
MIT Open Access Articles

A hierarchy of tractable subclasses
for SAT and counting SAT problems

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Andrei, S. et al. “A Hierarchy of Tractable Subclasses for SAT and Counting SAT
Problems.” Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2009 11th
International Symposium on. 2009. 61-68. © 2009 Institute of Electrical and Electronics
Engineers.

As Published: http://dx.doi.org/10.1109/SYNASC.2009.12

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/58881

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/58881

A Hierarchy of Tractable Subclasses for SAT and Counting SAT Problems

Ştefan Andrei
Lamar University

Department of Computer Science
Beaumont, USA

Stefan.Andrei@lamar.edu

Gheorghe Grigoraş
Cuza University of Iaşi

Department of Computer Science
Romania

grigoras@infoiasi.ro

Martin Rinard
Massachusetts Institute of Technology

Cambridge, USA
rinard@lcs.mit.edu

Roland Hock Chuan Yap
National University of Singapore

Singapore
ryap@comp.nus.edu.sg

Abstract

Finding subclasses of formulæ for which the SAT prob-
lem can be solved in polynomial time has been an important
problem in computer science. We present a new hierarchy
of propositional formulæ subclasses for which the SAT and
counting SAT problems can be solved in polynomial time.
Our tractable subclasses are those propositional formulæ
in conjunctive normal form where any set of k + 1 clauses
are related, i.e., there exists at least one literal in one clause
that appears negated in another clause of the considered set
of k + 1 clauses. We say this subclass of formulæ is of rank
k and it is different from previously known subclasses that
are solvable in polynomial time. This is an improvement
over the SAT Dichotomy Theorem and the counting SAT
Dichotomy Theorem, since our subclass can be moved out
from the NP-complete class to the P class. The membership
problem for this new subclass can be solved in O(n · lk+1),
where n, l and k are the number of variables, clauses and
the rank (1 ≤ k ≤ l − 1), respectively. We give an efficient
algorithm to approximate the number of assignments for
any arbitrary conjunctive normal form propositional for-
mula by an upper bound.

1 Introduction

The SAT problem is one of the most central problems in
computer science. It has applications in many areas of com-
puter science, such as program verification using bounded
model checking [22, 25] and bounded model construction
[6,7], real-time and embedded systems verification [3,4,23],
planning problem in artificial intelligence [3,19], and so on.

The first problem proved to be NP-complete is due to

Stephen Cook [10]. He showed that any decision problem
P ∈ NP can be polynomially transformed to the SAT prob-
lem: “Given a propositional formula F , is there a satisfy-
ing assignment for F ?”. In the effort of separating the sub-
classes of formulæ for which there exist polynomial algo-
rithms to solve the SAT problem from those for which it
is unknown if there exist polynomial algorithms, Schaefer
discovered the first result, called the SAT Dichotomy Theo-
rem [26]. Dichotomy results in complexity theory are rare,
in general. Some examples of Dichotomy theorems are the
subgraph homeomorphism problems [14], the H-coloring of
graphs [16], the counting SAT problem [11], and the propo-
sitional circumscription [21]. Efforts to improve some of
these important dichotomy theorems have been done by re-
searchers. For example, Istrate [17] described a version of
Schaefer’s Dichotomy Theorem including the subclass of
CNF formulæ when each variable occurs at most twice.

Here is an equivalent re-statement of the original SAT
Dichotomy Theorem [26], which separates the subclasses
which belong to the P class from those belonging to the
NP-complete class:

The SAT Dichotomy Theorem. If a class is defined by
the set of all the subformulæ that are allowed in its for-
mulæ, then the SAT problem can be solved in polynomial
time for the classes of Horn formulæ, reverse Horn formulæ,
2CNF formulæ, 0− formulæ, 1−valid formulæ, and affine
formulæ. In all other cases, the SAT problem for the class
is NP-complete.

In other words, the SAT Dichotomy Theorem states that
the SAT problem, having as input a formula belonging to
one of the above six subclasses, can be solved in polynomial
time. For all the subclasses in the SAT Dichotomy Theorem,
we shall present definitions and examples in Section 2. In
this paper, we improve upon Schaefer’s Dichotomy Theo-

2009 11th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing

978-0-7695-3964-5/09 $26.00 © 2009 IEEE

DOI 10.1109/SYNASC.2009.12

61

rem by describing new non-trivial and different subclasses
of subformulæ (called Rankk) for which the SAT prob-
lem can be solved in polynomial time, namely O(n · lk+1),
where n, l and k are the number of variables, clauses and
the rank (1 ≤ k ≤ l − 1), respectively. In this way, we
partition the class of NP-complete problems from the SAT
Dichotomy Theorem by identifying the subclasses of rank k
formulæ in the P class. It is useful to contrast our result with
the SAT Dichotomy Theorem. In the SAT Dichotomy The-
orem, all the classes of formulæ (and the subsequent one de-
scribed later this section - #SAT Dichotomy Theorem) re-
fer to instances where a set S of logical relations is initially
given and then the clauses of the instances are allowed to
contain relations obtained from those in S by arbitrary pro-
jections or identifications of variables. On the other hand,
our subclass is defined differently and does not have this
property. Instead, in our approach, each clause depends on
the rest of the clauses. For example, F1 = (p∨ q)∧ (q ∨ r),
is a rank 1 formula (note that q means the negative literal
of variable q), while F2 = (p ∨ q) ∧ (q ∨ r) is not a rank 1
formula, although both F1 and F2 contain the clause (p∨q).

In this paper, we prove an interesting result that identifies
a new hierarchy of propositional formulæ subclasses (differ-
ent than the above six subclasses from the SAT Dichotomy
Theorem) for which not only the SAT problem, but also the
counting SAT problem, can be solved in polynomial time.
As stated in [15], counting problems are another type of
interesting problems, but they might be intractable even if
P = NP. In a counting problem P , the goal is to deter-
mine how many solutions exist, unlike in a decision prob-
lem where a simpler “Yes/No” answer suffices. The prob-
lem of counting the number of satisfying assignments (de-
noted by #SAT) was proved to be #P−complete [28]. The
#P−complete problems are at least as hard as NP-complete
problems. The #SAT problem is a valuable approach for
evaluating techniques in an effort to avoid computational
difficulties, such as constraint satisfaction and knowledge
compilation. Although the representative counting problem
is the #SAT problem, counting has a major impact on many
sub-areas of computer science. The SAT Dichotomy result
has been extended to the #SAT problem by Creignou and
Hermann in 1996. Their main result, Theorem 4.1 [11], is:

The Counting SAT Dichotomy Theorem. If all logi-
cal relations used in generalized #SAT are affine, then the
number of satisfying assignments can be computed in poly-
nomial time, otherwise the problem is #P−complete.

There have also been various efforts to determine the
complexity of the #SAT problem for the polynomial solv-
able subclasses identified in Schaefer’s Dichotomy Theo-
rem [12, 17, 20].

Contribution of our paper: This paper describes new non-
trivial and different subclasses of subformulæ for which the
#SAT problem (and of course the SAT problem, too) can

be solved in polynomial time. The first contribution of this
paper is that the SAT and #SAT problems are tractable for
our class of propositional formulæ. A particular instance
of bounded rank formulæ, called hitting formulæ, was pre-
sented in [9]. The purpose of considering hitting formulæ
was to investigate the closure under splitting. This subclass
of formulæ coincides with our subclass of formulæ of rank
1. We present a simple example of our subclass of sub-
formulæ which is not a member of any known subclasses
from the SAT Dichotomy Theorem and the Counting SAT
Dichotomy Theorem.

Example 1.1 The propositional formula F3 = (p∨ q∨ r)∧
(p ∨ q ∨ r) does not belong to any of subclasses from nei-
ther the SAT Dichotomy Theorem nor the counting SAT Di-
chotomy Theorem. Instead, it belongs to the bounded rank
class of subformulæ (i.e., it has rank 1) as we shall see in
Remark 3.2.

The second contribution of the paper is a computationally
efficient approximation for any arbitrary propositional for-
mula. Briefly, for any clausal formula F , there exists at
least a formula F ′ of bounded rank such that the number
of satisfying assignments of F is less than the number of
satisfying assignments of F ′ (Section 4). In constrast to
this upper bound approximation of the number of satisfying
assignments, paper [5] investigates efficient algorithms for
estimating the lower bound approximation of the number of
satisfying assignments.

The rest of this paper is organized as follows. Section 2
describes the necessary definitions, notations and related re-
sults. Section 3 defines our hierarchy of non-trivial bounded
rank propositional formulæ for which the SAT and #SAT
problems are tractable. Section 4 describes an efficient al-
gorithm to determine a good upper bound for the number of
satisfying assignments and Section 5 concludes this paper.

2 Preliminaries

We present some concepts and notations to allow the re-
mainder of the paper to be self contained, by including some
results and examples. In [18], an algorithm was introduced
for testing satisfiability of a clausal formula F over n vari-
ables by counting, the satisfying assignments falsifying F
using the inclusion-exclusion principle. A dual algorithm
for deciding the satisfiability of a disjunctive normal for-
mula was described in [27]. It may be regarded as a refine-
ment of the Iwama’s algorithm, and it is well behaved with a
preconditioning on some parts of the Davis-Putnam’s proce-
dure. In [24], a similar algorithm is employed for counting
satisfying assignments.

In [13], the formula for computing the number of solu-
tions of a set of any clauses is established using the notion of

62

independency between clauses. Furthermore, Dubois pre-
sented an efficient algorithm for counting satisfying assign-
ments. In [29], an algorithm based on similar ideas and with
similar time complexity like [13] was presented. In [1,2,5],
the number of satisfying assignments was called the deter-
minant of the clausal formula (because of the similarity with
the determinant of the matrix for a linear algebraic system).
Moreover, we presented an algorithm for satisfiability of a
clausal formula based on the rules of pure literal, unitary
resolution, primal bounded literal followed by comparison
of its determinant to zero. Details about the complexity of
many algorithms for counting satisfying assignments can be
found in [8].

Let LP be the propositional logic over the finite set of
atomic formulae (propositional variables) V = {A1, ...,
An}. A literal L is an atomic formula A (positive literal)
or its negation ¬A (negative literal), and denote v(L) =
v(L) = A. A function S : V → {0, 1} is a satisfying as-
signment and it can be uniquely extended in LP to a formula
F . The binary vector (y1, ..., yn) is a satisfying assignment
for F over V = {A1, ..., An} if and only if S(F) = 1
such that S(Ai) = yi, ∀ i ∈ {1, ..., n}. Any propositional
formulæ F ∈ LP can be translated into the conjunctive nor-
mal form (CNF): F = (L1,1∨ ... ∨L1,n1)∧ ... ∧(Ll,1∨ ...
∨Ll,nl

), where Li,j are literals and l ≥ 1. We shall use the
set representation {{L1,1, ..., L1,n1}, ..., {Ll,1, ..., Ll,nl

}}
to denote F . Any finite disjunction of literals is a clause
and a formula in CNF is called a clausal formula. The set
of atomic formulae whose literals belong to clause C and
formula F are denoted by v(C) and v(F), respectively. A
formula F is called tautology if and only if for any struc-
ture S, it follows that S(F) = 1. A formula F is called
satisfiable if and only if there exists a structure S for which
S(F) = 1. A formula F is called unsatisfiable if and only
if F is not satisfiable. In this paper, only non-tautological
clauses (which have no simultaneous occurrences of a literal
L and L) are considered. We say that a clause C1 is included
in the clause C2 or C2 is a super-clause of C1 (denoted by
C1 ⊆ C2) if and only if ∀ L ∈ C1 we have L ∈ C2. A finite
non-tautological clause C constructed over V is maximal if
and only if v(C) = V. A clausal formula is maximal if and
only if it contains only maximal clauses. We denote by the
empty clause (i.e., the one without any literal) and by ∅ the
empty set. A unit clause has only one literal. A clause C is
called Horn (reverse Horn) if and only if C only one or zero
positive (or negative) literal. A (reverse) Horn CNF formula
has only (reverse) Horn clauses. A clause C is called pos-
itive (negative) if and only if C contains only positive (or
negative) literals. A positive (negative) CNF formula has
only positive (negative) clauses. Note that a negative (pos-
itive) formula is also a (reverse) Horn formula. A clause C
is called 1-valid (0-valid) if and only if C contains at least
one positive (negative) literal. A 1-valid (0-valid) CNF for-

mula has only 1-valid (0-valid) clauses. A clause C is called
2CNF if and only if C contains at most two literals. A 2CNF
formula has only 2CNF clauses. We will also make use of
the class of afine formulæ. This class is special because
it is usually expressed in a more compact linear equation
form than in CNF. A linear equation has one of the forms
(x⊕ y ⊕ z ⊕ ... = 0) or (x⊕ y ⊕ z ⊕ ... = 1), where ⊕ is
the arithmetic addition modulo 2 and x, y, z ... are proposi-
tional variables. An affine formula is a conjunction of linear
equations. For example, the affine formula x ⊕ y = 0 cor-
responds to the CNF { {x, y}, {x, y} }, whereas x⊕ y = 1
corresponds to the CNF { {x, y}, {x, y} }. Moreover, it
is known from linear algebra that the number of solutions
of such conjunctions of linear equations is a power of 2.
This implies that the number of satisfying assignments of
an affine formula [26] is a power of 2.

For a finite set A, |A| denotes the number of elements
of A. The notations Z, N and N+ stand the set of integers,
positive integers, and the set of strict positive integers, re-
spectively. The number of all sets with i elements from a
set with n elements is denoted by (n

i), and it is equal to
n!

(n−i)!·i! , where n! = 1· 2· ... · n. for n ≥ 1 and 0! = 1.
We define mV (S) as | {v ∈ V : neither v nor ¬v appears

in any clause of S} |. In other words, mV (S) denotes the
number of variables from V which do not occur in v(S).
Obviously, 0 ≤ mV (S) ≤ |V |. The boundary cases are
obtained when v(S) = V or S is the empty clause. Given S
the set of clauses {C1, ..., Cl}, we say that S is reducible if
and only if there exist two clauses Ci and Cj , where i �= j,
such that there exists a literal L ∈ Ci and ¬L ∈ Cj . We
say that the set of clauses S is irreducible if and only if
S is not reducible. Then we define difV (S) = 0 if S is
reducible and 2mV (S) if S is irreducible. Since the empty
set is irreducible, then difV () = 2|V |. Finally we define

detV (S) =
∑

R⊆S

(−1)|R|difV (R)

and call it the determinant of the set S of clauses. The
notion of determinant appeared in [1, 2, 4, 5], but this re-
vised definition above is more simplified and much clearer.
Moreover it better highlights that only irreducible clauses
are contributing to the determinant computation.

Example 2.1 Let F4 = {C1, C2, C3}, where V = {p, q,
r} and clauses C1 = {p, q}, C2 = {q, r}, C3 = {p, r}.
Then mV (C1) = 1, mV (C1, C2) = 0, and so on. Thus,
difV (C1, C3) = 1, difV (C1, C2, C3) = 0, etc. Therefore,
detV (F4) = 23− (21 + 21 + 21) + 20 = 3.

The next result establishes the link between the determi-
nant of a clausal formula and its satisfiability (proved in [2]).
In other words, the determinant of a clausal formula coin-
cides with the number of satisfying assignments of that for-
mula.

63

Theorem 2.1 Let F ∈ LP over V . Then there exist
detV (F) number of satisfying assignments for F.

According to Theorem 2.1, it follows formula F given in
Example 2.1 is satisfiable and has detV (F) = 3 satisfying
assignments.

Definition 2.1 Given F = {C1, ..., Cl} a clausal formula
over V, then F has rank k if difV (Ci1 , ..., Cik+1) = 0, for
any i1, ..., ik+1 distinct indexes from {1, ..., l}. We denote
by RankV,l,k the set of all propositional formulæ over V ,
and having l clauses and rank k. When the context is clear,
the indexes V and l may be omitted for simplicity.

According to the above definition, it can be easily seen
that F1 = { {p, q}, {q, r}} over V = {p, q, r} is a rank 1
formula, the reason being difV ({p, q}, {q, r}) = 0. The
formula F4 from Example 2.1 is not a rank 1 formula be-
cause difV (C1, C3) �= 0. Since difV (C1, C2, C3) = 0, it
follows instead that F4 ∈ Rank2.

3 Counting for bounded-rank formulæ

This section is devoted to introducing a new subclass of
formulæ for which there exists a polynomial algorithm for
solving both SAT and #SAT problems. We shall also make
a comparison with other known subclasses of formulæ for
which the SAT problem is tractable.

According to rank’s definition, it follows that the mem-
bership problem (“Is F a Rankk formula?”) can be solved
in polynomial time. Note that k above is a given constant.
That is, given a related formula F = {C1, ..., Cl} over
V = {A1, ..., An}, it can be checked in O(n · lk+1) whether
F is a Rankk formula. The next result proves that our
subclasses of rank k formulæ represent a hierarchy, that is,
Rank1 ⊆ Rank2 ⊆ ... ⊆ Rankl−1.

Lemma 3.1 For every k ≥ 2, the class of rank k formulæ
contains the class of rank (k − 1) formulæ.

Proof Let F = {C1, ..., Cl} be a propositional formula of
rank (k−1). Then difV (Ci1 , ..., Cik

) = 0, for any i1, ..., ik
distinct indexes from {1, ..., l}. Obviously, for any ik ∈ {1,
..., l}, we get difV (Ci1 , ..., Cik

, Cik+1) = 0. This implies
that F has rank k, too.

Lemma 3.1 shows that the higher rank a subclass has, the
fewer positive and negative occurrences a literal has. Since
this property relates to reducibility, we remind that a for-
mula is irreducible if any literal appears either positive or
negative in all clauses. Let us denote by IrreducibleV,l the
class of all irreducible formulæ over V having l clauses.
For example F5 = { {p, q}, {p, r}, {q, r}} over V = {p,
q, r} is an irreducible formula since all the literals appear
either positive or negative. By doing a proper substitution,

any irreducible formula can be converted to a positive (or
negative) formula. For example, by substituting q into q, F5

from above becomes the following positive formula F6 = {
{p, q}, {p, r}, {q, r}}. Clearly, any positive (or negative)
formula is satisfiable (e.g., S(A) = 1 for any variable A,
is a proper assignment for a given positive formula). The
following remark shows that the set Rankl−1 contains all
propositional formulæ, except the irreducible ones.

Remark 3.1 Let us denote by CNFV,l the class of all
clausal formulæ over V having l clauses. The following
facts hold:

1. CNFV,l = RankV,l,l−1 ∪ IrreducibleV,l;

2. RankV,l,l−1 ∩ IrreducibleV,l = ∅.

For the first item, it suffices to check that any clausal
formula is either a rank l − 1 or an irreducible formula.
Let F = {C1, ..., Cl} be a clausal formula over V . We
distinguish two cases:

i) there exists a literal L such that L,L ∈ C1 ∪ ... ∪ Cl.
Then according to the rank’s definition, F is a rank
l − 1 formula;

ii) otherwise, all literals appear either positive or nega-
tive in the clauses. This means that F is an irreducible
formula.

For the second item, it is obvious that a rank l−1 formula
cannot be an irreducible formula. Moreover, whenever F =
{C1, ..., Cl} is an irreducible formula, then difV (C1, ...
Cl) �= 0, and hence F cannot be a rank l − 1 formula.

Lemma 3.1 and Remark 3.1 can be illustrated in Figure
1. By doing the union of the IrreducibleV,l to the rank l−1
class of formulæ, the whole set of formulæ having l clauses
is obtained.

...

CNFV,l

IrreducibleV,l
RankV,l−1

RankV,1

RankV,2

Figure 1. The set of all propositional formulæ

The determinant for the rank k formulæ can be eficiently
computed as described in the next result.

Theorem 3.1 The SAT and #SAT problems are tractable
for CNF formulas of bounded rank.

64

Proof Let F = {C1, ..., Cl} be a propositional formula
of rank k, where k ∈ N+. Firstly, we shall prove by in-
duction on p ∈ {k, ..., l} that difV (Ci1 , ..., Cip

) = 0. The
base (p = 2) holds due to rank’s definition. To prove the
inductive step, let us suppose that difV (Ci1 , ..., Cim

) = 0,
where m ∈ {k, ..., l}. By applying the definition of difV ,
it implies that there exists a literal L such that L ∈ Cis

and
L ∈ Cit

, where s and t are from {1, ..., m}. So, it follows
immediately that difV (Ci1 , ..., Cim

, Cim+1) = 0, where
im+1 ∈ {k, ..., l}.

Secondly, by applying the assertions difV (Ci1 , ...,
Cip

) = 0, for all p ∈ {k, ..., l}, in the definition of the
determinant, it follows that detV (F) =

∑
R⊆F,|R|≤k

(−1)|R|

·difV (R). Thus the determinant of any rank k formula
F = {C1, ..., Cl} over V = {A1, ..., An} can be com-
puted in O(n · lk+1). Therefore, the #SAT problem for the
rank k formulæ, where k is fixed, is tractable. This implies
the SAT problem is tractable, too.

We now show that the rank 1 formulæ are disjoint from
the existing classes in the SAT and counting SAT Di-
chotomy Theorems.

Remark 3.2 The class of Rank1 formulæ is different than
the classes of Horn, inverse Horn, Krom, 0−valid, 1−valid,
and affine formulæ. Consider F7 = {{p, q}, {p, q}, {q, r},
{q, r}}, over V = {p, q, r}. It can immediately be seen that
F7 is a Horn, inverse Horn, Krom, 0−valid, 1−valid, and
affine formula. It is affine because F7 is equivalent to the
system of linear equations: p ⊕ q = 1∧ q ⊕ r = 1. On the
other hand, F7 is not a rank 1 formula because difV ({p, q},
{q, r}) �= 0).

To disprove the other inclusion, let us consider F3 =
{{p, q, r}, {p, q, r}} over V (that is, the formula from Ex-
ample 1.1). It can be checked that F3 is not a Horn, inverse
Horn, Krom, 0−valid, 1−valid, or affine formula. The rea-
son that F3 is not an affine formula is due to the fact that
detV (F3) = 6, which is not a power of 2. Instead F3 is a
rank 1 formula because difV ({p, q, r}, {p, q, r}) = 0.

An interesting question related to Figure 1 is how large
is the class of rank k formulæ, for 1 ≤ k ≤ l− 1? The next
result proves that there exist a double exponential number
of rank k formulæ over an alphabet with n variables, e.g.,
a sum of terms that contains 22n

. In other words, the class
Rankk is a non-trivial new subclass of formulæ for which
both the SAT and counting SAT problems are tractable.

Theorem 3.2 Given n = |V | and k ≥ 2, the following facts
hold:

1) there exist 23n − 2n+2n

different rank l − 1 formulæ;

2) there exist at least (n
n) · 22n

+
(
n
n−1

) · 22n−1
+ ... +

(n
1) · 221

+ (n
0) · 220− 3n + 2n − 2n− 4 different rank

k formulæ over V.

Proof 1) According to Remark 3.1, the number of rank
l − 1 formulæ is the difference between the total number
of non-tautological clausal formulæ and the total number of
irreducible formulæ.

Given F, any literal may occur positive, negative or not
at all. Then, the total number of clauses which can be
build up with all the n variables equals to the number of
total functions from {1, 2, ..., n} to {−1, 0, 1}, which is 3n.
Certainly, we have to use the set representation for formu-
lae (thus, eliminating multiple occurences of literals and
clauses). Moreover, the clauses containing both (a literal)
L and L have to be (syntactically) eliminated. Since we
need to count all subformulæ of the formula containing all
the possible clauses, it means that the number of the whole
set of clausal formulæ is 23n

.

To count the number of irreducible formulæ, we count
first the total number of positive clauses that can be con-
structed with all the n variables. This coincides the number
of total functions from {1, ..., n} to {0, 1}, that is, 2n. An
irreducible formula can be obtained by substituting any pos-
itive literal with its negation. The number of all these substi-
tutions equals the number of total functions from {1, ..., n}
to {−1, 1}, that is, 2n. Therefore, the number of irreducible
formulæ is 22n · 2n = 2n+2n

.
2) We highlight a double exponential number of rank 1

formulæ. Hence, there will be at least as many this number
of rank k formulæ, where k ∈ N+. Let us note that once we
identify a rank 1 formula F, then every subformula having
at least two clauses of F is a rank 1 formula, too. Since
clausal formulæ are represented as sets, given F = {C1, ...,
Cl} a rank 1 formula, there exist 2l − l − 1 different rank 1
formulæ. Suppose that the alphabet is V = {A1, ..., An}.
In order to count a subformula only once, we shall find some
formulæ and then generate all its subformulæ as explained
earlier. For example, one such rank 1 formula is the one
having all the maximal clauses. Obviously, this formula has
2n clauses. This means there exist 22n − 2n − 1 different
rank 1 subformulæ having only maximal clauses. Similarly,
we can find all the rank 1 formulæ for which all their clauses
have exactly n−1 literals. This number is

(
n
n−1

) · (22n−1−
2n−1 − 1). Continuing this generation process until unit
clauses are considered, we get (n

1) · (221 − 21− 1) different
rank 1 formulæ containing only unit clauses.

We can go further and identify other rank 1 subformulæ
which were not generated in the previous generation pro-
cess. In order to avoid generation of the same rank 1 subfor-
mulæ, we consider F8 = {{A1, A2, ..., An}, {A2, A3, ...,
An}, ..., {An−1, An}, {An}} and its “reverse” F9 = {{A1,
A2, ..., An}, {A2, A3, ..., An}, ..., {An−1, An}, {An}}.

Obviously, F8 and F9 are rank 1 formulæ. They can gen-
erate 2 · (2n − n − 1) different rank 1 formulæ. Counting
all the above mentioned rank 1 subformulæ, there exist at
least (n

n) · 22n

+
(
n
n−1

) · 22n−1
+ ... + (n

1) · 221
+ (n

0) · 220−

65

3n + 2n − 2n− 4 different rank 1 subformulæ.

This section concludes that our subclasses of rank k for-
mulæ represent a large and non-trivial class of formulæ
among the total number of all clausal formulæ (that is, 23n

).
The SAT and #SAT problems are tractable for rank k for-
mulæ. These subclasses are different than those classes for
which the considered problems are known to be in the P

class.

4 A Least Upper Approximation

This section is devoted to a polynomial time approxi-
mation of the determinant for an arbitrary clausal formula
(i.e., not necessarily a rank k formula). Briefly, we shall
prove that for any clausal formula F over V , there exists a
(minimum) rank k formula F ′ over V such that detV (F) ≤
detV (F ′).

Given two arbitrary clausal formulæ F = {C1, ..., Cl}
and F ′ = {C ′

1, ..., C ′
l} over V , we define the internal order,

as F ⊆in F ′ if and only if ∀ Ci ∈ F , i ∈ {1, ..., l}, there
exists C ′

i such that Ci ⊆ C ′
i. Note that in this definition,

F and F ′ have the same number of clauses and the latter ⊆
simply means the ordinary set inclusion.

Next, a result which allows shrinking the clauses of a
given clausal formula is presented. This result helps find-
ing an approximation of the determinant for any arbitrary
clausal formula.

Lemma 4.1 Let F and F ′ be two arbitrary clausal formulæ
over V such that F ⊆in F ′. Then detV (F) ≤ detV (F ′).

Proof By definition, every assignment satisfying Ci also
satisfies any C ′

i that contains Ci. Since F ⊆in F ′, every
assignment satisfying F also satisfies F ′. By Theorem 2.1,
it follows that detV (F) ≤ detV (F ′).

Definition 4.1 Given F = {C1, ..., Cl} a clausal formula
over V, we call UAk(F) the set of upper approximations
of F , as the set of all rank k formulæ obtained from F by
adding some new literals to its clauses. In order to have
an efficient approximation, we define the set of least upper
approximations of F , as LUAk(F) = {F ′ | F ′ ∈ UAk(F),
there is no F ′′ ∈ UAk(F) such that F ′′ ⊂in F ′}.

The notation F ′′ ⊂in F ′ means F ′′ ⊆in F ′ and F ′′ �=
F ′. In other words, LUAk(F) represents the set of all rank
k formulæ obtained from F by adding a minimum number
of literals until they enjoy the bounded rank property.

Example 4.1 Consider F10 = {{p}, {q, r}} a clausal for-
mula over V = {p, q, r}. Then, the set of least upper
approximations of F10 is LUA2(F) = { F11, F12, F13 },
where F11 = {{p, q}, {q, r}}, F12 = {{p, r}, {q, r}}, and
F13 = {{p}, {p, q, r}}. For example, {{p, q, r}, {q, r}} is
in UA2(F10)− LUA2(F10).

The next proposition represents an approximation result
for an arbitrary clausal formula.

Proposition 4.1 Let F be a clausal formula over V. Then
detV (F) ≤ detV (F ′), ∀ F ′ ∈ UA(F).

Proof According to definition of UAk(F), it follows that
F ′ has clauses with more literals than clauses of F, or equiv-
alently F ⊆in F ′. By Lemma 4.1, we get detV (F) ≤
detV (F ′).

Example 4.1 demonstrates that there might be many rank
k formulæ associated to a given clausal formula F. It is
desirable to identify F ′ ∈ UAk(F) having a small deter-
minant. According to the determinant monotony property
(Lemma 4.1), any F ′ ∈ LUAk(F) is a possible formula
having a smaller determinant than F . However, this con-
dition is not sufficient to get a minimum determinant. To
demonstrate this, consider F10 from Example 4.1, for which
we know that detV (F10) = 3. All three F11, F12 and
F13 are least upper approximations, but detV (F11) = 4,
detV (F12) = 4 and detV (F13) = 3. So, even if we add
one single literal for F11, F12 and F13, it seems that F13 is a
better choice since it has the smallest determinant. Actually
detV (F13) = detV (F10), which means F13 is actually the
best least upper approximations of F10.

4.1 Finding Good Upper Approximations

We will focus only on the rank 1 class of formulæ be-
cause this corresponds to the lowest time-complexity among
the hierarchy of rank k formulæ. In order to find computa-
tionally efficient good upper approximation, we define the
left and right extension for clauses. Here, a good approxi-
mation refers to one that is able to achieve the following:

1. the approximation is obtained by an efficient algo-
rithm;

2. it should provide a small determinant.
Let us consider Ci, Cj two arbitrary clauses such that

i < j and difV (Ci, Cj) �= 0. By left extension, we refer to
the case Cj �⊆ Ci. The case Cj ⊆ Ci can be solved imme-
diately by removing Ci. The reason is because detV (F) =
detV (F − Ci). Here it is a sketch of the proof. Assuming
Cj ⊆ Ci, then difV (Cj , Ci, Ci1 , ..., Cis

) = difV (Ci, Ci1 ,
..., Cis

). In the definition of detV (F), the terms difV (Cj ,
Ci, Ci1 , ..., Cis

) appear with a contrary sign to difV (Ci,
Ci1 , ..., Cis

), so all the terms containing Ci will disappear.
Therefore detV (F) = detV (F − Ci). Since Cj �⊆ Ci, we
get that there exists a literal L from Cj which does not occur
in Ci. Then the clause C ′

i = Ci ∪ {L} is an approximation
of Ci. Hence difV (C ′

i, Cj) = 0.
Similarly, we define the right extension, by referring to

the case when Ci �⊆ Cj . It follows that there exists a literal
L from Ci which does not occur in Cj . Then the clause

66

C ′
j = Cj ∪ {L} is an approximation of Cj . Therefore

difV (Ci, C
′
j) = 0.

If two clauses cannot be extended neither by left exten-
sion nor by right extension, then they coincide (so one of
them can be removed from the set of initial clauses). Apply-
ing left and right extensions directly, the technique may not
really provide the best approximation. For instance, consid-
ering F10 from Example 4.1, we get F11 as the approxima-
tion, which is not the best one.

We prove an auxiliary result that allows getting a better
approximation.

Lemma 4.2 Let Ci and Cj be two clauses over V , satisfy-
ing the properties: ∃Lj1 ∈ Cj such that Lj1 , Lj1 /∈ Ci and
∃Li1 ∈ Ci such that Li1 , Li1 /∈ Cj . Let us denote with u
the number of literals of Ci which does not appear in Cj

and with t the number of literals of Cj which does not ap-
pear in Ci. If u ≥ t then difV (Ci ∪ {Lj1})+ difV (Cj) ≥
difV (Cj ∪ {Li1})+ difV (Ci).

Proof Let us denote Ci = {Lc1 , ..., Lcs
, Li1 , ..., Liu

} and
Cj = {Lc1 , ..., Lcs

, Lj1 , ..., Ljt
}, where Li1 , ..., Liu

/∈ Cj

and Lj1 , ..., Ljt
/∈ Ci. We know that either Ci or Cj is

modified.
In the first case (when Ci is modified), we get difV (Ci∪

{Lj1}+ difV (Cj) = 2|V |−s−u−1+ 2|V |−s−t. In the
second case (when Cj is modified), we get difV (Cj ∪
{Li1}+ difV (Ci) = 2|V |−s−t−1+ 2|V |−s−u. The conclu-
sion holds since the inequality 2|V |−s−u−1+ 2|V |−s−t ≥
2|V |−s−t−1+ 2|V |−s−u is equivalent to u ≥ t.

Consider now the general case, that is, F = {C1, ..., Cl},
where l ≥ 2. We now present Algorithm A which takes into
account Lemma 4.2 and generates in the output F ′ = {C ′

1,
..., C ′

l}, that is, a rank 1 approximation for F using left and
right extension techniques.

Algorithm A:
Input: F = {C1, ..., Cl} a propositional formula, where
l ≥ 2;
Output: F ′ = {C ′

1, ..., C ′
l} a rank 1 propositional formula

such that detV (F) ≤ detV (F ′);
Method:
1. F ′ = F ;
2. for (i = 1; i < l; i + +)
3. for (j = i + 1; j <= l; j + +)
4. if (difV (Ci, Cj) > 0) {
5. let u be the number of literals of Ci which do not
appear in Cj

6. let t be the number of literals of Cj which do not
appear in Ci

7. if (u ≥ t) {
8. if (∃L ∈ Cj , L,L /∈ Ci) Ci = Ci ∪ {L}; //
left extension

else

9. if (∃L ∈ Ci, L,L /∈ Cj) Cj = Cj ∪ {L}; //
right extension

else remove Cj

else
10. if (∃L ∈ Ci, L,L /∈ Cj) Cj = Cj ∪ {L};
// right extension

else
11. if (∃L ∈ Cj , L,L /∈ Ci) Ci = Ci ∪ {L};
// left extension

}

By applying Algorithm A to F10 from Example 4.1, we
get F13 that represents a better approximation than F11. The
next result proves the correctness and time complexity of
Algorithm A.

Theorem 4.1 Given F = {C1, ..., Cl} a propositional for-
mula over V , where |V | = n, Algorithm A will provide a
rank 1 approximation of F. Moreover, Algorithm A has an
O(n · l2) time complexity.

Proof Lemma 4.2 shows that the test from line 7 of Algo-
rithm A will give a better approximation. That is, if u < t
then the lines 11 and 10 will be taken into consideration in-
stead of lines 8 and 9, respectively. The supplementary test
u < t can be done in constant time. Since Ci and Cj do
not have any complimentary literals, u = |Ci|− |Ci∩ Cj |.
Similarly, t = |Cj |− |Ci∩ Cj |. It follows that u ≥ t if and
only if |Ci| ≥ |Cj |, which can be tested in constant time.
Hence Algorithm A has O(n · l2) time complexity.

Algorithm A is very efficient because it does not increase
the time complexity of the membership problem. Accord-
ing to Theorem 3.1, the membership problem for rank 1 for-
mulæ has a time complexity of O(n · l2).

5 Conclusions

In this paper, we have introduced new subclasses of
clausal formulæ for which there exist polynomial algo-
rithms to solve the SAT problem and #SAT problem, too.
For any arbitrary propositional formula, our approach pro-
vides an upper bound of its determinant.

References

[1] S. Andrei. The determinant of the boolean formulae.
Scientific Annals of the Bucharest University, Com-
puter Science Section, XLIV:83–92, 1995.

[2] S. Andrei. Counting for satisfiability by inverting res-
olution. Artificial Intelligence Review, 22(4):339–366,
2004.

67

[3] S. Andrei and A. Cheng. Verifying linear real-time
logic specifications. In RTSS07: Proceedings of the
28th IEEE Real-Time Systems Symposium, pages 333–
342, Los Alamitos, CA, USA, 2007. IEEE Computer
Society.

[4] S. Andrei and W.-N. Chin. Incremental satisfiability
counting for real-time systems. In IEEE Real-Time
and Embedded Technology and Applications Sympo-
sium, pages 482–489, 2004.

[5] S. Andrei, G. Manolache, R. H. C. Yap, and V. Felea.
Approximate satisfiability counting. In SYNASC ’07:
Proceedings of the Ninth International Symposium on
Symbolic and Numeric Algorithms for Scientific Com-
puting, pages 196–202, Washington, DC, USA, 2007.
IEEE Computer Society.

[6] A. Ayari and D. A. Basin. Bounded model construc-
tion for monadic second-order logics. In CAV ’00:
Proceedings of the 12th International Conference on
Computer Aided Verification, pages 99–112, London,
UK, 2000. Springer-Verlag.

[7] A. Ayari and D. A. Basin. QUBOS: Deciding quan-
tified boolean logic using propositional satisfiability
solvers. In FMCAD ’02: Proceedings of the 4th Inter-
national Conference on Formal Methods in Computer-
Aided Design, pages 187–201, London, UK, 2002.
Springer-Verlag.

[8] E. Birnbaum and E. L. Lozinskii. The good old Davis-
Putnam procedure helps counting models. J. Artif. In-
tell. Res. (JAIR), 10:457–477, 1999.

[9] H. K. Büning and X. Zhao. On the structure of some
classes of minimal unsatisfiable formulas. Discrete
Applied Mathematics, 130(2):185–207, 2003.

[10] S. A. Cook. The complexity of theorem-proving pro-
cedures. In Proc. Third Annual ACM Symposium The-
ory of Computing, pages 151–158, 1971.

[11] N. Creignou and M. Hermann. Complexity of general-
ized satisfiability counting problems. Information and
Computation, 125(1):1–12, 1996.

[12] A. Darwiche. Decomposable negation normal form. J.
ACM, 48(4):608–647, 2001.

[13] O. Dubois. Counting the number of solutions for in-
stances of satisfiability. Theor. Comput. Sci., 81(1):49–
64, 1991.

[14] S. Fortune, J. E. Hopcroft, and J. Wyllie. The directed
subgraph homeomorphism problem. Theor. Comput.
Sci., 10:111–121, 1980.

[15] M. R. Garey and D. S. Johnson. Computer
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979.

[16] P. Hell and N. Nesetril. On the complexity of h-
coloring. J. Combin. Theory Ser. B, 48:92–110, 1990.

[17] G. Istrate. Counting, structure identification and max-
imum consistency for binary constraint satisfaction
problems. In CP, LNCS 1330, pages 136–149, 1997.

[18] K. Iwama. CNF satisfiability test by counting
and polynomial average time. SIAM J. Comput.,
18(2):385–391, 1989.

[19] H. Kautz and B. Selman. Encoding domain knowl-
edge for propositional planning. Logic-based artificial
intelligence, pages 170–209, 2001.

[20] D. J. Kavvadias, M. Sideri, and E. C. Stavropoulos.
Generating all maximal models of a boolean expres-
sion. Inf. Process. Lett., 74(3-4):157–162, 2000.

[21] L. M. Kirousis and P. G. Kolaitis. A dichotomy in the
complexity of propositional circumscription. Theory
Comput. Syst., 37(6):695–715, 2004.

[22] S. Krishnamurthi and K. Fisler. Foundations of in-
cremental aspect model-checking. ACM Trans. Softw.
Eng. Methodol., 16(2):7, 2007.

[23] A. Lomuscio, W. Penczek, and B. Woźna. Bounded
model checking for knowledge and real time. Artif.
Intell., 171(16-17):1011–1038, 2007.

[24] E. L. Lozinskii. Counting propositional models. Inf.
Process. Lett., 41(6):327–332, 1992.

[25] J. Marques-Silva. Interpolant learning and reuse in sat-
based model checking. Electron. Notes Theor. Com-
put. Sci., 174(3):31–43, 2007.

[26] T. J. Schaefer. The complexity of satisfiability prob-
lems. In STOC, pages 216–226, 1978.

[27] Y. Tanaka. A dual algorithm for the satisfiability prob-
lem. Inf. Process. Lett., 37(2):85–89, 1991.

[28] L. G. Valiant. The complexity of enumeration and re-
liability problems. SIAM J. Comput., 8(3):410–421,
1979.

[29] W. Zhang. Number of models and satisfiability of
sets of clauses. Theor. Comput. Sci., 155(1):277–288,
1996.

68

