciun}@ieat.ro

Abstract

In this paper, we report a case study of computer
supported exploration of the theory of natural numbers,
using a theory exploration model based on knowledge
schemes, proposed by Bruno Buchberger.

We illustrate with examples from the exploration:
(i) the invention of new concepts (functions, re-
lations) in the theory, wusing knowledge schemes,
(i) the invention of new propositions, using proposition
schemes, (iii) the invention of problems, using knowl-
edge schemes, (iv) the introduction of new reasoning
rules, by lifting knowledge to the inference level, after
their correctness was proved.

1 Introduction

Mathematical knowledge is acquired through the ex-
ploration of theories. This should become clear as early
as the training period of the mathematicians, when
they go through various theories under the guidance
of an instructor. Later on, the mathematicians will ex-
plore theories on their on, then move to develop new
mathematics, based on the knowledge so far.

One of the goals of the recent field of Mathemati-
cal Knowledge Management (MKM) is to provide com-
puter support for this type of activity. See [7], [2], [1]
for an overview of the MKM community research. Re-
cently, Bruno Buchberger proposed a model for theory
exploration based on knowledge schemes, see [3, 9].
In this model, theories are developed in exploration
rounds by:

— adding new concepts to the theory, using definition
schemes,

— adding new conjectures about the notion introduced,
using proposition schemes,

*Work supported by EU Marie Curie Project MERG-CT-
2004-012718: SYSTEMATHEX and by Romanian CNCSIS project
632/2006: SEPROPI.

— inventing problems about concepts, using prob-
lem schemes and giving solutions, using algorithm
schemes,

— inventing new inference rules, usually by lifting
knowledge to the level of inference rules.

Remark. As it will turn out, the same scheme can be
used, depending on the context, as a definition, propo-
sition, problem, or algorithm scheme.

Examples of exploration cycles carried out with
this exploration model, and focused on problem solv-
ing/algorithm synthesis can be seen in [10](synthesis in
the theory of tuples), [6], [9].

In this paper we consider the exploration of natural
numbers (Peano system). We chose this case study be-
cause it is a benchmark for any mathematical reasoning
system, and it should illustrate the advantages of the
scheme—based exploration approach. We compare this
case study to that carried out by Manna and Waldinger
in [18]. If we manage to produce similar content, then
we believe the exploration model will have proved suc-
cessful in this case.

The case study is carried out in the THEOREMA sys-
tem, and we will use its notational convention. For
more details concerning the system, see [11], [9].

In Section 2 we present the context of our case study:
the logic, the language of natural numbers, our no-
tion of a theory, then natural numbers expressed in
the language in this setting, and describe the library
of schemes available in the exploration process. Sec-
tion 3 contains various examples from the exploration:
adding notions, conjectures, problems using schemes,
and lifting knowledge to the inference level. Section 4
is concerned with implementation issues: implemen-
tation of new provers needed to carry out the explo-
ration, organization of the exploration. We consider
related work in Section 5, and present our conclusions
and future directions of research in Section 6.

2 Context

2.1 Language, Knowledge Base, Inference
Rules, Theories

The language setting in which we express our explo-
ration is that of predicate logic. Some considerations
have to be made, however, about which predicate logic
we use. This will be untyped, with type (sort) infor-
mation being handled by the use of unary predicates.

To express a mathematical theory, we use a first
order predicate logic language with equality, similar to
those described in [20], [4], or [18]. The first order
language L describing the theory is a triple: £ =

P, F ,C>, where P is the set of predicate symbols

(including the binary equality “=” predicate, and one
or more unary predicates describing the “type” of ob-
jects in a theory), F is the set of function symbols (in-
cluding the unary identity “id” function), C is the set
of constants of the theory. For practical reasons, we
distinguish between function symbols and constants,
although the latter can be seen as O—ary functions.

The knowledge base ICB of the theory consists of a
collection of first-order formulae, built over the lan-
guage (axioms, properties).

The inference mechanism IR of the theory consists
of the reasoning system corresponding to the theory.
This will include, for any theory, the first order pred-
icate logic calculus and rewriting (due to first order
logic with equality being our language frame) and spe-
cific (i.e. dependent on axiomatization of a theory)
inference rules.

To summarize, in our context a theory 7 is a triple

T <z:, ICB,IR>.

2.2 The Theory of Natural Numbers

We now describe the theory of natural numbers, 7.
The language of natural numbers,

= tisnat, =) (i), (0)),

where is-nat is the unary predicate symbol that char-
acterizes natural numbers, T is an unary function sym-
bol (the successor function), the identity and equality
symbols (unary and binary, respectively).

The knowledge base KBy corresponding to the
initial formulation of the theory consists of the equality
axioms (available in any theory formulated in our set-
ting), and the axioms characterizing the natural num-

bers (Peano):

Axioms|[“equality:naturals”, any[is-nat[x,y, 2]],

r=u “reflexivity”
(r=y) e (y=1x) “symmetry”
((z=y)N(y=2)) = (x=2) “transitivity” |,
((z =y) Aplx]) < ply] “prd subst for p”
(xr =y) = (flz] = fly]) “fnc subst for §”

Axioms[“generation”, any[is-nat[z]],
is-nat[0] “gen. zero”
is-nat[x™] “gen. succ.”

B

Axioms[“uniqueness”, any[is-nat]x, y]|,
T #£0 “zero” |
(zt=yN) e (z=y) “succ.” V

Axioms[“induction principle”,

@oin v (@Bll=3)= vV F
is-nat[z] is-natx]
Remark. In the above, Axiom[“equality:naturals”],
“prd subst for p”, “fnc subst for 7, and Ax-
iom[“induction principle”] are in fact aziom schemes.
These can not be expressed in first order predicate
logic. We have indicated in each case that certain sym-
bols are metavariables, or higher order variables (de-
pending on the choice of formalism) — f, p, § stand
respectively for any function symbol, predicate sym-
bol, or formula where the argument is a free variable.
We will not use these axioms schemes as such, but will

lift them to the inference level, see below.

The inference mechanism 7Ry corresponding to
the theory consists of the structural induction rule, gen-
eral predicate logic inference rules, and inference rules
for equality (simplification, rewriting).

The structural induction rule can be lifted from Ax-
iom[“induction principle”] in a straightforward man-
ner. The sequent description of the inference rule is:

KBF Fyo is-natfzg] abf, KB\J Fpqy F Fyppy+
KB+ V F ’

is-nat|x)

i.e. in order to prove the universally quantified goal,
prove the base case (substituting 0 for the variable),
then assume the goal formula true for an arbitrary but
fixed value (abf), and prove the goal for its successor.

In a similar fashion, the axiom schemes for equality
are also lifted to the level of inference.

2.3 Knowledge Schemes

In our setting, knowledge schemes are formulae that
capture “interesting” mathematical knowledge at var-
ious levels of abstraction (although arguably, the no-
tion of what is interesting is hard to make precise).

These schemes are stored in libraries of schemes, and
are used by instantiating them with symbols from the
language of the theory being developed. We consider a
global library, containing schemes at the highest level
of abstraction (i.e. not depending on any theory), and
other libraries that are dependent of the theory being
developed (i.e. some of the higher order variables from
schemes in the global library were instantiated).

To formulate knowledge schemes, we need higher or-
der predicate logic. A scheme (formula) will contain
higher order function and predicate variables. When
using the schemes in the development of the theory,
we have to make sure that the instantiation gets rid of
all these higher order variables. The THEOREMA lan-
guage allows higher order formulae, so schemes can be
formulated.

Here we give some examples of knowledge schemes
developed for our libraries of schemes.

Examples of schemes to be stored in the global li-
brary (i.e. independent of any theory) are those de-
scribing algebraic structures, such as:

v (is-semigroup[p, op] <

o plovlz,] ’
p[mZ,Z]A{ oplx, oply, 2]] = oplop[z, y], 2])

Y (is-monoid]p, op, zero| <

P,0p,2ET0
v { is-semigroup|p, op))

ple,y.z] oplz, zero] = x

v (is-group[p, op, zero, inv] <

p,0p,zero,inv
is-monoid[p, op, zero, inv])
plz] oplx, inv[x]] = zero

or relational structures, such as:
v (is-preorder|p,r] <

i e o

plz,y,z] (T[J}, y] A T[ya Z]) = T[l‘, <

Y (is-partial-ordering|p, r] <
p.r

{ is-preorder|p, r])
sy L (s gl Arly,al) =z =y

Examples of knowledge schemes that are dependent
on the theory being developed - natural numbers in our
case:

v h(z's—rec—nat—bz’nary—fct—Zr[f, g,h] &

f.9,
flx,0] = g[z]
v { fle,y] = hlffe, o]

)

is-nat[z,y]

Y (is-rec-nat-binary-fet-11[f, g, h] <

f.9,h
110,y] = gly] ,
v {fwtmzhm%w)

is-nat(z,y)

Y (is-nat-rec-binary-rel-2[f, g, h] <

f.g,h,pred
o A e .
isnatlzy.2) | flo,yT] e (hlz]V £z, y)

Remark. The recursive definitions schemes above all
correspond to the (structural) induction axiom scheme.
In fact, when reasoning about these schemes, we will
use the structural induction rule.

Moreover, these recursive schemes are instances of a
general recursive scheme, generated systematically. It
is, therefore, not necessary to store all these, but they
can be generated “just-in-time” when they are needed.

3 Exploration

3.1 Exploration Rounds in the Scheme—
Based Model

For the case study we carried out, we used the
following methodology to explore notions, consistent
with [3]:

— Introduce a new motion using a definition scheme:
from one of the libraries of schemes, choose one
that is applicable (i.e. it can be instantiated with
the function/predicate symbols from the language).
Note that several instantiations could be possible,
leading to the introduction of several corresponding
notions.

— Introduce equivalent definitions by exploring match-
ing schemes: Select schemes that “match” the one
used to introduce the notion that is being explored
(i.e. same arity, same auxiliary functions used in
the definition). Then prove (or disprove) that the
instantiation of this scheme is a consequence of the
definition.

— FExplore structural properties of the motion, using
structural schemes: structural schemes (such as
those presented in the previous section), when in-
stantiated, represent properties that describe the in-
teraction of the notion being explored with other no-
tions from the theory.

— Introduce problems, and solve them (if this is pos-
sible): problems are introduced by instantiation of
schemes, or introducing formulae where notions that
are not in the language occur. These notions will
have to be synthesized, for instance by an applica-
tion of the lazy thinking method, see [5, 10, 8].
Carrying out these steps, in our experience, provides

a fairly complete range of properties of the explored no-

tion (as compared to our benchmark example, [18]). Of
course, the goal is to have a “complete” exploration of
the notion (i.e. containing all “interesting” knowledge),
yet such a completeness measure is hard to define for-
mally. We will not make any further effort towards
achieving this completeness, but propose the use of the
lazy thinking method to “cover” the missing proposi-
tions, if they are needed in subsequent rounds of ex-
ploration (i.e. theorem synthesis, see [15] for further
discussion of this, including its limitations).

3.2 Examples: Exploration of Natural

Numbers

In this section, we give examples of exploration steps
from the developement of the natural numbers theory
using the scheme-based model.

Introducing a new notion

We start with the language described in Subsection 2.2.

For introducing a new notion in the language, we
search in the scheme library for a definition scheme that
can be instantiated with the symbols of the language.
The first scheme that matches this description is the
is-rec-nat-binary-fct-1r scheme. It introduces into the
theory a new notion (in the scheme denoted by the
variable f) - a binary function symbol, expressed in
terms of the unary function symbols g, h. There are
several possible instantiations:

{f—-®g—idh— T} {f-HBg— * h— T}
{f - 0,9—idh—id},{f - O,g9— T h—id}}

where the higher order variable f is in each case sub-
stituted with a new (constant) symbol (®,H, ®,5 re-
spectively) and g, h are substituted with symbols from
the language.

We invent the following new notions:

is-rec-nat-binary-fct-1r(®, id, *] &
rd0==z
rdyt=(roy)"

)
is-nat(z)

is-naty]
is-rec-nat-binary-fct-1r[@, +,] &

v xBHO=2z"
is-nat(z) x B y+ = (.’17 &) y)+ ’

is-naty]

is-rec-nat-binary-fet-11(®, id, id] <
x0O0=2x
is-nat[z] roOyt =20y

is-naty]

is-rec-nat-binary-fct-1r[), +,id] <
rzH0=az"
is-nat[x] x] y* =zly
is-nat[y]

We illustrate further exploration of the @ function
symbol.

Introducing propositions (I) - equivalent defini-
tions

We now try to find potential equivalent defini-
tions for the & function symbol. The scheme
is-rec-nat-binary-fct-11; is similar, in that it has the
same arity with @, and is expressed in terms of
subfunctions that can be instantiated with symbols
in the language. Therefore it is a candidate for
the introduction of equivalent definitions. Omne of
its instantiations ({f — @®,9 — id,h — T}, now
expressed as a THEOREMA proposition) gives:

Proposition|“is-rec-nat-binary-fct-1l:id, 7,
any[is—nat[m, y]]7

“right zero”

“right succesor”

0pbzr==z

ttoy=(roy)* l

which can be proved invoking the following command
in THEOREMA:

Prove[Proposition]“is-rec-nat-binary-fet-1Lid, *”
using — Theory[“nat.1.2.0”],
by — NatProverP(]

In the call above Theory[’nat.1.2.0”] corresponds to
the current knowledge base (axioms plus the definition
of the @ symbol), NatProverPC is a THEOREMA user
prover combining structural induction with natural de-
duction and rewriting. For visualizing the proof, see
[17].

The reader will note that no other schemes or in-
stantiations give any other consequences.

Introducing propositions (II) - semigroup,
monoid

To introduce other propositions, we look at the struc-
tural algebraic knowledge schemes that can be instanti-
ated with the @ function symbol and the other symbols
from the language.

The first such scheme, is-semigroup with the sub-
stitution {p — is-nat,op — @}, yields the following:

Proposition[“is-semigroup is-nat,®”,
any|is-nat[z, y]],
(zoy®z=28 (yo2)

which is proved by the system, see [17].

The mnext scheme in the hierarchy of al-
gebraic schemes, is-monoid, instantiated with
{p — is-nat, op — &, zero — 0}, yields:

“associativity” |,

is-monoid[is-nat, ®,0] <
is-semigrouplis-nat, ®]
is-nat[x] rd0==zx

for which we have to prove the neutral element formula,
in addition to what we had previously. This holds, and
is proved by the system.

Introducing propositions (III) - group

Going further in the hierarchy of schemes, we have is-
group, which can be instantiated with:

{p — is-nat,op — @, zero — 0,inv — id} , or
{p — is-nat,op — @, zero — 0,inv — T},

This yields, in addition to what we had before:

vV (r®xz=0), and

is-nat[x)

VYV (z@®at =0), respectively.

is-nat[x)

None of the above formulae hold, i.e. neither the
identity nor the successor are inverses for the natural
numbers. The language does not contain any other
unary function symbol. The only chance that natural
numbers form a group is that there is some other unary
function, not yet in the theory, that is an inverse. This
means that if such function exists, we shall have to
invent it and introduce it in the language.

Introducing and solving a problem

We want to invent a new function symbol, say ©, such
that is-grouplis-nat, ®, 0,], i.e. the following formula
holds:

(@ (o) =0).
is-nat(z)

We now apply the lazy thinking method to synthe-
size the © function. If we are successfull, we add the
new function to the theory. In order to synthesize the
function, we attempt to prove the above formula, and
if the proof fails, we analyze the proof and generate
conjectures that will allow the proof to succeed. These
conjectures are specifications for the unknown function
symbol. In this case we will not use algorithm schemes.

Proof (inverse). Prove

v (z®(0z)=0),

is-nat(x)

using KBy.

We try to prove by structural induction on z:
Base Case:

Prove 0 ® (©0) = 0.

By Proposition[“is-rec-nat-binary-fct-1l:id, *7].1 ,
we have to prove: &0 = 0.

[The proof fails, but the conjecture is straightforward:
0 =0.]
Induction Step:

Take xg arbitrary but fixed, such that is-nat[zo].

Assume o & Sxg = 0.

Show zo* @ Oz = 0.

By Proposition|“is-rec-nat-binary-fct-1L:id, 77].2 |
this is equivalent to proving: (xo® 9x0+)+ = 0.
However, this is not true, because it contradicts
Axiom[“uniqueness”]: “zero”.

Therefore, the goal is not valid.

O

Remark. The proof presented above is similar to the
one generated by the THEOREMA system. KBy con-
tains the knowledge in the theory. The part contained
in the square brackets, in italics is not part of the proof,
it represents the analysis and generation of the conjec-
tures (which, in this case was straightforward). Be-
cause we can establish that our goal introduces a con-
tradiction, our problem has no solution, i.e. there is no
inverse function for the natural numbers, i.e. natural
numbers cannot form a group.

Summary

We have now carried out some steps in the exploration
of the notion @. The reader will have recognized that
this notion is the natural number addition.

Using the scheme-based model we have introduced
all the propositions involving @ that were present in
the benchmark we considered, [18]. Some of these were
not included in this presentation, see the forthcoming
technical report [17] for all the details.

We continued the exploration, introducing in the
same manner new concepts, like multiplication, * (and
related concepts, like 1), smaller-than relation (both
weak, <, and strict, <), subtraction —, exponentiation.

The reader may wonder what happened to concepts
introduced when & was introduced. These were all in-
vestigated, but @ turned out to be the most “interest-
ing”, in that it fulfills more structural properties than
the others.

So far, we have illustrated almost all of the steps in
the scheme-based exploration model. But not the ad-
dition of new inference rules. The general observation
is that such exploration steps are rare, i.e. new infer-
ence rules do not get added as often as new concepts
or propositions involving concepts. In the following, we
illustrate how one could prove the correctness of such
a new rule.

Introducing a new inference mechanism

Consider an extension of the initial theory whose lan-
guage contains the symbol <, defined (in THEOREMA)
as:
Definition[“is-nat-rec-binary-rel-2:F,=",
anylis-nat[z], is-nat[y]],
(z £0)]
(z<y) e (@=yVie<y)

Note that this definition was introduced using the
is-nat-rec-binary-rel-2 scheme. The reader will note
this is the usual strict less relation on natural num-
bers. We also consider the propositions related to <,
including the fact that V (z < z™T), see [17] for

is-nat[x]
details.
We now introduce the following proposition which
we prove using THEOREMA:
Proposition[“Complete Induction,”

v ((z <z= 3] = sm) -

is-nat[z,z] is-natx)

Our proof follows the one in [18], i.e. we prove:
Proposition[“Complete Induction.1”,
Y (z<y:>3[z]):>_ Vo Blz]],
is-nat[y,z] is-nat[z]
and then, prove:
Proposition[“Complete Induction.2”,

e ((z <z=§l) = gm) -
’]
v (z <y= 3’[2])

is-nat[y,z]

For details of the proofs, see [17]. Not surprisingly,
the proofs generated by THEOREMA are similar to those
in [18].

The reader may notice that the formulae we proved
are, in fact, not first order. However, if we consider
Flx] in the above as being an arbitrary but fized formula
constant, where x appears as a free variable, and tak-
ing into account the properties of substitutions, then
the proof steps applied in our proofs remain correct.
However, at the moment this argument is carried out
outside of the laguage of THEOREMA. Mechanisms like
reflection (see [3]) that are being developed will allow
reasoning on the metalevel in the same language frame.

Since the process of lifting the formulae we proved to
the inference level is, at least in this case, straightfor-

N

ward, similar to what we described in Subsection 2.2,
the proof of these formulae constitutes the proof of cor-
rectness of the complete induction inference rule. Of
course, the algorithm for lifting the knowledge to the
level of inference has to also be proven correct (again,
using reflection).
Remark. Once we have the < (strict less than equal)
relation symbol into the theory, we can introduce the
above complete induction inference mechanism. More-
over, we can also add new knowledge schemes to the
library of schemes, corresponding to the new induction.
The new recursive knowledge schemes are formu-
lated using the < relation symbol. Here we give ex-
amples of such schemes:

V (is—nat-step—recl-fct—1-1[f, g, h] <

f.9,h
_ [gla] sz <y
z‘s—n(Yt[x,y](f[x’y] o { h[flx —y,y]] < otherwise).
y>0

(is—nat-step—recr—rel-0-1-1[r, q, s, const] <
7,q,5,const

const <y=0
v (e yl e q dlzyl sr>y)
temnailz,y] slrlz,y —)] < otherwise

More exploration rounds (I) - solving a problem

In the following, we include some more examples of
exploration that make use of the new recursive schemes
introduced above. Due to the limited space available
for this presentation, we only give an overview, and
point the reader to the papers containing the details.

Consider now a new problem:

vV (z=y*quot|z,y]),
is-nat[z,y]
i.e., for any 2 natural numbers z, y, find a decomposi-
tion of x by multiplication, involving .

We now try to solve this new problem, by lazy think-
ing, proposing as a solution for quot, an instantiation
of is—nat-step—recl-fct—1-1, and using the complete in-
duction principle to carry out the proofs.

The proof, however, does not work for the base case
of the definition:

For arbitrary zo, yo with is-nat[zo,yo],yo > 0, in
case

o < Yo,

we have to prove
o = Yo * glxo].

However, since is—nat[g[z¢]], from the properties of
<, this is impossible.

But analyzing the failure of this proof, we realize
that a slight modification of the problem will avoid this
failure. For the modified problem:

Vo (z=yxquotlr,y] + remlz,y]),
is-nat[z,y]
apply again the lazy thinking method, with the
is—nat-step-recl-fct—-1-1 as a candidate for both quot
and rem, we obtain as solutions to our problem the
well known quotient and remainder functions for
natural numbers:

Algorithm|“quotient”, any[is-nat[x], is-nat]y]],

wot[z, y] = 0 s <y
1 Y= quot[z —y,y] +1 < otherwise

I,

Algorithm|“remainder”, any[is-nat[z], is-nat[y]],

rem[m] _ x =z <y]
= rem[z —y,y] < otherwise

For the complete details, we point the user to the
technical report, [16].

More exploration rounds (II) - introducing a
notion

We now introduce another notion in our theory: the
scheme is—nat—step—recr—-rel-0-1-1 with the substi-
tution {r — |,const — True,q — False,s — idp},
yields the following:

Definition[“divides relation symbol”,
any|is-nat[z], is-nat[y]],

True <=y=0
z|ly =< False =zr>y I,
z|(y —x) <= otherwise

where idp is the identity function on the boolean do-
main (with truth values).

To introduce new propositions, we look at the rela-
tional knowledge schemes that can be instantiated with
the | relation symbol.

The first such scheme, is-preorder instantianted
with {p — is-nat,r — |} yields:

Proposition[“is-preorder is-nat,|”,
anylis-nat[z, y, z]],
(z]z) “reflexivity”
(z|ly ANy|z) = (z]z) “transitivity”

B

which we can prove using THEOREMA, see [17].

The second scheme in the hierarchy of relational
schemes, is-partial-ordering with the substitution
{p — is-nat,r — |}, yields the following:

is-partial-orderinglis-nat, || <
is-preorder(is-nat,|]
isnate] | (@ly Ayle) =z =y
for which we have to prove the antisymmetry

formula, in addition to what we had before. The proof
is successful.

4 Implementation

We implemented the induction rules presented in
this paper as new THEOREMA basic provers. These
provers are combined with basic provers for natural
deduction, simplification or generalized rewriting into
user provers (such as NatProverPC) that correspond to
the inference engine of the theory.

The structural induction basic prover implements
the rule over natural numbers described in Subsec-
tion 2.2. The user can influence the behaviour of the
prover by setting options:

— the NNLang option specifies the language to be used
to formulate the theory of natural numbers (with the
default language formed from the constant 0, the
is-nat and = predicate symbols and the id and +
function symbols);

— the NNRepres option specifies the used natural num-
bers representation. The natural numbers can ei-
ther be constructed from 0 and T symbols or from
0 and +1 (in this case, we admit that the symbol
1 is already introduced in the language. The user
can choose the notation x+ 1 instead of the notation
xt).

The second basic prover implements the complete
induction principle over natural numbers. One option
can be specified for this prover: the NNLang option
where the user can specify the language components
needed (default values are is-nat and < predicate sym-
bols).

We have also implemented a new function
UseScheme [scheme, substitutions]. This proto-
type function takes as arguments the knowledge scheme
scheme and the list substitutions of all the possible
combinations between all the symbols from the cur-
rent language and generates the definitions of the new
notions (i.e. function symbols, relations symbols or
propositions) that can be constructed.

5 Related Work

The theory of natural numbers is present in any
major system that aims at doing mathematical rea-
soning by computer. We will not, therefore, compare
our implementation to all these systems. The provers

we wrote in order to carry out this research are based
on the existing THEOREMA natural number induction
provers, see [12]. However, our provers allow the user
to use any language (s)he chooses, and we implemented
more induction rules, such as the complete induction.

Our approach is not concerned with the formaliza-
tion of natural numbers, but with the exploration of the
theory, i.e. “invention”. The HR system [13] was also
proposed for the invention of mathematics, and was
applied for number theory. However, the method is
different. Mathematical concepts are formed by model
checking, from examples, and proved by a theorem
prover.

A more recent approach, MATHSAID, see [19],
builds systematically a theory by proving consequences
of the initial axioms, and tries to filter the interesting
concepts and theorems.

Other approaches for theory invention were pro-
posed, with various degrees of success. For an overview
of various approaches and a comparison, see [14].

In comparison to the approaches mentioned, ours
provides more control to the user (also helped by the
natural style, textbook-like of the THEOREMA system),
and we believe it is more suitable to the exploration of
more complex theories. This remark is based both on
results obtained so far, and on experience from the field
of program synthesis, where it was shown that the use
of algorithm schemes produces much better results.

Schemes, as concentrated mathematical knowledge,
provide an indication of the interestingness of mathe-
matical concepts, and help guide the exploration pro-
cess.

6 Conclusion and Future Work

We reported on a case study in scheme based theory
exploration: the natural numbers. We have shown that
Buchberger’s model can be successfully applied, and we
have done so using the THEOREMA system. We have
illustrated typical exploration steps, i.e. introducing a
notion, introducing properties of this notion, introduc-
ing and solving problems (lazy thinking) and a possible
approach to the problem of proving inference rules cor-
rect.

Although this is work in progress, we have already
explored notions like addition, multiplication, the less
than relation, exponentiation, subtraction, quotient,
remainder. We are looking forward to the further ex-
ploration of notions like prime numbers, and set as one
of our future goals the “invention” of the prime decom-
position theorem. We measure our success by compar-
ison to our benchmark, a well known textbook, [18],
and so far we match this textbook. Our case study is

not merely a formalization of this book, but the result-
ing theory is obtained by systematic use of knowledge
schemes.

This approach, we believe, also has a strong didac-
tic value. Regardless of the presence or not of a sys-
tem to carry out these exploration steps, we have a
methodology for theory exploration. In this paper, we
described the basic steps to be carried out in an explo-
ration round.

For the case study at hand, we implemented an up-
dated version of the THEOREMA induction prover, that
includes new induction rules introduced during the ex-
ploration. The purpose of this paper was not to de-
scribe how THEOREMA carries out the proofs, therefore
we pointed the user, for this purpose, to the technical
reports [17, 16]. However, all the proofs mentioned
were carried out using the system.

We have also implemented prototype functions
that should help in the exploration process (such as
UseScheme).

So far, we did the exploration (i.e. introducing no-
tions and propositions, problems, etc. theory forma-
tion, in fact) basically by hand, with only some of
the steps supported by the system (like the UseScheme
function). It is clear, however, that to carry out in-
teresting case studies, the user will need tools to help
the process of exploration: tools to carry out explo-
ration steps, tools to query the libraries of schemes, to
generate “just-in-time” schemes (including generation
of unique names for schemes), to query the language
and the knowledge base, and even to automate whole
exploration rounds. We think that, in principle, explo-
ration rounds such as the ones we illustrated in this
paper could be carried out automatically by the sys-
tem. THEOREMA already provides a uniform language
frame, natural style deduction, easy to use interface,
and such exploration tools would extend the system in
a natural way. The implementation of such tools is one
of the long-term future research points.

The experience in carrying out this case study, also
illustrated in this paper, is that the richer the language
of the theory is, the more possibilities to introduce no-
tions we have. This leads to an explosion of possible
exploration branches, as expected. Our opinion is that
a system that provides support for theory exploration
as described in this paper, should be used as a tool
by mathematicians, who should be responsible for the
development of the theory, including the control of the
explosion of the exploration branches.

Moreover, we believe that practical deployment of
such systems, at least after a few rounds of bottom—up
theory formation, will be focused on problem solving
(top—down exploration), making heavy use of the lazy

thinking method.

The first author has carried out the details of this
case study, under the guidance of the second author.
The implementation of the first versions of the in-
duction provers, prototype exploration tools, are joint
work.

We acknowledge the contribution of our colleagues
in the SYSTEMATHEX project: Cristina Codresi, Vlad
Isac and Diana Pop, especially in the development
of the knowledge scheme libraries, and helpful discus-
sions.

References

1]

A. Asperti, G. Bancerek, and A. Trybulec, editors.
Mathematical Knowledge Management: Third Inter-
national Conference MKM 200/ Bialowieza, Poland,
September 19-21, 2004, volume 3119 of Lecture Notes
in Computer Science. Springer Berlin / Heidelberg,
2004.

A. Asperti, B. Buchberger, and J. Davenport, editors.
Mathematical Knowledge Management: Second Inter-
national Conference, MKM 2003, Bertinoro, Italy,
February 16-18, 2003, volume 2594 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2003.
B. Buchberger. Algorithm—supported mathematical
theory exploration: A personal view and strategy.
Lecture Notes in Artificial Intelligence, Springer, Tth
Conference on Artifiicial Intelligence and Symbolic
Computation(Research Institute for Symbolic Com-
putation, Hagenberg, Austria)(Proceedings of AISC
2004):16, September.

B. Buchberger. Logic for computer science. lecture
notes, 1991.

B. Buchberger. Algorithm invention and verifica-
tion by lazy thinking. In D. Petcu, V. Negru,
D. Zaharie, and T. Jebelean, editors, Proceedings of
SYNASC 2003, 5th International Workshop on Sym-
bolic and Numeric Algorithms for Scientific Comput-
ing Timisoara, pages 2-26, Timisoara, Romania, 1-4
October 2003. Copyright: Mirton Publisher.

B. Buchberger. Towards the automated synthesis of
a groebner bases algorithm. RACSAM - Revista de
la Real Academia de Ciencias (Review of the Spanish
Royal Academy of Science), Serie A: Mathematicas,
98(1):65-75, 2004.

B. Buchberger and O. Caprotti, editors. First Inter-
national Workshop on Mathematical Knowledge Man-
agement (MKM 2001), September 2001.

B. Buchberger and A. Craciun. Algorithm synthesis
by lazy thinking: Using problem schemes. In D.Petcu,
V.Negru, D.Zaharie, and T.Jebelean, editors, Pro-
ceedings of SYNASC 2004, 6th International Sympo-
sium on Symbolic and Numeric Algorithms for Scien-
tific Computing Timisoara, pages 90-106, Timisoara,
Romania, 26-30 September 2004. Copyright: Mirton
Publisher.

(9]

[10]

(11]

(12]

[13]

(14]

(15]

[16]

(17]

(18]

(19]

20]

B. Buchberger, A. Craciun, T. Jebelean, L. Kovacs,
T. Kutsia, K. Nakagawa, F. Piroi, N. Popov, J. Robu,
M. Rosenkranz, and W. Windsteiger. Theorema:
Towards computer-aided mathematical theory explo-
ration. Journal of Applied Logic, pages —, 2005. To
appear.

B. Buchberger and A. Craciun. Algorithm synthesis by
lazy thinking: Examples and implementation in the-
orema. In F. Kamareddine, editor, FElectronic Notes
in Theoretical Computer Science, volume 93, pages
24-59, 18 February 2004. Proc. of the Mathematical
Knowledge Management Workshop, Edinburgh, Nov.
25, 2003.

B. Buchberger, C. Dupre, T. Jebelean, F. Kriftner,
K. Nakagawa, D. Vasaru, and W.Windsteiger. The-
orema: A progress report. Technical Report 99-42,
RISC Report Series, University of Linz, Austria, De-
cember 1999. Also available as SFB Report 99-35,
Johannes Kepler University Linz, Spezialforschungs-
bereich F013, December, 1999.

B. Buchberger, T. Jebelean, F. Kriftner, M. Marin,
E. Tomuta, and D. Vasaru. A survey of the theorema
project. Technical Report 97-15, RISC Report Series,
University of Linz, Austria, March 1997.

S. Colton. Automated Theory Formation in Pure
Mathematics. Distinguished Dissertations. Springer
Verlag, 2002.

S. Colton, A. Bundy, and T. Walsh. On the no-
tion of interestingness in automated mathematical
discovery. [JHCS: International Journal of Human-
Computer Studies, 53, 2000.

A. Craciun. The Lazy Thinking Approach to Algo-
rithm Synthesis: Implementation and Case Studies in
Theorema. PhD thesis, Research Instiute for Symbolic
Computation, Johannes Kepler University, Linz, 2006,
forthcoming.

A. Craciun and M. Hodorog. The quotient—remainder
theorem for naturals: Discovery by lazy thinking.
Technical Report no.09-06, I-eAT, 2006.

M. Hodorog. Scheme-based systematic exploration of
mathematical theories. case study: The natural num-
bers. Technical Report no.07-06, I-eAT, 2006.

Z. Manna and R. Waldinger. The Logical Basis for
Computer Programming, Volume I, Deductive Reason-
ing. Addison-Wesley Publishing Co, SUA, 1985.

R. McCasland, A. Bundy, and P. Smith. Ascertaining
mathematical theorems. Electronic Notes in Theoret-
ical Computer Science, 151(1), 2006.

J. R. Shoenfield. Mathematical Logic. Addison-Wesley
Publishing Co, SUA, 1967.

