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Abstract—Although increasingly popular, Model Driven Ar-  [21]. MDA provides an enabling infrastructure with stardliar
chitecture (MDA) still lacks suitable formal foundations on top  gspecifications facilitating the definition and implemeiutatof
of which rigorous methodologies for the description, analgis model transformations

and transformation of models could be built. This paper aims . . . . .
to contribute in this direction: building on previous work by An important issue in MDA isnodel refactoringThe term

the authors on coalgebraic refinement for software componas ~refactoring was originally introduced in [23] in the contex

and architectures, it discusses refactoring of models wiih of OO programming. In [6], it is defined as the process of
a coalgebraic semantic framework. Architectures are defing ‘changing a software system in such a way that it does not
through aggregation based on a coalgebraic semantics forubsets  5iter the external behaviour of the code, yet improves its

of) UML. On the other hand, such aggregations, no matter how . , .
large and complex they are, can always be dealt with as coalge internal structure! Later, research has shifted from program

bras themselves. This paves the way to a discipline of models refactoring to model refactoring [26], [27], which aims to
transformations which, being invariant under either behavioural apply refactoring techniques at the model level instead of
equivalence or refi.nement, are able to formally capture a Iage program (source code) level.
number of refactoring patterns. The main ideas underlying his ~ According to the definition above, refactoring should pre-
research are presented through a detailed example in the ctext . .
of refactoring of UML class diagrams. serve b.ehawogr_s.when a modql is tr_ansformed. Un_forthateI
a precise definition of behaviour is rarely provided. The
|. INTRODUCTION original definition of behaviour preservation in [23] skte
Model Driven Software Engineering (MDSE) [25] is curthat for the same inputs, the resulting outputs should be the
rently a highly praised development paradigm among softame before and after the refactoring. Such an undersgndin
ware developers and researchers. Its key message: softvedreehaviour preservation is ensured by means of refagforin
systems can be developed, enhanced, and maintained throurgiconditions in [23]. However, this is a rather consexeati
successive refinement and transformatiomafdelsat various approach which rules out many legal refactorings. Moreover
levels of abstraction. Therefore, rather than directlyradsing requiring preservation of 1/0 behaviour is either insuéfii
concrete programs or low-level descriptions, the primatiy a or excessive in many application domains.
facts in MDSE are models themselves and transformatioms. It A graph transformation approach was proposed by Mens
intuitions resort to combine architectures of the modeésol et al. in [19], [18] to provide formal support for refactogin
with other process activities, and to use model rather tlogie c A type checking approach is used in [28] to ensure that the
as the driving force of software development. type of an entity is same before and after refactoring. These
The Unified Modeling Language (UML) [22] provides aapproaches are static and mostly operate at source code leve
unified notation for representation of various models, ard [29], UML statecharts are translated into CSP processes,
has been widely adopted for the representation of aspeatsl behaviour preservation in refactoring is witnessed by
of distributed, web-based applications [7]. According 28]] failure-divergence refinement in CSP. Unfortunately, ityon
UML is ‘a graphical language for visualizing, specifying,deals with the statechart model, while in real application
constructing, and documenting the artifacts of a softwareglomains, many aspects of behaviour may be relevant. Thus a
intensive system’In practice, it stands for a collection ofgeneric definition of behaviour preservation is still ned e
inter-related, semi-formal design notations for softwdegel- model refactoring. Other interesting approaches incliig [
opment, providing a unified notation, expressive and widend [11]. Reference [20] provides a comprehensive survey.
adopted (ade factostandard). It lacks, however, a rigourous In previous work, we introduced a generic coalgebraic
and consensual semantic definition leading, thereforeglmkw semantic framework for different models in UML, including
effective support to the design of complex systems andnpftelass diagrams, use cases, statecharts and sequencendiagra
to conflicting support tools. [12], [17], [15]. In such a framework, the semantics of diéfet
A variant of MDSE is the Model Driven Architecturekinds of models are given as coalgebras [9], [24] which encap
(MDA) proposed by the Object Management Group (OMQulate a state space, regarded as a black box with limitexbacc



via specific observers. Notions of bisimulation and refinetnea coalgebrap : O~QOU «— U is regarded as a formal
capture observational equivalence and simulation presrdelescription of the observation process.
respectively. Such standard tools in coalgebra theorycan f  Alternatively, a T-coalgebrap can be thought of as a
the basis of a whole discipline of reasoning and transfogmigeneralisedransition system, —, the shape of transitions
UML designs. Actually, if the semantics of different UMLbeing determined by according to
models can be presented as coalgebras for suitable functors
we will end up with auniform settingfor tackling the diversity p—— = E€T°P @)
of su_ch model_s, their properties and inter-relations. or, introducing variables,

This paper is part of such a broad research agenda on a

generic coalgebraic semantic framework for UML descripsio W pe—u = uerpu
upon which we aim at addressing two main issues in model- ) _
driven development: where relationct denotes structural membership In this

. - : S context, the notion obisimulationfound in automata theory
« model composition defining and investigating operators

and laws which govern the behaviour of models, and or process algebra, generalises to stcBhaped transition

. .~ systems: a bisimulation is a relation over the state spates o
« modelrefactoring understood athe process of changing o . :
. ) two coalgebrasp and ¢, which is closedfor their dynamics,
a software system in such a way that it does not alter tri1e
external behaviour of the code, yet improves its interndl"
structure to quote [23]. (x,y) € R = (pz,qy) € TR 2)
In both cases a precise notionlwghaviourand a calculational | . . . . L
approach tdehavioural equivalencandrefinements the key Wh'Ch_’ g_ettlng rd of variables, bgcomes the followmg n-
issue. Actually, such notions are at the kernel of coalgeb?%ua_‘“ty in the language of the (pointfree) calculus of bma
theory, often suitably called thenathematics of dynamical relations [1]:
systems|In particular, coalgebra theory provides a standard RCp°-(TR)-q A3)
notion of systems’ behaviour in terms of the bisimilarity
relation induced by the signature functor. Refinement, agherep® stands for the relational conversefApplying the
explained below, corresponds to the ability of a coalgebra shuntingrule of the calculus op°, this simplifies to
simulate another in a quite precise, but parametric, way.
A specific contribution of the paper is the case for tak-

ing (coalgebraic) refinement [14], instead of observationa gjgimjjarity is entailed by coalgebra morphisms. Actuatly
equivalence, as the basic notion capturing the intuitiveaid morphism from coalgebraandp, is a function between their

of “‘behaviour preservation’ under refactoring. Often, &  giate spaces with commutes with the coalgebra dynamics, i.e
equivalence, or in coalgebraic terms, bisimilarity, is coarse which validates the following equation:

enough to capture typical refactoring patterns. This wél b

p-RC(TR)-q (4)

made clear even in the quite elementary example of a refac- Th-q = p-h (5)
toring pattern for Class Diagrams used as a case-study in the ) ) -
sequel. Again, this can be framed in terms df-shaped transition

The remaining of the paper is organised as follows: Secti§¥Stems:
Il recalls basic concepts in coalgebra theory, with a paldic n
emphasis in our own approach to generic refinement as de-
tailed in [14]. Section Il presents a refactoring examptai A general result in coalgebra theory asserts that the exis-
a Class Diagram of an e-business application. The next thteace of a morphism between two coalgebras is enough to
sections contain the basic contributions of the paperudEng prove they arebisimilar, which provides us with a handy,
a semantics for Class Diagrams and formalising refactasg calculational proof principle to verify bisimilarity.
(different kinds of) refinement with respect to the envishge
semantics. Finally, section VII concludes and points ow ho 'This relation coincides with datatype membership defined8inby a

our results have a broader scope than just class refacloriﬁg"is connection. For the powerset functerr amounts to standard set
mé&mbership, while for polynomial functors the followingdimctive definition

Cge— = ,e— -h (6)

underlying some issues for future work. applies (see [14] for details):
1. COALGEBRAS, BISIMULATION AND REFINEMENT €a = id
ek = 1
~Given a functor T, understood as a ;peuflcatlon (_)f a €rxr, = (€r m)U(Er, m2)
signature ofobservers a T-coalgebra is simply a function €rtm, = [€r,€n]
p: TU «— U mapping elements of a state spdcento their €r.m, = €n - €n

observations througfi. A useful metaphor identifies functor = ) h —fk
T with a ‘lens’ (O—~(0)), providing the unique, limited way cr kQK € fr (wheredif =/ 1)
through which the state of a system is observed. Similarly,



Equation (6) is, in fact, a conjunction of inclusions L]

- called : Date
he ge— C p,— +h (7
Video
p— h © h- g ) Reservation -name ; string
. " . . - details : string
which correspond to transitiopreservationand reflection as
the following pointwise rendering may turn more explicit: -
opy
/ ’ -identifier : string Rentalltem
U g v = hv p hv -sale: bool [ |-returned: Date
u’ p— hv = El'u/GV- v’ g v Au =hv + return(shop : Shop)

Coalgebra morphisms preserve and refl€ethaped tran- Rental

+member
sitions, a basic observation which lead the authors, in Membership :LFL‘I’;".’D[;?;"-
series of previous publications [13], [14], [2], to chamxiie -joined ; Date L charge st
a notion of coalgebraicefinementin terms of morphisms =R - e
that only preserve or reflect such transitions. Cutting shc » = 1 Account +[~amourt  float
a long story, gorward (respectivelybackward morphism is ™« +mysccount]balance: foat recorde| [EO%0: 4719
defined, with respect to a refinement preordeas a function _nan::fss‘t';ng
h UP A Uq between the state spaces of the releva - address : string self myaccount.balance>0
coalgebras, such that - phone :int
. -email : string

Th-q <p-h 9)
respectively, Fig. 1. Video e-business example

p-h < Theg (10)
Notation f < ¢ equivales tof C < -g, i.e., account recorded items. An OCL constraint is attached to

o= (Yo < _cIassMembership stating that every client’s_ account balance
f<g={a:: frsga) is larger tharD. ClassAccountdoes not provide any methods
As discussed extensively in the above mentioned referencekits own, being only used by clasdembership Therefore,

< is any preorder compatible with the membership relatioalassesMembershipand Accountcan be joined into a unique

in the sense that class. The resulting diagram is as shown in Figure 2, where

er-< C et (11) all other classes remain unchanged.
i.e., for all z1, zo, o

-called : Date
rerTxi N 11 < Ta = TETT
Typical refinement preorders capture reduction of non det mﬁ -nar‘n’:!d:es‘t)ring
minism and/or increase of definition, but much more possib - details : string
ities can be considered (see [2] for a detailed catalogue &
discussion). Reference [13] proved that forward (respelsti / Copy s
. . = ifier - i entalltem

backward) morphisms preserve (respectively, refl€ethaped shop : ';T:“i:i;l S L el

transitions as well as that coalgebras and such morphisms + returnfshop : Shop)
possess, in both cases, the structure of a category. e
. . . *
A coalgebrag is aforward refinementf p, written asqg < tmember ~from : Date

p, if there exists a forward morphism fromq to p. Dually, . joi;fj“:‘;:t’:""‘ g;':rg e
a backward refinementwritten asq < p, is withessed by a - lastHire : Date :
H - balance : float A it
backward morphism also from to p.  plamount ]|~ _ | Bomuma
e + 42| - reason : string
[1l. A REFACTORING EXAMPLE e ~ TeRIs et
This section introduces a concrete example of refactorii |*7%%e =19 wichalanse=q T

over a class diagram. The original diagram is depicted |- phone: int

Figure 1: a simplified model of a video renting e-business. |-email:string
This model, which we believe is self-explanatory, can be

refactored according to thinline Classrefactoring pattern Fig. 2. Refactored class diagram

[6]. Consider, for example, classéembershipAccount and

Accountltem which represent the clients of a store, their As this example shows, a refactoring is a model transfor-

accounts, and the history of record items on such accountsation which eventually improves its internal structurdjley

Each client has an account and every account has a sepserving its external behaviour, or, understandingeie!’




as an abbreviature foexternally observedits observational  More generally, as methods are typically implemented by
semantics. To formally record and reason about such mogeltial functionsor even by arbitraryelations this definition
transformations, however, entails the need for should be generalised to

« a precise notion ofobservational semanticfor class
diagrams,

c away tp encode_ each refactoring pattern, or law, in tr\]/v%ere B is a strong monad capturing some sort of be-
semantics and, finally,

« a proof that such encoding preserves the semantics irp%woural effec_t. _For examplpartlahty (ma_lk!ngBX = X+1)
. : or non determinisn{B standing for the finite powerset func-
stronger or weaker, but always precisely defined, way. o . L .
] ) tor). Additionally, a class may specify some initial comafits,
The rest of the paper is devoted to tackle these issues. typically as a predicate : 2 «— U which is supposed to
hold in the coalgebra initial states.
Such a coalgebraic setting provides for free a notion of
A. Classes observational equivalence —F-bisimulation —which is a
In UML a class diagramcaptures the static structure of dundamental tool for analysing valid refactorings. Insiaimg
system, as a set of classes and relationships, caiedcia- definition (2) to functorT, yields two class models being
tions between them. Classes may be further annotated wittsimilar iff they provide identical observations througit
constraints i.e., properties that must hold for every objectributes and execution of the method’s component not only
in the class along its lifetime. Let us concentrate, for thdeliver equal outputs but also makes each of them to evolve
moment, in class declarations. The aim of a class declaratio a pair of new states which are also bisimilar.
is introduce a signature of attributes and methods. Conside
for example, claséMembership in the diagram of Fig. 1. B. Aggregating Classes in Class Diagrams
It introduces two attributes and a method over a state spaceE | . UML Cl Di ds t
identified by variabld/ below, which is made observable ex- Very class in a ass blagram corresponds 1o a

actly (and uniquely) by the attributes and methods it deslar cpalgebralc speC|f|cat|Q(1T, ®, V) in which T is t_he f_unctor
Concretely, discussed above, which represents a generic signature of

attributes and methods; is a set of axioms to characterize
joined : Date «— U the properties of the class, adddescribes the properties that
lastHire : Date «— U hold for newly created objects.
The semantics of a class specificatiorin a UML Class
pay : U — U xR Diagram is defined as the category of coalgebras for the corre

These three declarations can be grouped in one throwsglita SPonding coalgebraic specification and initial state prese

(at,md) : AxB(O xU) «— U

IV. A SEMANTICS FORCLASSES

construction morphisms between them and the behaviour of the objects of
o . . classc is captured by the final coalgebra in this category. On
(joined, lastHire, pay) : Date x Date x U™ «— U the other hand, inheritance relationship between two etass

in a class diagram is witnessed by a functor between the

which is acoalgebrafor functor corresponding categories of coalgebras for the superalags

TX = Date x Date x X* the subclass.
) Such ‘theory-oriented’ view provides a right level of ab-
Therefore, we write, straction, but, on the other hand, requires some heavy machi

ery to be handled in its full genericity. Therefore, in thesel,

we shall concentrate into a more concrete, ‘model-oriénted
In general, the semanticf] of a classc is given by a description, assuming a prototypical inhabitant of eads<l!
specification of a coalgebra specification and defining our combinators at the model level

[Membership] = (joined, lastHire, pay)

(at,md): A x (Ox U)l «— U

2A strong monad10] is a monad(B, n, 1) whereB is a strong functor

. . . and bothn and . strong natural transformationB. being strong means there
where A is the attribute domain, and each method accepts, g natgral trg‘nsforrﬁaﬁonﬂld x—): T x — <:C:'|. » _gand T(— x

parameter, of typd, and delivers both a state change and am) : — x T <= — x T called the right and left strength, respectively,
output value, of typeO. l.e., a coalgebra for functor subject to certain conditions. Their effect is distribute the free variable
values in the context—" along functorB. Strengthr,., followed by r; maps
T:Ax(0x X)I X (12) BI x BJ to BB(I x J), which can, then, be flattened B(I x J) via p.

In most cases, however, tlweder of application is relevant for the outcome.
. . . The Kleisli composition of the right with the left strengtbives rise to a
TyplcaIIy, I'andO aresumtypes, aggregating the INPUt-OUtPUhatyral transformation whose component on objectand J is given by
parameters of each declared method. On its tdrig usually 6r; ; = 7, ,en,, , Dually,él; ; =7, , @7, ;. Such transformations
a product type joining all attribute outputs in a way whichspecify how the monad distributes over product and, thezefepresent a sort

hasi h h of th . ilable ind d f sequential composition d8-computations. Wheneve¥,. and §; coincide,
emphasises that each of them Is available independent o onad is said to lommutativeand the unique transformation represented

others, and therefore always able to be accessed in parallel s.



A UML Class Diagram introduces a number of clasmethods of classes andq accepts either separated or tupled
specifications which types the object population of any coirputs to deliver the result of applying eithed 5, or md,x,
responding model implementation. Typically, differentysa
of putting classes together in a Class Diagram correspondu{@, .. . B(0+0' +Ox 0" ) x Ux V) «— Ux V x (I+1' + I x I')
different operators betweei-coalgebras. In particular, one
may consider a form oparallel aggregation, denoted ki,
in which methods in both classes can be called simultangous| The reader can easily cheekd, s, is defined by
(as they always act upon disjoint state spaces), and a form of
interleaving denoted by, which offers a choice of which
class to call. Note that in both cases, attributes are always
available to be observed, and therefore are composed in gheredl anddr stand for product left and right distribution,
multiplicative context. Initial conditions are joined bgdical respectively.
conjunction. Therefore, given coalgebrasand ¢, over state Al three combinators are associative as well as commu-
spacesU andV, respectively, we define their produe® ¢ tative, wheneveB is a commutative monad. As one would

mdpmg = B(dI°)-d - (md,m, X mdyx,) - dr

as (1pRq» (atpme Mdpmg)), Where, expect, such properties are stated up to bisimilarity. Tioefp
- R of commutativity of&below iIIustra_ltes a way to reason, in a
YRg = UXV ———2x2—>2 calculational style, with coalgebraic definitions.
at, xat, The basic proof technique resorts to the well-known fact
atygg = UXV ————=Ax A that a morphism between coalgebras entails bisimilarity. |

mdygy = U x V x (I xI') "o (U xI)x (VxI) this example isomorphism: V x U — U x V relating the
state spaces of classg& ¢ and g X p, is shown to be ar-

md;, X mdg B(O x U) x B(O' x V) coalgebra morphism. The only non trivial part of _the proof is_
the one related to the methods’ component, which we detalil
i B((O x U) x (O’ x V)) as follows?, in a completely pointfree style:
Bm

——=B((0Ox 0" x (UxYV)) B(s x's) - md,x

= { definition of&}
wherem is an isomorphism (combining Cartesian product B(s xs)-Bm-§-(md, x md,) - m
commutativity and associativity), andl is the Kleisli com- _ { 6t o fnctor anc rutinen 5 — (s x ) - m}

position of left and right strengths associated to moiad
Interleaving, orchoice differs from X only in the methods
Component_ ThUS, == { § ands naturality entailsBs - § = & - s}

Bm:d-:s-(md, x mdg) - m

B(m:s)-d-(md, x mdy) -+ m

mdyg, =UxVx (I+1) —% U x V)2 x (I+1') = { s nawraiy}
= Bm -4 (md, x mdy)-m- (s xs)
—= (UxD)xV+{VxI)xU ( )
= definition of X
L BOXU)xV+BO xV)xU md,gq - (s X 5)
T B((O x U) x V) + B((O' x V) x U) Reference [5] introduces a comprehensive calculus of gen-
o ) eralised Moore machines framed as coalgebras for a functor
>B(Ox (UxV))+B(0"x (U xV)) similar to (12) which can, to a great extent, be adapted to the

I L B((O+0)xUxV)+B(0O+0")xU x V) present setting to reason about class specifications.

—Y S B(O+0)x U x V) V. REFACTORING CLASS DIAGRAMS

The coalgebraic semantics for classes and class aggnegatio
abv ' ' abv . introduced in the previous section has the side effect of
wheref "= md, xid+md, xid andg "= B(u1 xid)+B(:2 X representing any parcel of a UML Class Diagram (from a
id). On the ohter handa= (id,id) and v = [id, id] denote, sjngle class to the whole diagram) Eiscoalgebra. Moreover,
respectively, the diagonal and co-diagonal functions (d¢e the combining classes in a diagram through different temsor
for details on these definitions and the calculus of funﬁjon entails different semantic perspectives which may be hélpf
Finally, another tensor, denoted By corresponds to what j, subsequent design stages. In this section, we proposeto u

may be calledconcurrent composition. It is defined as asuch a framework to discuss refactoring of Class Diagrams.
combination of theX and H, allowing for both parallel or

interleaved method execution. Formally, the actiom Bfg on 3Note a swap of the arguments is also necessary



A. Refactoring by Refinement B. Refactoring Patterns

Refactoring can be discussed, in practice, both at thelet us re-visit the refactoring example introduced in secti
specificationlevel (in which case no particular model ofj|| to illustrate thelnline Class refactoringpattern which is
any class specification in the diagram is assumed) or at tgted as
modellevel (when it is proposed with respect to a particular
design model). The former, to be discussed in subsection |Law 1: Inline class refactoring allows two classes
V-B, is, certainly, more interesting and the one where tgpic to be merged together provided one of them |has
refactoring patterns, as discussed in [6], apply. In thaiskq no methods available.
however, we consider a design stage where the class diagram
is already under transformation towards a concrete design.
In such a context, the most elementary refactoring sitnatio As with any other refactoring pattern one would like to
captures the replacement of a particular class model by aransider, we proceed in two steps:

of its refinements. _ . first the pattern is encoded in the semantics;
To deal with it, in our approach, is necessary to show, then, it has to be shown that the original and the new
that the class combinators which give semantics to the whole giagram are observationally equivalent or else one is a

diagram preserve the refinement relation. As discussedeabov  (efinement of the other.
a typical refinement relation captures increase in defiméiod
reduction of non determinism — typical choices #rin T,
being themaybeor the powersetmonad. The following result,
however, applies tany forward refinementz. Moreover, a
dual result can be proved, exactly along the same lines
any backward refinement.
Suppose, thus, that= ¢/, which means there is a forward

morphismh : ¢ «—— ¢ such thatTh-¢ < ¢ - h. We want to [Membership'] (16)
prove that

Back to the example at hands, our encoding is as follows:
classesMembership and Account are replaced by a new
class Membership’ whose semantics is a new coalgebra
Qver the state space dfMembership] to which a new
or . .
attributebalance is added.

cRd 2 Cl Xd (13) - <<atMembershipaatAccount)amMembership>

The refinement situation is witnessed by a morphism betwedfe are now left with the need to record how does new
the relevant compositions which amounts to functtor id :  ¢lassMembership’ relates to (the relevant fragment of) the
U' xV «— U x V. There are two inequations to prove: original Class Diagram, i.e.,
atemq < ateggg - (b x id) (14)
B((id x id) x (k x id)) - md gy < mdugy - (b x id) x (id x id) (15)

Inequality (14) is immediate from the hypothesis. For (15ssuming the remaining part of the diagram remains un-
we reason: changed.

Clearly, they are not bisimilar, because, at each step, the
, ) , original attributes of classeMembership and Account
B((id > id) x (h x id)) - md .z are now computed over trEamestate.

{ aetiion orea } For the methods’ component, note that to assert the absence
B((id x id) x (h xid)) - Bm - ¢ - (md. X mdg) - m of methods declarations in clagsccount is equivalent to
endow it with a unique method, with trivial argument (i.e.,
such thatl = 1, wherel is the singleton sefx}), yielding a
trivial result (i.e.,O = 1) and acting as an identity over the
= { xis atunco] state space. Apart these ‘dummy’ parameters of typ@o

Bm-§-((B(h xid)-md.) x (B(id x id) - md4) -m  observable difference can be detected between the new class
Membership’ and the semantics of the original subdiagram
containing classe®dlembership and Account. The latter
is given by coalgebrd

[Membership] X [Account]

- { 8 andm nalurality}

Bm-d- (B(h xid) x B(id x id)) - (md. x mdg) -+ m

IN-

{ hypothesis and monotonicity; idenmi}s
Bm-d-((mde - (hxid)) x (mdg- (id x id))) - m
= { x is a functor;m nalurality}

Bm -4« (mde x mdg) - m - (h x id) x (id x id) [Membership] X [Account] a7)
cUXV — AxB(Ox (UxV))!

{ definition of&}

mdegq « (b x id) x (id x id) Clearly, projectionr; : U «— U x V is abackwardmorphism

A similar result can be shown, along the same lines, sfor any refinement preorder capturing increase in definition

B and ®. Finally, note that, as any morphism is a forward , . _

hi Il th It is al lid wheni | d Actually, [Membership]X[Account] is fromU x V to A x B((O x
morp _'Sm as well, t. e r?SU tisa SQ valid whenis replace 1) x (U x V))T*1, which can be transformed into (17) by the obvious natural
by ~, i.e., for any bisimilar refactoring. isomorphism.



(i.e., reduction of partiality). coalgebraic models for botktatechartsand sequence dia-
., grams respectively. The former were modelled as coalgebras
[Membership'] - m; for

< A x B(id x m;)! - [Membership] X [Account] TX =B(X x PE)®

Therefore, thénline refactoring pattern is actuallytzackward whereas the latter are also coalgebras for
refinemenbf the new by the old diagram, i.e., TX = X%

. s/
[Membership] X [Account] < [Membership'] over a universe of global configurations.

VI. CONSTRAINTS AND ASSOCIATIONS Preliminary work on refactoring of such diagrams indicate

ttt%at, in both casesweaker (i.e., coarser with respect to

So far we have |g.nored completely the t\.NO other mgre.dlerblsimilarity) relations on the observable behaviour, ngme
of a UML Class Diagram, namelgonstraintsand associa- ! .
refinement, are in order.

tions The former are typically attached to class speC|f|cat|onsJust for a brief illustration, consider statechart in FigGr

and their semantic effect is to constraint what coalgeboast o : : X
S . . ffor a copy object in the video business system, which capture
as valid implementation for the class. Such is the case, or . : : L
example, of constraint the following dynamics. When a copy is created, it is in some
’ store. A copy in the store can be hired and then returned back.
balance > 0 When hired, if the due date expires, the copy enters in an out-

_ of-date state, and must be returned back at some time.
attached to clasMembership in our example.

Associations can also be interpreted as constraints,ithés t
with respect to a fragment of the diagram containing the tw e —{isn
associated classes. For this, one has to assume that the : N ,
space of each class has a component recording the collec return(se /Ttoday>due]
of live instances. Amassociationbecomes a constraint over e
such components of the (joint) state space. For example
'one-to-one’ association corresponds to a predicate tisger
the existence of an injective function relating the collectof Fig. 3. Statechart for Copy
instances of each class. Similarly, a 'one-to-many’ asdimni
corresponds to a relation whose kernel is the identity, ae. When a copy is in the store, it can be held for an outstanding
total relation whose converse is simple. reservation or put on the shelf. It is held if it is wanted,,i.e
In generaL constraints and associations are predicamWHf there is a reservation for the video and in this store that
are supposed to be preserved along the system life-tifl@€s not have a Hold. If a copy is held and the reservation
Formally, they are incorporated in the semanticsiragri- IS cancelled, it is either reallocated to another resesuatir
ants F0||owing the approach recenﬂy proposed in [3]’ Sucnut in theHoldCancelledstate until checked back to the shelf.
predicates, once encoded as coreflexives, i.e., fragmétite o Furthermore, statesHired andisOD can be grouped together

hire(to,self,m)

{ isHired \
return(self) —

2
isOD

identity, according to to model the behaviour of a copy when it is out of the store.
With such two composite states, a refactored statecharthwh
y®pr = y=zAPx actually refines the original one with respect to the seranti

can be specified as in [17], is represented in Figure 4.

c-Pp CTOp-c (18) -

[ 2
When reasoning about diagram transformations, such as-ret = ™
toring, constraints entail foproof obligations For example, \ @y

is0D

[balance > 0] =
[[Membership]] » Ppatance>0 € T Ppatances0 * [[Membership]] Fig. 4. Refactored Statechart for Copy

needs to be discarded whenever justifying a refactoringlVav  In retrospect, the approach illustrated in this paper seems
ing classMembership. promising to either to capture known refactoring patteors,
to identify new ones, for a variety of UML models. A lot of
work, however, remains to be done. In particular, we would
As announced in the introduction, this paper is just like to tackle the consistency problem among different UML
first step on a broader attempt to apply the principles anéew models, and to explore the relationship between model
techniques of coalgebraic semantics to reason formallytabéransformations and other kinds of refinement, namely, the
refactoring of UML models. In [17] and [15], we developedotion of architectural refinement introduced in [16].

VII. CONCLUSIONS
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