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Abstract

Motivated by ideas of software measurement, the area
of process measurement has attracted attention in re-
cent time. Numerous process metrics have been pro-
posed to measure (often structural) properties of busi-
ness processes. These metric values can be used to
characterize and compare processes. Integrated into
valid prediction systems, they can be useful for pre-
dicting external process attributes like duration, costs,
number of errors or understandability. As this area of
research is quite young, not much knowledge about the
behavior of these metrics (e. g., distribution of metric
values and correlations between metrics) exists.

In this paper, we propose heatmaps, a visualization
technique for high-dimensional data originally used in
genetics, for visualizing the process metric values of
business process collections. So, new insights into the
distribution of the metric values among the processes
could be gained. Additionally, we use clustering for an-
alyzing (1) the correlations between different process
metrics and (2) finding (structurally) similar processes
among business process collections. Our approach has
been successfully applied to the SAP Reference Model
processes.

1 Introduction

During the previous decades, the field of software mea-
surement has created theoretical concepts for measur-
ing software and making predictions on software qual-
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ity attributes (see, e. g., [4] for an overview). Motivated
by this research, several papers proposing process met-
rics have been published in recent years. These metrics
measure (often structural) properties of business pro-
cesses and can be used to characterize and compare pro-
cesses. Integrated into valid prediction systems, they
can be useful for predicting external process attributes
like duration, costs, number of errors or understandabil-
ity. As this area of research is quite young, not much
knowledge about the behavior of these metrics (e. g.,
distribution of metric values and correlations between
metrics) exists.

To gain new insights into these questions, the visu-
alization and analysis of the process metric values of
large business process collections would be interesting.
The resulting process metric data would be very high-
dimensional making visualization problematic.

In this paper, we propose heatmaps, a visualization
technique for high-dimensional data originally used in
genetics, for visualizing the process metric values of
business process collections. So, new insights into the
distribution of the metric values among the processes
could be gained.

Additionally, we use clustering for analyzing (1) the
correlations between different process metrics and
(2) finding (structurally) similar processes among busi-
ness process collections. The clustering does not con-
sider behavioral similarity as, for example, in [13].

Finally, we apply our approach to the SAP Reference
Model processes.

The remainder of this paper is organized as follows:
In Section 2, we give a short overview about the area
of process measurement. The use of heatmaps for vi-
sualizing the high-dimensional process metric data of
business process collections is explained in Section 3.
In Section 4, we present basics on clustering. The re-
sults of an experimental application of our approach are
given in Section 5. The paper gives a conclusion and
presents possible future work (Section 6).
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2 Process Measurement

The area of process measurement is inspired by the
works and results of software measurement. Several pa-
pers proposing process metrics have been published in
recent years (see [7, pp. 1–2] for an overview).

According to Fenton and Pfleeger, there are two main
types of measurement:

Definition 1 (Measurement systems) Measurement
systems are used to assess an existing entity by
numerically characterizing one or more of its at-
tributes [4, p. 104].

Definition 2 (Prediction systems) Prediction systems
are used to predict some attribute of a future entity, in-
volving a mathematical model with associated predic-
tion procedures [4, p. 104].

Besides the use for future entities, as stated in the def-
inition of Fenton and Pfleeger, prediction systems can
also be used to predict some attribute of an existing en-
tity that is measurable only in a very laborious manner.

In [7], we show how the idea of prediction systems
can be transfered to process measurement (see Fig-
ure 1):
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Figure 1: Prediction systems adapted to process mea-
surement.

A process has internal and external attributes.
Internal attributes can be measured purely in terms of

the process separate from its behavior [4, p. 74]. Most
proposed process metrics measure structural properties
(internal attributes).

External attributes can be measured only with respect
to how the process relates to its environment [4, p. 74].
Examples are costs, duration, number of errors and un-
derstandability.

3 Heatmaps
The process metric data of (large) business process col-
lections is high-dimensional data with many data vec-
tors. So, the problem arises how to visualize this data.

Several existing methods are available, but all of
them have big disadvantages:

• Scatter plots (see Figure 2 for an example) are
good for visualizing large amounts of data vectors.
But they are only applicable for 2D or at most 3D
data.
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Figure 2: Example of a scatter plot.

• Radar charts1 (see Figure 3 for an example) are
drawn in two dimensions and can display data with
three or more dimensions. For each dimension,
there exists an axis. The axes start in one single
center point and are uniformly placed around the
360◦ of a circle. The points on these axes form
a polygon representing one vector. Radar charts
soon become confusing when increasing the num-
ber of dimensions and depicting many data vec-
tors.
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Figure 3: Example of a radar chart.

1Radar charts are also called spider charts or star charts.
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To overcome these problems, we propose the use of
heatmaps, a visualization technique originally used in
genetics for depicting microarray data. Recently, this
method was adapted to visualizing the individuals (i. e.,
possible solutions) of population based multi-objective
algorithms (e. g., genetic algorithms) [12].

A heatmap displays the data as a matrix: one row
per data vector and one column per dimension (see Fig-
ure 5 for an example). The values of the cells are color-
coded—blue for minimum values and red for maximum
values (see Figure 4). The different dimensions can be
individually normalized into the interval [0, 1] if their
domains are too different.

Figure 4: Color legend for heatmaps (blue for minimum
and red for maximum values).

Heatmaps have many advantages compared to other
visualization methods for high-dimensional data: Large
amounts of data can be clearly displayed on one page.
Correlations between different dimensions and the dis-
tribution of the values of the different dimensions be-
come visible.

For our case, the process metric values of a process
are displayed in one row. The different process metrics
form the columns of the matrix. External attributes (as
duration, costs, number of errors or understandability)
can be added as additional columns of the heatmap if
desired.

4 Clustering

4.1 Basics
A good overview about clustering is given by Berkhin
in [1].

The general goal of clustering is to partition a set
X ⊆ Rn of data points into k subsets (clusters) C =
{C1, . . . , Ck}. These clusters are disjoint—their union
is equal to the full set of data points.

X = C1 ∪ C2 ∪ · · · ∪ Ck, Ci ∩ Cj = ∅, i 6= j (1)

Two often used methods in practice are hierarchical
and partitive clustering. These are explained in more
detail in the following subsections.

4.2 Hierarchical Clustering
The result of a hierarchical clustering is a so called clus-
tering tree (dendrogram) (see the top of Figure 5 for an
example). Each node of this tree has a corresponding

cluster. The corresponding cluster of a node is the union
of all clusters belonging to this node’s child nodes.

Hierarchical clustering can be divided into agglom-
erative (bottom-up) and divisive (top-down) algorithms
for constructing the clustering tree.

In this paper, agglomerative hierarchical clustering is
used. The approach is described in pseudo code in Al-
gorithm 1.

Algorithm 1 Agglomerative hierarchical clustering.
Function AGGLHIERARCHICALCLUSTERING(X )

Input: set X of data vectors

Output: clustering tree (dendrogram) D

1: C ← ∅
2: for i = 1 to |X| do
3: {initialize: assign each vector to its own cluster}
4: Ci ← {~xi}
5: C ← C ∪ {Ci}
6: end for
7: numberClusters← |X|
8: repeat
9: {compute distances between all clusters}

10: for all Ci ∈ C do
11: for all Cj ∈ C do
12: if Ci 6= Cj then
13: compute distance d(Ci, Cj) between clusters Ci

and Cj

14: end if
15: end for
16: end for
17: {merge the two clusters Ci and Cj that are closest to each

other}
18: Ci,j ← Ci ∪ Cj

19: C ← C\{Ci, Cj} ∪ {Ci,j}
20: numberClusters← numberClusters− 1
21: {store information about two sub-clusters}
22: Ci,j .child1← Ci

23: Ci,j .child2← Cj

24: D ← Ci,j

25: until numberClusters = 1
26: return D

For the inter-cluster distance d(Ci, Cj) in line 13 of
Algorithm 1, several measures exist. Among these are

• single linkage

ds(Ci, Cj) := min
~xi∈Ci
~xj∈Cj

{d(~xi, ~xj)} , (2)

• complete linkage

dco(Ci, Cj) := max
~xi∈Ci
~xj∈Cj

{d(~xi, ~xj)} and (3)

• average linkage

da(Ci, Cj) :=
1

|Ci||Cj |
∑

~xi∈Ci
~xj∈Cj

d(~xi, ~xj) . (4)
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In each of these measures, d(~xi, ~xj) is a distance
measure between the two vectors ~xi and ~xj . This could
be, for example, the Euclidean distance ‖~x‖2 of (5).

‖~x‖2 :=

√√√√ n∑
i=1

|xi|2 , ~x ∈ Rn (5)

4.3 Partitive Clustering: k-means
The k-means clustering algorithm is a randomized
clustering approach that generates a disjoint, non-
hierarchical partitioning consisting of k clusters. The
algorithm is described in pseudo code in Algorithm 2.

Algorithm 2 k-means clustering.
Function KMEANS(X , k)

Input: set X of data vectors, number of clusters k

Output: clustering C with k clusters

1: C ← ∅
2: for i = 1 to k do
3: Ci ← ∅
4: C ← C ∪ {Ci}
5: randomly initialize cluster center (centroid) ~ci

6: end for
7: repeat
8: {compute partitioning for data}
9: for i = 1 to k do

10: Ci ← ∅
11: end for
12: for j = 1 to |X| do
13: add ~xj to that Ci with shortest Euclidean distance be-

tween ~xj and ~ci

14: end for
15: {update cluster centers}
16: for i = 1 to k do
17: ~ci := 1

|Ci|
∑

~xj∈Ci
~xj

18: end for
19: until partitioning stays unchanged or the algorithm has con-

verged
20: return C

It minimizes the error E(C) with

E(C) =
k∑

i=1

∑
~xj∈Ci

‖ ~xj − ~ci‖22 . (6)

As the k-means algorithm does not depend on pre-
viously found sub-clusters, it often results in better
clusterings than gained with hierarchical approaches.
Yet, as it is a randomized algorithm, its execution is
indeterministic—possibly resulting in several different
clusterings for the same data set X and value k. So, the
question arises how to choose the number k of clusters
and how to choose from the different clusterings poten-
tially found for the same number of clusters.

One possible solution to this problem is the Davies-
Bouldin index [3] defined as

DB(C) :=
1
k

k∑
i=1

max
j∈{1,...,k}

i6=j

{
Sc(Ci) + Sc(Cj)

dce(Ci, Cj)

}
.

(7)
Thereby, Sc is defined as

Sc(Ci) :=
1
|Ci|

∑
~xj∈Ci

‖~xj − ~ci‖2 (8)

and acts as a dispersion measure quantifying the av-
erage centroid distance of the cluster’s vectors.

The measure dce is defined as

dce(Ci, Cj) := ‖~ci − ~cj‖2 (9)

and quantifies the distance between two clusters (cen-
troid linkage).

An optimal clustering consists of “compact” clusters
with small dispersion and large distances between the
single clusters. Looking at (7), one can easily notice
that such an optimal clustering minimizes the value of
the Davies-Bouldin index.

5 Experimental Application of Ap-
proach

5.1 Selected Process Metrics
As already stated, numerous process metrics are pro-
posed in the literature. Yet, they require different pro-
cess representations (e. g., Petri nets, workflow nets or
EPCs). In order to compare the process metrics, we had
to choose metrics that are applicable for the same pro-
cess representation. Looking at a recent overview about
proposed process metrics [7, pp. 1–2], we chose metrics
for EPCs.

A business process model (in EPC representation)
is a special kind of graph G = (N, A) consisting of
a set N of nodes and a set A ⊆ N × N of arcs.
There are two node types: tasks T and connectors C
(N = T ∪ C). Tasks can be functions F or events
E (T = F ∪ E), connectors can be splits S or joins
J (C = S ∪ J). Each connector has one of the la-
bels AND, XOR or OR. Each connector c ∈ C has
an in-degree din(c) = |{(n1, n2) ∈ A|n2 = c}|, an
out-degree dout(c) = |{(n1, n2) ∈ A|n1 = c}| and a
degree d(c) = din(c) + dout(c).

The 33 selected EPC process metrics are listed in Ta-
ble 1.

5.2 Selected Processes
We selected the SAP Reference Model [2,5], which was
part of SAP R/3 until version 4.6, as process collection
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Table 1: Selected process metrics for EPCs.
name symbol reference definition
number start events SES

[8, 10]
number internal events SEInt

[8, 10]
number end events SEE

[8, 10]
number events SE [10] SE(G) = |E| = SES

(G) + SEInt
(G) + SEE

(G)
number functions SF [8, 10] SF (G) = |F |
number AND splits SSAND

[8, 10]
number AND joins SJAND

[8, 10]
number XOR splits SSXOR

[8, 10]
number XOR joins SJXOR

[8, 10]
number OR splits SSOR

[8, 10]
number OR joins SJOR

[8, 10]
number connectors SC [10] SC(G) = |C| = SSAND

(G) + SJAND
(G) + SSXOR

(G) + SJXOR
(G) +

SSOR
(G) + SJOR

(G)
number nodes SN [10] SN (G) = |N | = SE(G) + SF (G) + SC(G)
number arcs SA [8, 10] SA(G) = |A|
diameter diam [10] length of the longest path (= number of arcs on this path) from a start node to an

end node
density (1) ∆ [10] ∆(G) =

|A|
|N|·(|N|−1)

: number of arcs divided by the maximum number of arcs
for the same number of nodes

density (2) d [9] see [9, pp. 3–4]
coefficient of connectivity CNC [6, 10] CNC(G) =

|A|
|N|

coefficient of network
complexity

CNCK [6] CNCK(G) =
|A|2
|N|

cyclomatic number S [6] S = |A| − |N |+ 1

avg. connector degree dC [10] dC(G) = 1
|C|
∑

c∈C d(c) (see a)

max. connector degree d̂C [10] d̂C(G) = max{d(c)|c ∈ C} (see a)

separability Π [10] Π(G) =
|{n∈N|n is cut-vertex}|

|N|−2
: A cut-vertex is a node whose deletion sepa-

rates the process model into multiple components.
sequentiality Ξ [10] Ξ(G) =

|A∩(T×T )|
|A| : number of arcs between non-connector nodes divided by

the number of arcs
depth Λ [10] Depth relates to the maximum nesting of structured blocks in a process. See [10,

pp. 185–186].
mismatch MM [10] MM(G) =∑

l∈{AND,XOR,OR}

(∣∣∣∑c∈Sl
dout(c)−

∑
c∈Jl

din(c)
∣∣∣) (see b): sum of

mismatches for each connector type
heterogeneity CH [10] CH(G) = −

∑
l∈{AND,XOR,OR} p(l) · log3 p(l) (see a): entropy over the

different connector types
cycling CY C [10] CY CN (G) =

|NC |
|N| : number of nodes NC on a cycle divided by the number of

nodes
token splits TS [10] TS(G) =

∑
c∈SAND∪SOR

(dout(c)− 1): number of newly introduced to-
kens by split connectors

control flow complexity CFC [8, 10] CFC(G) =
∑

c∈SAND
1+
∑

c∈SXOR
dout(c)+

∑
c∈SOR

(
2dout(c) − 1

)
:

sum over all split connectors weighted by their number of possible states after the
split

join complexity JC [8] JC(G) =
∑

c∈JAND
1+
∑

c∈JXOR
din(c)+

∑
c∈JOR

(
2din(c) − 1

)
: sum

over all join connectors weighted by their number of possible states before the join
weighted coupling metric CP [14] see [14, p. 42]
cross-connectivity metric CC [15] average strength of connection between all pairs of process nodes, see [15,

pp. 483–484] for details

aMetric value is 0 for |C| = 0 (source: personal communication with Jan Mendling).
bThe original definition printed in [10, p. 187] is faulty (source: personal communication with Jan Mendling).

for our experiment. These processes were already used
for several experiments found in the literature [8–10].

We first validated the EPCs according to the require-
ments for syntactically correct EPCs [10, pp. 42–46].
Furthermore, we discarded EPCs with several graph
components. Out of the 604 non-trivial EPCs of the
SAP Reference Model, we had to remove 89 because of

invalidity2 or several graph components.

Finally, 515 EPCs remained for the following exper-
iment with our approach.

2no start event, no end event, a function with not exactly one pre-
decessor and one successor node or an event with more than one pre-
decessor or successor node
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5.3 Results
The 33 process metric values of the 515 selected pro-
cesses are depicted in the heatmap of Figure 5.

The values of each process metric are normalized
into the interval [0, 1] as their domains are too differ-
ent. The metrics control-flow complexity (CFC) and
join complexity (JC) are logarithmically normalized
as both have some outliers with extremely high values
compared to the large rest of the values.

The rows (i. e., processes) are ordered by the num-
ber of nodes metric (SN ). The columns (i. e., pro-
cess metrics) are hierarchically clustered using 1 −
the Spearman’s rank correlation coefficient [11, pp. 42–
45] as distance between two columns (process metrics)
within the complete linkage inter-cluster distance mea-
sure of equation (3).

The data is clearly displayed in the heatmap on one
page. So, the main goal of the visualization is fulfilled.
Furthermore, several observations can be made:

• There is a strong positive correlation between the
size metrics number of connectors (SC), number
of events (SE), number of nodes (SN ) and number
of arcs (SA).

• There is a negative correlation between most met-
rics (e. g., size metrics) and the metrics separability
(Π), sequentiality (Ξ), cross-connectivity (CC),
density (1) (∆) and weighted coupling (CP ). The
negative correlation is especially strong between
SC , SE , SN and SA on the one side and ∆ and
CP on the other.

• Most metrics have many small and only some large
values. For heterogeneity (CH), things are vice
versa. For the metrics separability (Π) and coeffi-
cient of connectivity (CNC), most processes have
values in the middle of the domain.

A clustered version of the heatmap is depicted in Fig-
ure 6. The clustering was done using the k-means clus-
tering algorithm for three clusters. Before clustering,
the input data (normalized metric values from the non-
clustered heatmap) was scaled to mean 0 and variance 1
for each dimension. The selection of the optimal num-
ber of clusters and the optimal clustering with this clus-
ter number for the input data was done using the Davies-
Bouldin index.

6 Conclusion and Future Work
In this paper, we proposed heatmaps as a visualiza-
tion technique for the high-dimensional process metric
data of business process collections to gain new insights
into the distribution of metric values among processes.
Additionally, we suggested clustering for analyzing the

correlations between process metrics and finding (struc-
turally) similar processes among business process col-
lections.

We successfully applied our approach to the SAP
Reference Model processes. We could demonstrate that
the visualization of 33 process metric values for 515
processes using heatmaps is possible and still clear for a
human observer. Furthermore, interesting insights into
the correlations between process metrics and the clus-
tering of the processes of the collection could be gained.

For future work in this area, we suggest to apply the
approach also to other process collections. It would
be interesting to analyze whether these processes have
similar correlations between the process metrics and a
similar distribution of metric values as the processes ex-
amined in this paper.
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