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In this work we address the question of how to organize pen-based interfaces
for mathematical software systems. We describe our approach to such in-
terfaces both for mathematical packages and document processing software.
Our architecture includes components for ink collection, mathematically-
oriented recognizers, portability support and interfaces to applications. We
summarize aspects of mathematical handwriting recognition and discuss
the methods we have used for individual character recognition and over-
all expression analysis. We present our pen-based computing environment
Mathink and give an overview of facilities for training, ink annotation, and
testing.

1 Introduction

It is natural to ask what might be the most effective computer interface to
handle mathematics, whether it be working with a symbolic computation
system or entering equations in a word processor. This question has been
addressed by various authors, including [30,31], and one of the conclusions
is that many users would prefer to enter expressions using a pen, rather than
a keyboard. Although there has been a long-standing interest in this prob-
lem (see, e.g. [8, 16]), the recent proliferation of pen-enabled devices, such
as Personal Digital Assistants, Tablet PCs and interactive whiteboards,
supported by greater processing power of modern computers, suggests that
pen-based support for mathematics could now reach a wide audience. The
digital tablet is favorable for mathematical input over conventional tools
such as paper and chalkboard, owing to the rich functionality and variety of
software behind the ink-capturing hardware. Pen-entered pen mathemat-
ical content can be processed in many interesting ways, including editing,
validation and semantically-driven direct manipulation, as well as inter-
active exploration of alternative hypotheses, recording derivations, and so
on.

These observations imply that pen-based interfaces for mathematics
must incorporate a number of capabilities, including collecting and process-
ing of digital ink, recognition of handwritten expressions and connection
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to mathematical engines. Furthermore, pen-based computing occurs in a
context that is rich with standards for representing and communicating
mathematical data, including Unicode [23], MathML [7] and InkML [28].
We see support of these standards as important for cross-platform commu-
nication and collaboration.

In this chapter we first present our architecture for mathematical pen
interfaces. We then summarize the main features of our pen-based mathe-
matical computing system, Mathink, which we have developed to evaluate
our architectural approach. In Section 3, we discuss aspects of the recogni-
tion process specific to mathematical handwriting. Next, in Section 4, we
consider two mechanisms for communicating between pen-based front-ends
and mathematical computation engines. Finally, we describe the tools we
have developed for system training and testing, and show how they can be
used to improve performance in recognition.

2 A Portable Framework for Pen-Based Computing

In this section we summarize the principal purposes and key requirement of
the systems built for pen-based computing. We describe a framework archi-
tecture designed to implement such systems allowing high-quality handling
of digital ink, while ensuring portability across platforms and applications.
We present our experimental software environment Mathink that we ended
up as the place to evaluate the organization of our architecture.

2.1 Objectives. The objective of our work has been to identify and in-
vestigate the issues whose resolution will lead to effective pen-based math-
ematical computation. This has meant investigating a number of questions
and approaches to different problems, from ink collection, to character
recognition, expression analysis and manipulation. From the outset, we
have recognized that in each of these areas there are important, difficult
questions and that a full solution will require research in many areas. The
Mathink system, that we have developed along the way, is intended to serve
as a testbed to explore these ideas, rather than as a production environ-
ment.

From the beginning, we must emphasize that our goal was not to cre-
ate a stand-alone mathematical recognizer nor to develop an application-
specific plug-in. On the contrary, we have studied how to provide a uniform
interface to many applications through one component. For concreteness,
we have identified two classes of hosting environments: computer algebra
systems and rich document editors.

Modeling a mathematical ink-handling component as one that may be
used in many contexts places a number of constraints on the system ar-
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Figure 2.1. Top-level framework organization

chitecture design. We require that such a pen-based interface be portable
across a range of platforms without sacrificing digital ink quality. In previ-
ous work [20], we have presented an architectural solution that allows one
to embed device-specific support for digital ink and to ensure compatibility
with hosting applications on various platforms. What we present here is
based on this approach.

2.2 Architecture Organization. The key point of our design is to sepa-
rate the components responsible for the analysis of handwritten mathemat-
ics from the modules that provide connection to hosting applications and
underlying platforms (Figure 2.1). In this way, core recognition compo-
nents can remain invariant, while interfaces and adaptors can be replaced
for each combination of platform and hosting application. This allows
re-use of the main capabilities of the pen-based framework in different en-
vironments without changing their internal organization.

Beyond being resource intensive, development and maintenance of recog-
nition modules requires expertise in mathematical handwriting analysis.
On the other hand, implementation of the “glue” components to plug
recognition units into hosting environments does not demand any specific
knowledge in mathematical recognition. Therefore, docking mechanisms
can be developed independently by experts in the separate areas.

In our experiments with target platforms and applications, we have
arrived at two core modules for character recognition and structural anal-
ysis. Our choice of implementation languages for these components had to
satisfy two principal criteria: platform portability and support of the func-
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tionality required by the modules. For the character recognition unit, we
chose C++ because of the quality of compilers for computationally intensive
tasks. Structural analysis, however, involves less computation. It requires
rich functionality for expression manipulation and sufficient XML support;
therefore, for the second module we chose to use the Java language.

Another important component of the framework is an interface to math-
ematical engines. As well as recognizing ink input and translating it to a
valid mathematical expression, we expect our pen-based component to al-
low further computation and manipulation with the formulae recognized.
To provide this functionality we need to enable a mathematical back-end
in our framework. Instead of building yet another symbolic computation
system we have decided to make use of already existing powerful and well-
developed symbolic computing packages. To satisfy the portability criteria,
among the available computer algebra systems we consider only those which
are supported on multiple platforms. We discuss connection mechanisms
to mathematical mathematical software systems in Section 4.

2.3 Validating the Approach with the Mathink System. In this
section we introduce Mathink, an ink-aware mathematical component im-
plemented as a test of our architectural approach. Mathink is designed both
as mathematical pen-based plug-in and as an experimental environment to
train and test mathematical recognizers. The main functions of the Ma-

think system will be discussed in detail throughout the next sections. Below
we briefly review its top-level interface and present the connection mecha-
nisms that allow Mathink to be used as a control running inside Maple [4]
worksheets and Microsoft Word documents.

§ Mathink from a bird’s eye perspective. Mathink provides a user inter-
face allowing digital ink to be collected from a pen, mouse or other de-
vice. The system supports a range of ink sources, including both pressure-
sensitive and touch-activated digitizers. We have successfully tested the
system with Tablet PCs, SmartBoards, the e3

works Stylo USB tablet and
Wacom digitizers. This design allows the system to be adapted also for
PDAs, since they support ink collecting protocols similar to those used by
SmartBoard. The system uses the Microsoft Tablet PC SDK [14] to collect
high-resolution digital ink.

The flow of control through the Mathink system is organized as follows:
Ink glyphs are entered in the writing area is transferred to the system
after an adjustable time delay. The writer thus is provided with immediate
feedback from the recognizer for every character entered. Along with the
best match, the recognizer offers other high ranked candidates. These are
shown in a fixed location that allows rapid selection of alternatives, whose
total number can be preset by the user.
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Figure 2.2. Mathematical ink document with multiple recognition options

Recognition results accepted by the user are displayed on top of or in-
stead of the original ink. Having these two options allows users to switch
between showing the ink input and typeset recognition results. When in
typeset mode, the recognized content is drawn within the bounding box
of original ink strokes. The best fit is calculated by the Mathink render-
ing module. This involves adjusting the size of the characters on a given
baseline, while taking into account positioning of large grouping operators,
fractions and radicals.

Layout of the expression is re-analyzed with each new character entered.
Once the user has finished writing a formula the system finalizes and refines
its structure. It is then parsed to a standard mathematical format, such as
Presentation MathML [7]. Once the mathematical content is constructed
from a handwritten input the user can choose to send it to a symbolic
computation back-end to perform further computation such as evaluation,
simplification, solving, etc.

In addition to the main feature of mathematical expressions analysis,
the Mathink system offers a drawing mode. In this mode ink input is
recognized as basic geometrical shapes instead of mathematical characters.
In addition, Mathink also allows to enter “free ink” that is not sent to the
recognizer. Switching between the modes is permitted at any time, so a
combination of recognized formulae, geometrical drawing, quick notes and
arbitrary sketches can be placed in the same document (see Figure 2.2).

As opposed to the approach taken in the InftyEditor [12], we do not dis-
card collected ink after it has been recognized. The original strokes along
with their annotations can be saved in Microsoft Ink Serialized Format
(ISF) or using portable system-independent standard InkML [28]. Stored
ink can be re-opened later in the Mathink editor or played back using the
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InkPlayer tool. This possibility allows the evaluation of of different combi-
nations of recognizers and settings on the same hand-written example. In
particular, we use this ability to test and optimize the performance of the
system, as discussed in Section 6.

§ Exporting Mathink as plug-in control. As we stated at the beginning,
our main goal is to enable pen-based mathematical interfaces to computer
algebra systems, rich document editors and other applications. We explored
methods for the integration of ink system with various software packages.
Among the possible approaches, we studied methods to export the Mathink

interface as a standard plug-in control compatible with target applications.

To do this, we defined a subset of the Mathink functionality to expose to
the hosting systems. These covered (a) manipulation of digital ink, includ-
ing collection, rendering and clipboard operations, (b) tuning recognizer
settings, and (c) exporting recognition results both for individual glyphs
and for whole expressions. The rest of the interface functions were designed
to manage Mathink control properties, such as appearance and accessibility.

While the functionality exposed by a plug-in control should remain as
invariant as possible across applications, the type and internal organiza-
tion of a plug-in component in most cases is determined by the hosting
system. We chose Microsoft Office as a suitable platform to evaluate our
approach with document processors. As the second independent approach,
we experimented with Maple 10 to demonstrate a pen-based mathemat-
ical interface in computer algebra packages. These choices led us to two
forms of plug-ins: as an ActiveX control [10] to be used with Microsoft ap-
plications and as JavaBeans [6] to connect the Mathink interface in Maple.

Presenting the Mathink component into an ActiveX control involved
developing a number of interacting adaptors, implemented using Microsoft
“com Interop” [2] and “Platform Invoke Services” [3]. Since .net managed
code cannot be directly compiled into an ActiveX control, we had to add
an intermediate Win32 [24] component to host the .net ink collector. The
installer for the Mathink plug-in on the Windows platform integrates it to
Microsoft Word or Excel as an “ORCCA MInk Control” and places a new
button on the “Formatting” toolbar. In other Microsoft applications, the
Mathink interface is accessible as a com object, for example, through the
“Insert|Object..” menu item.

Providing the Mathink interface as a JavaBean required connection be-
tween .net and Java platforms. Existing commercial and open source
packages providing a link between .net and Java are known to lag behind
one or both of the platforms as they evolve. Our approach uses no third
party software. The connection mechanisms we have developed are based
on standard protocols that are well defined and properly maintained for
both platforms. While remaining simple, this solution suits our purposes.
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Because the Mathink system involves a fair amount of managed .net

code, first, we had to expose it via COM Interop as a com object [9]. The
“unmanaged” nature of com components allows their exposure to Java via
the Java Native Interface (jni) [13]. We use the Abstract Window Toolkit

Native Interface [1] to permit rendering to Java canvas from native code.
Finally, we wrapped a jni adaptor within a Java package and exported
its main classes as JavaBeans [6]. Once the Mathink control is enabled
on a Java platform, it can be incorporated into Maple worksheets. This
not only allows the Mathink component to serve as a pen interface to the
Maple computer algebra system, but also provides a direct connection to
the Maple kernel, as we will discuss in Section 4.

3 Mathematical Handwriting Recognition

The past four decades have seen mathematical handwriting recognition rise
as an area of research interest. Recent results on aspects of handwriting
analysis and recognition have been reported by various groups in [12, 17,
29], including ORCCA [25–27] and our collaborators at the University of
Waterloo [15].

Handwriting analysis for mathematical content is commonly divided
into four interacting stages: collection of digital ink, recognition of indi-
vidual characters, structure analysis and determination of mathematical
semantics. In this section we describe the techniques used in our system,
Mathink, to translate ink traces into meaningful mathematical formulae,
to be used by computer algebra packages, typesetting systems or equation
editors within document processing environments.

3.1 Collecting Ink. Our system assumes that every character is rec-
ognized immediately after it has been written. This ensures that when
the user continues writing, all previous characters have been recognized
correctly. A disadvantage of this approach we is that partially give up a
pure “pen and paper” paradigm, because the user has to wait for each
character to be recognized. However, this fashion of entering ink has ben-
efits. It avoids having the user to search through lengthy formulae for
mis-recognized entries after the whole expression is processed at once. On
the implementation side, entering one character at a time allows the pro-
cedure of grouping strokes into glyphs to be skipped. Stroke grouping
(sometimes also called stroke segmentation) presents a complex problem
in handwriting analysis. Not many recognizers supporting this feature are
able to correctly assemble glyphs that contain detached dot-like parts, such
as found in letters such as i or ë. Another advantage of the “one character
at a time” design for mathematical recognizers is that it is possible to make
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a use of a context information, as showen in [11]. Mathematical context
is derived from the previously entered characters. Therefore, if the latest
recognition results were not confirmed by the writer, then processing the
context will introduce more confusion than assistance.

3.2 Character Recognition. After collecting the ink for a character, we
extract the trace data and pass it to the recognizer engine. The recognition
has three phases: First, the raw ink is preprocessed. Then the refined ink
is analyzed to filter out obvious mismatches from the prototype set. In the
final stage, handwritten input is compared with a set of known ink models,
and the best matches are returned as recognition candidates. We describe
each of these steps in more details below.

§ Ink Preprocessing. First, ink collected from the tablet needs to be prepro-
cessed. This is necessary to eliminate noise that is often present at the be-
ginning and at the end of strokes. In the next stage, ink glyphs are normal-
ized: by resampling and resizing. Resampling helps to uniformize distances
between points in the trace. Point distributions in strokes are not consis-
tent due to a variance in sampling rates on different ink devices. Variations
in users’ writing speeds also affect the density of trace points. Resampling
reduces the amount of data the must be retained without reducing the fi-
delity and makes the later matching more uniform. Trace resizing assures
that the size of a written ink glyph does not affect the recognition results.
The final stage of ink preprocessing is to smooth strokes to eliminate any
accidental artefact produced during cleaning and normalization.

The most recent version of our preprocessor also includes options for
stroke re-direction and reordering, to allow the recognizer to match char-
acters whose shapes are identical, but writing styles are different. With
this feature enabled, the letter X would be recognized correctly regard-
less of which stroke was entered first and whether the strokes were written
downwards or upwards.

§ Features analysis. Ink analysis is the next stage. This step extracts fea-
tures of the written glyphs. These features are used to categorize ink by its
overall appearance, geometrical shape and writing style. Features related
to appearance include, for example, the height to width ratio; geometri-
cal properties are based on the number of cusps, loops and intersection.
Features related to writing style include number of strokes, directions and
spatial point density. These criteria are used for prototype pruning, which
breaks a large model dataset into smaller classes, each containing only 12-
15% of all models. This consequently increases recognition performance.
In [27] and [26] Watt an Xie describe feature extraction and prototype
pruning in detail. They also demonstrate recognition accuracy versus speed
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Figure 3.3. Mathink recognizer workflow using character prediction

tradeoffs when this technique is used.

§ Trace matching. The final stage of recognition is matching the input
data against prototypes in an ink model database. After using features for
pruning the models, it is necessary to deal with only a fraction of the col-
lection. In our system we use an elastic matching algorithm [22] to detect
the closest model. We have also looked into using other trace matching
algorithms in our system. We are currently investigating incorporating in
recognizers based on hidden Markov models [19]. Having multiple recogniz-
ers in the system requires a reliable scheme to combine the ink recognition
results. One solution is the simple voting method used in InftyEditor [12],
or weighted voting as implemented in MathBrush [15].

§ Combining recognition and prediction. In the present version of the Ma-

think system, we use character prediction to assist the recognizer. We have
built a mathematical context dictionary, based on observed symbol fre-
quencies in mathematical expressions encountered in practice, as described
in [11]. Character prediction is then derived from the most likely continu-
ation of the partially entered formula. Recognition and prediction results
are combined, which produces a final ranking of recognition candidates.
The diagram given on Figure 3.3 shows how recognition results and con-
text information are used together in our system. Another way of looking
at character prediction is as a recognizer that ignores trace data. From this
point of view combining a predictor with a recognizer is no different than
combining two recognizers.
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(a.) (b.)

Figure 3.4. An example of a layout tree

3.3 Structure Analysis. The two-dimensional nature of mathematical
notation introduces one challenges in mathematical handwriting analysis
that does not arise in the recognition of natural language text. For math-
ematical pen input, as well as recognizing each individual character, we
also have to interpret their relative positioning and role in expression lay-
out. Then, based on layout information, we build an expression tree that
encodes the structure of the input formula. Our approach to structure
analysis uses two steps: First, an input expression is parsed to a layout
tree representing spatial relations between parts of the formula. In the
second pass, the layout tree is transformed to an expression tree that en-
codes mathematical semantics. Our approach is related to the technique
developed in [29] and used in the FFES [21] editor. However we use only
two tree transformations, while [29] and [18] suggest three passes.

§ Layout trees. During the first pass over the handwritten input we neither
try to detect its structural hierarchy nor to determine its mathematical
semantics. At this stage we are concerned only with the relative positioning
of the characters, both as ink and their typeset rendering. The structure
of the layout tree is organized according to baselines detected in the input
expression. On each baseline we select a leading character that is used
as a reference to adjust the rest of the symbols at the same base level.
An example of a layout tree for the expression of Figure 3.4.a is shown in
Figure 3.4.b.

As described in Section 3.2, to calculate prediction values used in char-
acter recognition, the Mathink recognizer re-computes the mathematical
context every time a new character is written. As can be seen from the
scheme of Figure 3.3, the context is derived from a local layout of the ex-
pression structure. This implies that the layout tree must be calculated
even for partially-entered expressions, every time a new glyph is added to
the formula. Therefore, in contrast to the approach taken in [29], during
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this pass we try to detect fractions and we also pre-calculate superscript
and subscript relations. In some cases this preliminary layout has to be
re-adjusted later, as the rest of the expression is entered. Figure 3.5 demon-
strates a common situation when a superscript transforms to numerator,
as a fraction bar is written.

Figure 3.5. Changes in layout organization determined by the context

§ Expression trees. The expression tree is designed not only to represent
hierarchial structure of the expression, but also to encode mathematical
semantics. A layout tree contains most of the information for the analyzer
to finalize the structure of an input formula. Using several heuristics, our
method groups the nodes of layout trees into tokens, then assembles tokens
into subexpressions. After these procedures the tree often requires reorga-
nization to respect matching delimiters. This transformation will adjust,
for example, semantic relations between subexpressions in parenthesis and
scripts to avoid results like ”)” to the power of n.

At this stage the structure analyzer explicitly marks decimal numbers,
identifiers, operators, fractions, radicals, groups, etc. Each node of the tree
is assigned a role in the expression and marked with a corresponding label.
The structure recognizer also attempts to distinguish function names from
variable names and implicit multiplication from function application or
multi-character identifiers and their juxtapositions. This is a hard problem
and we only partially resolve it, based on a dictionary of function names and
common convention of using implicit multiplication in cases where the first
term a number. Figure 3.3 shows the transformation of a layout tree (a)
to the corresponding expression tree after two-stage grouping, detecting
fenced subexpressions and labeling (b).

3.4 Extracting Mathematical Content. The expression tree built in
the previous stage of structure analysis already encodes some mathematical
semantics. The labels on the nodes contain information about numbers, op-
erators and variables. Parts of the expression between matching openning
and closing delimiters are organized in fenced groups. Fraction parts and
radicals are also explicitly marked. These preparations allow the expression
tree to be directly transformed to Presentation MathML [7]. Thus expres-
sion tree from Figure 3.3.b will be converted into the equivalent MathML
tree shown in Figure Figure 3.3.c.
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(a.)

(b.)

<math>
<mfenced open ="("

close=")">
<mfrac>

<mi>p</mi>

<mi>q</mi>
</mfrac>

<mo>-</mo>
<msup>

<mn>17.5</mn>
<mn>4</mn>

</msup>

<mo>+</mo>
<msub>

<mo>log</mo>
<mn>3</mn>

</msub>

<mi>x</mi>
<mo>-</mo>

<mrow>
<mn>2</mn>

<mi>x</mi>
</mrow>

</mfenced>

</math>

(c.)

Figure 3.6. Expression tree (b) and MathML tree (c) generated from a layout tree (a)

We chose not to export recognition results directly to TEX format be-
cause MathML has become sufficiently widespread. Its advantages are in
platform and application independence and ease of conversion to other for-
mats. For example, if one requires TEX output from the recognizer, Mathink

provides a connection to a MathML to TEX converter [5].

4 Connection to Mathematical Software Packages

After digital ink has been collected and processed, and the mathematical
expression is recognized and parsed to a standard format, the pen-based
application moves to the next stage, where the user may want manipulate
the resulting expression. This manipulation will, in general, imply non-
trivial mathematical transformation. This requires providing a connection
to a mathematical engine from the handwriting recognition environment.
In this section we present two approaches that allow our Mathink com-
ponent to communicate with the Maple symbolic computation package.
A similar approach would allow connection with other computer algebra
systems (CAS).
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4.1 Using the OpenMaple Interface. To send a request for computa-
tion to Maple from another application, we need to access the Maple ker-
nel from outside the CAS shell. Each request must be expressed as a valid
Maple command with all of its arguments encoded in a Maple-compatible
format. For this, we use supplementary tools offered by the Maple pack-
age: Starting with version 9.0, the OpenMaple interface allows access to
the computer algebra system functionality via API calls from C++, Java or
Fortran. Furthermore, a built-in parser for both Content and Presentation
MathML allows importing mathematical data encoded in these formats
into Maple.

Thus, once the handwritten expression is translated to MathML, it
can be used in computation via OpenMaple API calls. To enable sup-
port this option in the Mathink environment we have developed a special
CAS-communication module. It starts the Maple kernel as a background
process, wraps the user’s request in a Maple instruction and passes it along
with MathML arguments using the OpenMaple protocol to the Maple ker-
nel. The results of the computation are exported as Presentation MathML,
sent back to the Mathink system and displayed.

This approach is similar to that used in the MathBrush [15] system.
Although, Mathink has an independent implementation. Currently the
Mathink interface allows transmission of recognition results for numeric
evaluation, symbolic calculation, simplification and factorization. Noting
new would be required to support a variety of other operations. Mathink

does not yet support equation solving, partial differentiation or other oper-
ations that require additional semantic analysis to detect variable instances
in the the input. By identifying variable names the user can be offered a
choice of “solve for ..” or “differentiate with respect to ..” operations.

4.2 Mathink Control as an Internal Maple Component. While using
the OpenMaple API is relatively easy to implement and natural to use, it
has certain restrictions. These are limitations in accessing Maple kernel
from an outside application and ambiguities arising in conversion of math-
ematical notations to semantic content. Moreover, as a practical matter,
the built-in Maple parser for Presentation MathML still contains some
errors.

To overcome these difficulties, we introduced an alternative architec-
tural solution that allows the pen-based component to be run inside the
Maple environment. As discussed in Section 2.3, it is possible to export the
Mathink component as a Java object, which can then be intergrated with
Maple GUI code. From there, the Mathink component has direct access to
the Maple kernel. This allows the Mathink control to enjoy a larger range
of computer algebra system functionality, as it can form more complex
and detailed requests by using native Maple instructions. Furthermore,
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Figure 4.7. Mathink accessing Maple kernel as an internal Maple component

hosted inside Maple, Mathink can operate with mathematical objects at
an internal level of the symbolic engine. This includes direct translation of
recognized input to Maple structures, as shown in Figure 4.7.

5 Customizing Mathink System

The Mathink system provides several ways to customize its performance.
This is both for user convenience and to allow easier experimentation with
user interface design. Some of the principal areas of customization are
personalizing ink model collection and dynamic addition of user-created
models, which we describe in this section.

5.1 Personalized Model Collections.

Customizable alphabets. While most existing recognizer systems come
with a pre-defined set of characters and glyphs that they can process, we
have taken a different approach. The Mathink system allows the user to
specify which mathematical symbols and glyphs he or she is going to use.
This allows a wide range of characters to be used without sacrificing accu-
racy. The user has control over the exact number, type and appearance of
glyphs known to the recognizer. The Mathink installation kit comes with a
number of default model sets that are extensible by the user via adding new
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a. Dataset 1 b. Dataset 2

Figure 5.8. Ink Model Collector customizable by user

categories and populating them with models. The Figures 5.1.a and 5.1.b
show the interface for training the recognizer on different datasets.

Training the recognizer on user ink models. After the user has
specified the subset of mathematical glyphs for the recognizer to deal with,
the system may either be trained or default models can be used. Train-
ing consists of providing personalized ink examples for every model. Even
though the default model set covers more than 200 mathematical glyphs
and provides generic handwritten samples for each, the user’s style of writ-
ing may differ from the default prototypes. Therefore, the system provides
an interface for collecting ink samples.

§ Multiple model sampling. A symbol may often be written in a number of
ways, that vary in the number of strokes, their order and direction. These
criteria are used to distinguish different writing styles for a character. For
example, one may write the Greek letter β in the three different manners
shown in Figure 5.9. Instead of forcing the user to choose a single way to
write each character, we collect all of the styles the user provides during
the training session. Then all these different styles are loaded into the
recognizer, and all are assigned to the same glyph value.

Even within the same style, models may vary, having different curva-
tures and inconsistent cusps or intersections. Figure 5.10 shows the process
of collecting samples of the letter β, all written in the same manner. In
this case all strokes the strokes are combined together to form an average
ink model that reflects the consistent features of the nine samples.

§ Computing an average model. Even similar identical models will have
quite different data, for example containing a different number of points



16 1. Communicating Mathematics via Pen-Based Interfaces

in corresponding strokes. Therefore, to compute the average model we re-
sample the stroke traces. The average model calculation also tries to match
vertical and horizontal cusps of all models. In case a cusp is detected in one
model, but not found in another, a local extremum is used instead. The
average model is updated dynamically, as the user writes. This helps to
detect if one or more samples are unintentionally written in a style different
from the one being collected. The user does not have to erase “trouble”
samples to refine the average model: any sample can be excluded from the
calculation by deactivating its frame.

§ Ink examining utilities. Sometimes average models may contain undesir-
able features, such as unexpected or misplaced cusps, loops or intersections.
In this case the user may wish to have a closer look at the model to detect
the source of the problem. Mathink provides a built-in ink examining tool
(Figure 5.11) to zoom in on the model and to see ink trace computed for
each average stroke. Writing direction and stroke order can be seen easily
from the labels of each point in the trace. Moreover, the ink examining
tool helps to prevent blind acceptance of inappropriate average models as
ink prototypes, and therefore, helps to ensure the integrity of the model
databases.

5.2 Dynamic Addition of New Models. Often, while working with
the Mathink application, a user may need particular symbols not present in
the model database. Adding a new glyph model to the dataset is straight-
forward process. However, editing a configuration file, then providing ink
prototypes for new model and finally, uploading an updated model collec-
tion to the recognizer is time-consuming, and is especially inconvenient if
the user needs to add several new entries at different times.

To make this process easier, the Mathink system offers the feature of
dynamic model addition to allow quick introduction of new glyphs without
re-loading main dataset. When the user writes a new symbol unknown
to the recognizer, in addition to the recognition candidates an “Add new

model” button is given. Clicking on this button brings up a form already

Figure 5.9. Different styles of writing letter β
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Figure 5.10. An interface for collecting ink samples in
different writing styles

Figure 5.11. Ink exam-
ining tool

containing the ink strokes that was not recognized. The user can either en-
ter the corresponding character or characters using the keyboard or choose
one of the Unicode symbols from a provided Unicode table, as shown on
Figure 5.12. The same New Model form is also accessible from the main
toolbar, so a user can add new models at any time. Selected strokes or the
most recent unrecognized ink is automatically inserted into the ink collec-
tion box of the form. A model browser is provided, so the user can add
several new entries without being forced to close and re-open the window
after entering each model.

A collection of these added models can be saved and manually loaded
in a subsequent session or they may be permanently added to the main
model dataset. Storing newly entered models separately from the main
model collection has the advantage of customizing recognizer sessions on
an even more fine-grained level. Loading a small patch on top of a gen-
eral model collection allows, for example, to use notational preferences and
avoid ambiguities when the Mathink system is used in domains with spe-
cialized notations, such as astronomy or DNA computing. In this manner,
the recognizer can be aware of glyph models specific to the current session,
but uncommon in general writing and therefore not loaded by default.

6 Testing and Annotation Tools

In addition to offering mathematical pen-based interface, the Mathink sys-
tem provides testing environments to conduct experiments and adjust recog-
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Figure 5.12. Dynamically adding an ink model

nition performance. These include tools for collection of large sets of hand-
written samples, facilities for ink annotation and automated performance
testing. We describe each of them in detail in this section.

6.1 Collecting Test Data. In order to evaluate the performance of the
mathematical recognizer, we have tested it on a number of handwritten
samples provided by different writers. To test the accuracy of both the
character and structure analyzers, we have collected samples of handwrit-
ten expressions for a fixed set of mathematical formulae. To facilitate the
process of obtaining handwritten samples from users, we have created sev-
eral collections of test formulae, classified by the scientific domain, formula
size and structural complexity. The Mathink system, run in sample collec-
tion mode can load a desired set of test formulae and show them to the
writer one at a time. The user then provides a handwritten sample for the
formula currently displayed. This is shown in Figure 6.13. When the writer
finishes entering an expression and moves to the next one, the handwritten
data is stored along with the reference to the original expression.

§ Automated testing. Usually testing recognizer systems is an interactive
process that requires a human feedback, indicating whether the recognition
results are correct. This works for small test sets, but when for larger
sample collection there is a need for automated testers. In our case we have
170 tests that we wish to verify whenever the Mathink system is changed.
Automated testing of recognition performance requires a source of valid
results to compare with the recognizer output. To do this we annotate
collected ink with ground truth.
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Figure 6.13. Mathink application in training and testing mode

6.2 Ink Annotation Tool. As discussed in Section 3, the recognizer
uses context information to derive the total recognition confidence for each
recognition candidate. To eliminate possible errors in context calculation
during test runs, we also store the genuine context information for every
ink glyph along with its character value.

To assign the ground truth to each ink character in a test file, we an-
notate ink in a semi-automated process supervised by a human user. The
simplest way to provide ink annotation is to run the system recognizer on
the whole expression, and then to correct mis-recognized characters. Man-
ual correction is done by clicking on an incorrectly recognized character
and entering its true value from the keyboard or using the Unicode pallets.
In addition, a context for every character in the expression can be adjusted
using the annotation panel. This method of ink annotation is suitable only
for expressions with a high rate of recognition accuracy. If the recognizer
gets more than a few characters in an expression wrong, we can use the
second method, which we call annotation copying.

The annotation copying tool transfers information from an already an-
notated expression to one being processed. A fully annotated expression
is opened in a master annotation window, then the character values along
with the context are copied between matching ink entries. This method is
especially useful for annotating a large collection of samples provided by
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users for a fixed set of formulae. In this case, for each formula in the ques-
tionnaire only one handwritten sample has to be manually annotated, the
rest can be simply copied from the prototype. The reason this process can-
not be done completely automatically is because there are different orders
in which users write particular expression entries, such as double scripts,
fractions, parenthesis and radial expressions. This affects the context in-
formation: We have to take into account in which order the user wrote
the expression and change the context correspondingly. For example, if in

the expression
∑

N
2
+1

i=1
Fi(x), the user writes the upper limit first, then the

context for N should not contain
∑

,<sub>,i,=,1</sub><sup>, but simply∑
,<sup>.

6.3 Testing to Find Optimal System Settings. The character recog-
nizer and the structure analyzer depend on a number of tunable parameters,
such as threshold values used in baseline and script detection, minimum
confidence for a character to be considered as a potential recognition can-
didate, maximum number of candidates to return from the recognizer to
the structure analyzer, etc. For some of these parameters a default value
can be relatively easily estimated and adjusted after a small number of
test runs. There are, however, parameters that are impossible to approxi-
mate without having results of practical testing on a large amount of data.
Weight coefficients used in combination of the recognition confidence with
prediction certainty are examples of such parameters. We have decided
to search for good combinations of these coefficients experimentally, as we
have described in [11].

To conduct these experiments, an automated testing facility was added
to the Mathink environment, allowing the recognizer to run on handwritten
samples, while different parameter values are used. A background process,
collecting statistics on best combinations gives us a range of acceptable
values. To give an idea of the size of this experiment for parameter esti-
mation, we mention that each handwritten expression containing from 10
to 40 characters, was run on 10 × 11 parameter grid, three times for each
of combining methods. Given that each writer provided 17 handwritten
expression, we had to run the character recognizer about 84150 times to
process all samples from one user, which took almost 23 hours for each of
the writers.

7 Conclusions

We have studied methods to organize pen interfaces for mathematical com-
puting in a variety of environments. We have suggested an architectural
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approach that ensures portability of a pen-based frameworks across plat-
forms and hosting applications. We have demonstrated how this solution
can be instantiated on Windows platforms, using the Tablet PC SDK for
high-quality ink processing.

We have presented a software package, Mathink, for mathematical hand-
writing recognition. Mathink can be used as pen-based front-end to com-
puter algebra systems and document editors. We have shown how our
Mathink system has been used to annotate an ink collection with ground
truth and how this can then be used to test and adjust the recognizer
module to achieve better performance.
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