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Abstract—We introduce a technique for reachability analysis
of Time-Basic (TB) Petri nets, a powerful formalism for real-
time systems where time constraints are expressed as intervals,
representing possible transition firing times, whose bounds are
functions of marking’s time description. The technique consists
of building a symbolic reachability graph relying on a sort of
time coverage, and overcomes the limitations of the only available
analyzer for TB nets, based in turn on a time-bounded inspection
of a (possibly infinite) reachability-tree. The graph construction
algorithm has been automated by a tool-set, briefly described
in the paper together with its main functionality and analysis
capability. A running example is used throughout the paper to
sketch the symbolic graph construction. A use case describing
a small real system - that the running example is an excerpt
from - has been employed to benchmark the technique and the
tool-set. The main outcome of this test are also presented in the
paper. Ongoing work, in the perspective of integrating with a
model-checking engine, is shortly discussed.

I. INTRODUCTION

Time-Basic (TB) Petri nets [1] belong to the category of nets
in which system time constraints are expressed as numerical
intervals associated to each transition, representing possible
firing instants, computed since transition’s enabling time.
Tokens atomically produced by the firing of a transition are
thereby associated to time-stamps with values ranging over a
determined set. With respect to the well-known representative
of this category, i.e., Time Petri nets [2], interval bounds in
TB nets are linear functions of timestamps in the enabling
marking, rather than simply numerical constants. TB nets thus
represent a much more expressive formal model for real-time
systems. The reachability analysis of TB nets is still recog-
nized as an open problem ([3]). Available analysis techniques
and tools (e.g., [3], [4]) are based on inspecting a finite portion
of the potentially infinite reachability-tree generated by a TB
net. But for particular cases, only time-bounded properties can
be inferred from TB net’s state-space exploration by using
this kind of analyzers. The technique described in this paper
tries to overcome this major limitation. It relies on a symbolic
reachability graph algorithm, which is in turn based on a
relative notion of time and a procedure verifying inclusion
between symbolic states. A particular state normalization,
able to recognize and eliminate timestamp symbols actually
not influencing the model evolution, permits in many cases
building a sort of time coverage finite graph. The symbolic
graph construction has been automated by a tool-set written in
Java. The output is a structure enriched with information on

edges which might be exploited during property evaluation.
The tool-set currently includes a module for the automatic
verification of properties expressed as conditions on markings.
As use case we’ll use the gas burner example, that is widely
used in literature as a representative of a small real system. A
complete and formal description can be found in [5], and the
corresponding TB net model was introduced in [6]. An excerpt
will be used as running example to explain in a rather informal
way the essential points of symbolic graph construction. Only
some relevant new core definitions are formally given.

II. TBNETS

Time Basic nets are Petri nets where each token is associated
with a time-stamp representing the instant at which it has been
created. In this paper we assume that the domain of timestamps
is R+. Each transition t is associated with a time function ft
which maps a tuple en of time-stamps, one for each place in
•t (the pre-set of t), to a (possibly empty) set of R+ values.
A marking m maps each place p to a multi-set in R+. A tuple
en is said to be an enabling tuple for t in m if m contains en
and ft(en) 6= ∅. The set ft(en) represents the possible firing
times of enabling tuple en. The firing of (en, t) makes en be
withdrawn from •t, and a new timestamp arbitrarily chosen
among the values in ft(en) be created in all places in t• (the
post-set of t).

Hereafter a time function ft is defined by a pair of linear
functions [lbt, ubt], denoting interval bounds. lbt, ubt are in
turn formally expressed in terms of (a non empty set of) names
of places in •t. Time-functions are monotonic, i.e., the set
of time-stamps associated with a tuple en cannot contain a
timestamp less than the maximum time-stamp associated with
a token in en, denoted enab. We will keep such assumption
implicit in the formal notation for time-functions.

Consider the excerpt from the use case, depicted in Fig. 1.
It relates to the Ignite Phase, just after the ignition transformer
has been started and the gas valve has been opened. In this
phase the controller must check if the flame has been lighted
within a specific deadline, otherwise a recovery procedure that
brings the system to Idle has to be activated. The flame turns
on if there are Ignition and Gas (transition FlameLigthOn), but
it can turn off if no gas is supplied (transition FlameLigthOff )
or due to a fault, e.g. some wind (transition FlameLigthOff2).
The time function associated with transition FlameOn (rep-
resenting the system passing to burnstate after recognizing
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IGNITE_PHASE_S

BURN_PHASE_B

FlameOnGasOff2

Ignition

NoGas

Gas

Flame

NoFlame

FlameLightOn FlameLightOff FlameLightOff2
W

Initial marking IGNITE PHASE S{T0} Ignition{T0} Gas{T0} NoFlame{T0}
Initial constraint 0 ≤ T0 ≤ 10

FlameLightOff [enab,NoGas + 0.1]
FlameLightOff2 [enab, enab + 100] with weak time semantic
FlameLightOn [enab + 0.5, enab + 0.5]
FlameOn [IGNITE PHASE S + 0.01,max({Flame + 0.1, IGNITE PHASE S + 0.01})]
GasOff2 [enab + 2, enab + 2]

Fig. 1. running example

that the flame has turned on) can be interpreted as follows:
FlameOn cannot fire before 0.01 time units elapse since the
appearance of a token in place IGNITE PHASE S (the
minimum permanence time in ignitestate) and implicitly not
before the timestamp in place Flame. The firing time cannot
exceed the maximum between the timestamp of the token in
place IGNITE PHASE S plus 0.01 time units and the
time-stamp of the token in place Flame plus 0.1 (i.e., the
system recognizes the presence of a flame within this 0.1
units). Noticeably, this is an example of constraint that cannot
be directly expressed using Time Petri Nets formalism ([2]).

The set of time-stamps associated with a tuple by ft can be
interpreted in at least two different ways, leading to different
time semantics for each transition. A first interpretation states
that an enabled transition t can fire at a value included in the
set of possible firing times. Transitions with such semantics
are referred to as weak transitions. A second interpretation
states that an enabled transition t must fire at a value included
in the set of possible firing times unless it is disabled by the
firing of any conflicting transition at a time no greater than the
greatest firing time of t. Transitions with such semantics are
referred to as strong transitions. Concerning the net in Fig. 1,
the only weak transition is FlameLightOff2. This permits us
to express the possibility that an event occurs within a given
time interval. In the case of Time Petri Nets the only possible
semantics is strong.

In order to meet an intuitive notion of time, TB net firing
sequences are restricted to the set of firing sequences whose
firing times are monotonically non decreasing with respect
to the firing occurrences. However, the time of a firing may
be equal to the enabling time of the tuple that belongs to

the firing. Intuitively this means that an effect (the firing) can
occur with no delay after the cause (that enables it) is fulfilled.
Therefore, it is possible to have sequences of firings where the
time does not change. In practice, it is useful to restrict the
attention to a subclass of TB nets, such that there exist no
infinitely long firing sequences which take a finite amount of
time (non Zenonicity).

III. TIME COVERAGE REACHABILITY ANALYSIS

The analysis technique presented in this paper extends the
capability of the existing analyzer for TB nets [7], which
uniquely permits the verification of bounded invariance and
response properties, through the inspection of a time-bounded
symbolic reachability tree generated from a TB net.

The new technique aims at building a finite graph instead of
an infinite tree for a wide category of TB nets. A combination
of three complementary ideas is exploited. First, symbolic
states are compared to check subset relationships. For that
purpose, using a consolidated approach, timestamp symbols
no more occurring on the marking description are eliminated
from the linear constraint associated to a symbolic state,
independently of how it has been reached. Identifying subset
relations between generated symbolic states (markings plus
constraints), is necessary for recognizing cyclic paths, but it is
not enough in many situations. As time progresses, periodic
occurrences of equivalent conditions may be unrecognizable
simply due to their different offsets with respect to system’s
time zero. This observation leads us dealing with the second
aspect. In the very common case a TB model contains no
reference to absolute times (i.e., not as offset respect to
enabling timestamps) in transition time functions, it is possible
to remove any references to the “absolute zero” from symbolic



states. This permits a periodic equivalent behavior to be recog-
nized. The cost is a lossy information about state displacement
along absolute time. We’ll discuss this aspects in section IV.
Let us only point out that this kind of information could be
recovered, if necessary, in a second step by retracing only the
path(s) leading to the state of interest, or (at least partially)
by combining the information on edges. The third key feature
of the technique is the introduction of the time anonymous
(TA) concept. This relates to the fact that in a symbolic
state there may exist tokens whose timestamp values can be
forgotten, as not influencing the evolution of a model. Several
heuristics have been implemented, based on a mix of structural
and state-dependent patterns, each characterizing one such
situation. This enhances the ability of merging states, and
permits facing situations where the presence of dead tokens
could reintroduce a sort of symbolic absolute zero, nullifying
the achievements at the previous points. Again, the cost to pay
is a minor loss of information, as discussed later. There is some
resemblance with the approach used in the construction of
(topological) coverage graphs: the missing information is the
exact timestamp of tokens instead of their exact number. TA
recognition might be also exploited to introduce a topological
notion of coverage for TB nets (section VII).

A. Graph construction

In order to understand the rationale behind the symbolic
reachability graph construction technique for TB nets, we shall
use once again the running example in Fig. 1. Let us only
introduce a few basic notions used in the sequel, referring
to [8] (where the symbolic reachability tree for TB nets is
defined) for a full formalization.

Let TS = {Ti}, i ≥ 0, be the set of time-stamp symbols. A
symbolic state S is a pair 〈M,C〉, where M (called marking)
maps each place p to a multi-set on TS, and C is a (satisfiable)
linear constraint defined on a subset of TS symbols appearing
in M . We are considering a normal form of S: if M contains
k different TS symbols, they are {T0, . . . , Tk−1}, with the
(implicit) assumption ∀i : 0 . . . k− 2, C ⇒ Ti ≤ Ti+1. Unless
otherwise specified, we shall refer to this form.

A mapping ens : •t → TS is said a symbolic instance of
t (the notation (ens, t) will be sometimes used). ens will be
formally denoted by a tuple of symbols. A symbolic evaluation
of a linear function gt appearing in the formal definition of a
time function, denoted gt(ens), is obtained by replacing each
occurrence of p ∈ •t in the formal expression of gt with the
associated symbol τ = ens(p).

According to a (monotonic) weak time semantics, a pair
(ens, t) is said a symbolic enabling in S if M contains ens
and C ′: C ∧ lbt(ens) ≤ Tk ≤ ubt(ens) ∧ Tk−1 ≤ Tk is
satisfiable. In other words, there exists at least one substitution
en of numerical values for ens that makes C satisfiable and
the set ft(en) non empty.

The firing of symbolic enabling (ens, t) produces the new
symbolic state S′ : 〈M ′, C ′〉, where M ′ is obtained from M
by removing ens and putting a new symbol Tk in all places
in t•. The state S′ represents all the possible TB net ordinary

markings reachable from any marking represented by S by
means of any firing correponding to (ens, t).

B. Time-coverage graph
The time-coverage symbolic reachability graph generated

by the running example, composed by 14 symbolic states, is
presented in Fig. 2.1.

The adopted notation for states is: a square for symbolic
states, a double square for symbolic states containing some
deadlocks. Concerning edges, the format of head and tail
specifies the kind of relation between source and target.

The normal case, corresponding to a symbolic enabling,
is black head and tail, e.g., from S0 to S1: considering any
marking represented by S0 it is always possible to follow that
edge and reach all the markings represented by S1.

Let us consider the symbolic state S8, formally described
as follows:

M8 : Gas{T1} IGNITE PHASE S{T0}
Ignition{TA} NoFlame{TA}

C8 : T1 ≥ T0 + 1.5 ∧ T1 ≤ T0 + 1.8

We can observe that, with respect to the original definition
of symbolic state, a first extra time-stamp symbol is present,
TA (time anonymous). This new symbol can occur only on the
marking. Postponing an intuitive explanation of when and how
symbol TA is introduced in a symbolic state representation,
we can think of it as a token carrying on an unspecified time-
stamp, which has been shown unessential for the computation
of transition firing times.

The “candidates” for symbolic enabling in S8 are:
(〈T0〉, GasOff2) and (〈TA, T1, TA〉, F lameLightOn). Fir-
ing times are computed by (symbolically) evaluating transition
time functions, as explained above. For GasOff2 the (only)
inferred firing time is {T0 + 2}. Time function evaluation is
slightly different for FlameLightOn, due to the occurrence
of TA in the pre-set tuple: this symbol is simply erased
during (symbolic) evaluation: enab = max({TA, T1, TA}) ≡
max({T1}) = T1. The inferred firing time in this case is
{T1 + 0.5}.

Since both transitions have a strong semantics, there are
two additional constraints specifying that the firing time of one
cannot be greater than the (maximum) firing time of the other.2

They are CGO2 : T0 + 2 <= T1 + 0.5 and CFLO : T1 + 0.5 <=
T0 + 2, respectively.

Since both C8 ∧ CGO2 ∧ T2 = T0 + 2 and C8 ∧
CFLO ∧ T2 = T1 + 0.5 are satisfiable, (〈T0〉, GasOff2) and
(〈TA, T1, TA〉, F lameLightOn) are in fact symbolic en-
ablings in S8. However it is important to note that C8 ⇒
CGO2 ∧ T2 = T0 + 2, i.e., all the markings represented by S8
enable the transition GasOff2. Instead C8 ; CFLO ∧ T2 =
T1 + 0.5, i.e., only a subset of the markings expressed by S8
enable the transition FlameLightOn. This is highlighted in the
graph by the white tail of the edge from S8 to S9.

1this picture has been automatically obtained by using GraphViz visualiza-
tion software [9] on the output generated from the tool-set.

2i.e., the set of firing times of a (strong) transition in S also depends on
the enablings of the other strong transitions



S0

S1

FlameLightOn
0.5-0.5

S2
FlameLightOff2

0.0-0.1

S3

FlameOn
0.0-0.1

S4
FlameLightOn

0.5-0.5

S5

FlameLightOff2
0.0-100.0

FlameOn
0.0-0.1

S6
FlameLightOff2

0.0-0.1

FlameLightOn
0.5-0.5

S7
FlameLightOn

0.5-0.5

FlameOn
0.0-0.1

S8

FlameLightOff2
0.0-0.1

S9

FlameLightOn
0.5-0.5

S10

GasOff2
0.2-0.5

FlameOn
0.0-0.0

S11

FlameLightOff2
0.0-0.0

S12

GasOff2
0.0-0.0

FlameLightOn
0.0-0.3

S13

GasOff2
0.0-0.0

FlameLightOff2
0.0-100.0

FlameLightOn
0.5-0.5

Fig. 2. sample reachability graph

Consider now the firing of (〈T0〉, GasOff2): it only con-
sumes tokens. In such cases the symbolic firing rule slightly
differs from the original one. A second special symbol, TL
(Time Last), is introduced. TL can occur only on the constraint
of a symbolic state and has an intuitive meaning: it stands for
the last firing time of the TB net and it permits a correct
interpretation of the model’s time semantics. 3 The reached
symbolic state S10 is formally described as:

M10 : Gas{T1} Ignition{TA} NoFlame{TA}
C10 : C8 ∧ T2 = T0 + 2 ∧ TL = T2

The normalization step eliminates symbols T2 (the symbolic
firing time) and T0, as they occur only in C10, instead it leaves
symbol TL. That results in (after a timestamp renaming):

M10 : Gas{T0} Ignition{TA} NoFlame{TA}
C10 : TL ≥ T0 + 0.2 ∧ TL ≤ T0 + 0.5

Another circumstance that causes the introduction of TL sym-
bol in a symbolic state representation is when the maximum
timestamp symbol Tk is replaced with TA. How identifying a
Time Anonymous in a given symbolic state is the next topic
we treat.

The graph in Fig. 2 contains two looping paths: between
states S3 and S5, and between S12 and S13 respectively.
That happens because in the extrapolated sub-model (Fig. 1),
no expected actions are activated after the system exits the
ignition phase (e.g., closing the gas valve in the event of

3in this paper, when TL is left implicit, it is equal to the “last” generated
timestamp Tk .

fail, or stopping ignition), so that an unbounded sequence of
FlameLightOff2;FlameLightOn is possible.

The white head of the edge from S5 to S3 means that at
least one of the ordinary markings represented by S3 is not
reachable by following that edge. This happens when a newly
built symbolic state is recognized to be strictly included in
an existing one. What permits recognizing inclusion between
states in this specific case is the usage of Time Anonymous
timestamps. S3 is formally defined as:

M3 : Gas{TA} BURN PHASE B{TA}
Ignition{T0} Flame{T1}

C3 : T1 ≥ T0 ∧ T1 ≤ T0 + 0.1

Without using TAs, its original definition (S3′) would be:

M3′ : Gas{T0} BURN PHASE B{T1}
Ignition{T0} Flame{T1}

C3′ : T1 ≥ T0 ∧ T1 ≤ T0 + 0.1

Let us figure out what would be the model evolution from
S3′, without introducing TA. After the firing sequence Flame-
LightOff2;FlameLightOn4 a state S3′′ would be reached, de-
fined in turn as:

M3′′ : Gas{T1} BURN PHASE B{T0}
Ignition{T1} Flame{T1}

C3′′ : T1 ≥ T0 + 0.5 ∧ T1 ≤ T0 + 100.5

Since S3′′ 6⊆ S3′ and S3′ 6⊆ S3′′, there is no possibility to
merge them and in fact the analysis tool would produce an
infinite firing sequence.

4we omit in this description symbolic enablings, the TB net being safe



Back to S3, we note it corresponds to S3′ but for holding
TA symbols in places BURN PHASE B and Gas instead
of T1 and T0, respectively. Token T1 in BURN PHASE B
however is not (and will never be) involved in any symbolic
enabling because BURN PHASE B has an empty postset,
so it is immediately marked as TA. Token T0 in Gas instead is
in the preset of transitions FlameLightOn and FlameLightOff2.
As for FlameLightOn, the tokens in place Ignition and in
place Gas carry on the same timestamp, so either of them is
enough to correctly evaluate transition’s time function. As for
FlameLightOff2, the token in place Gas carries on redundant
information due to the simultaneous presence of T1 in Flame,
that superseded it.
S3′′ seems really different from S3, but nearly the same

heuristics permits us to replace T0 : BURN PHASE B
(Ti : p denotes the occurrence of a timestamp on a place) and
T1 : Gas with TAs. That eliminates all the occurrences of T0
from the marking. After timestamp renaming, we obtain the
normal form:

M3′′ : Gas{TA} BURN PHASE B{TA}
Ignition{T0} Flame{T0}

C3′′ : true

However there is still a difference with respect to S3: places
Ignition and Flame hold the same timestamp, but this boils
down to a condition already represented by S3 (T1 = T0 ⇒
C3), so S3′′ is recognized as a state included in S3.

Notice that the other cycle on the graph, between S12 and
S13, is due to the adoption of a relative notion of time, i.e.,
it does not depend on the introduced TA concept.

An important setting of the legacy tool [4] was the time
limit, a positive interval time that guaranteed the finiteness of
the symbolic reachability tree of a TB net. Upon elimination of
absolute time references it has been substituted by a relative
time limit. This positive interval specifies the maximum ad-
missible distance between different timestamps in a state, and
allows one to deal with possibly infinite reachability graph.
The tool-set checks whether a symbolic state includes any
ordinary states for which the distance between TL and T0 (the
oldest meaningful timestamp) exceeds the time limit, marking
that state as not to be expanded. The rationale behind is that
reaching such a user defined limit might be a symptom of
the presence of unrecognized “dead tokens”, reintroducing
absolute time references. If we analyzed the running example
disabling TA recognition, the resulting graph would be infinite,
unless a time limit is set. Setting this limit to 3 (time units),
25 symbolic states would be generated: 13 already included
in the presented graph, the others corresponding to a partial
unrolling of the loop between S3 and S5.

The output generated by the tool-set associates a couple of
numerical values to edges of the graph, corresponding to the
minimum and maximum time distances from the source node
to the target node. This permits us to partially recover time
relations between nodes that were lost due to the removal of
absolute times references from constraints. In the following
section we’ll show how to exploit them.

C. Formal Definitions
Let us formalize some core concepts previously outlined,

focusing in particular on TA and coverage.

Definition 1 (well-defined erasure). Let gt be the formal
expression of a linear function. The erasure of a set of symbols
E ⊂ •t from gt will be denoted gt[¬E]. gt[¬E] is well-defined
if it doesn’t violate the arity of any operators occurring on gt.

Consider for instance t, s.t. •t = {p1, p2}, and ft :
[max({p1, p2}), p2 + 0.5], where, max : 2R

+ \ ∅ → R+,
+ : R+,R+ → R+. Then, the erasure ft[¬{p1}] is well-
defined and results in [p2, p2 + 0.5], instead ft[¬{p2}] is not
well-defined.

A symbolic instance of t is a mapping ens : •t → TS ∪
{TA}. Let en−1s (τ) = {p}, en(p) = τ .

Let R(S) be the set of symbolic states reachable from S

Definition 2 (valid TA-replacement). Given a state S, a
timestamp occurrence Ti : p is replaceable with TA : p if
and only if for each S′ = 〈M ′, C ′〉 ∈ R(S) in which token
Ti : p is left (modulo timestamp renaming), for each symbolic
enabling (ens, t) in S′ s.t. ens(p) = Ti, ft[¬{p}] is a well-
defined erasure and

C ′ ∧max({TL, lbt(ens)}) ≤ ubt(ens)⇔
C ′ ∧max({TL, lbt[¬{p}](ens)}) ≤ ubt[¬{p}](ens)

The semantics of a symbolic state (possibly) including TA
is provided by the following coverage notion.

Definition 3 (symbolic state coverage). Let S = 〈M,C〉 be a
symbolic state. An ordinary marking m is covered by S if and
only if it corresponds to a numerical substitution σ of symbols
occurring on M , s.t. σ satisfies C and for each ordinary
enabling (en, t) in m, for each symbolic tuple (ens, t) in S
s.t. en is a numerical substitution of ens,

a lbt[¬en−1
s (TA)], ubt[¬en−1

s (TA)] are well defined
b lbt[¬en−1

s (TA)](en) = lbt(en) ∧ ubt[¬en−1
s (TA)](en) =

ubt(en)

The next lemma sets the relationship between ordinary and
symbolic instances (state transitions).

Lemma 1. Let m be covered by S. If m[(en, t) > m′, then
there exists a symbolic enabling ens, s.t. en is a numerical
substitution of ens, S[(ens, t) > S′ and m′ is covered by S′

Let us finally report as an example some heuristics, in-
cluding the ones used by the algorithm to identify the TA
replacements commented in the previous section. They iden-
tify, precisely speaking, a valid replacement of a timestamp
occurrence Tk : p with TA : p, in S = 〈M,C〉, according to
definition 2.

1) p• = ∅
2) ∀t ∈ p•

∨
iEi, where

E1: ft does not refer to p, directly or by means of enab
E2: ft is in the form [enab+ c, enab+ c′] ∧ ∃p′ ∈ •t

M(p′) = ∅ ∨ (∀Tj ∈M(p′) C ⇒ Tj ≥ Tk)
E3: . . .



IV. PROPERTY EVALUATION

The symbolic (time coverage) reachability graph contains
several exploitable information.

The tool recognizes deadlocks even if they are topologically
hidden by the presence of outgoing edges. In fact if all the
outgoing edges have a white tail, it is still possible that a
proper subset of the corresponding symbolic state is composed
by deadlock marking. In the running example however no
deadlock marking is reachable.

Disregarding time specification (i.e., considering only the
number of tokens distributed over places), the graph nodes
exactly identify all the reachable (topological) markings: if a
marking matches a symbolic node then there exists at least
one path from the initial state to such a marking, conversely
if a marking matches no symbolic nodes, it is not reachable.
It is thereby possible to verify P-invariants from a specified
marking. In case of finite graph, it is possible to answer
questions about maximum (minimum) number of tokens in
some (combinations) of places.

In general, the set of ordinary (TB net) states represented
by the sum of states of the symbolic graph built from a TB
net is a superset of the reachable ordinary states of the TB
net. In fact, the introduction of TA symbols causes a loss
of information, because each TA covers a potential set of
timestamps. However, given a symbolic state S = 〈M,C〉
in which a set {Ti} of time-stamp symbols occur on M , each
numerical substitution of {Ti} satisfying C corresponds to the
projection of reachable ordinary states. If we are interested in
checking timing relations between token’s timestamps on the
states of the graph we can get three different answers upon
graph inspection: a positive one (e.g., there exists a node that
satisfies the condition), a negative one (e.g., no nodes satisfy
the condition), or a possibly positive. For example, if we are
looking for a state where a token in place Flame carries on a
timestamp greater than the one in place IGNITION PHASE S,
state S9 provides us with a positive answer. Instead, if we are
checking whether places Gas and Ignition can ever hold the
same timestamp the answer is may be (the presence of TA in
either places covers that condition).

As for timing relations between token’s timestamps in
different markings, or between firing times in a transition
firing sequence, the symbolic graph permits identifying critical
paths by combining the information on edges. In particular,
conservative bounds can be established. In the case they are
not enough to exclude incorrect timing behaviors, it is possible
to carry out a more accurate analysis by rebuilding a portion
of the graph, retracing some critical paths and reintroducing
absolute time references. For example, looking at the time
information on edges, it is possible to establish that state S10
is not reachable from S0 in less than 1.7 time units. We cannot
directly infer that S10 is reachable in exactly 1.7 time units.

Concerning feasibility of firing sequences, the symbolic
graph expresses all the possibilities (an ordinary firing se-
quence is matched by any firing sequence on the graph). A
critical situation is presented in Fig. 3. If we follow a white-

arrow edge (meaning that we reach only a subset of the target
state) and, from there, a white-tail edge (meaning that the
transition is enabled only in a subset of the ordinary states
represented by the node), there is still the possibility that this
path actually is not feasible. Also such critical paths could be
retraced. Let us stress (back to the reachability problem) that
by construction, for every node on the graph there exists a
path from the initial state to such a node formed exclusively
by black-arrow edges.

Fig. 3. Critical case for path feasibility

The available tool’s evaluation component is still very
simple, its integration with some existing model checking
engines is currently under investigation. However it already
permits examining the input graph looking for interesting
properties on topological definition of markings:
• existence of a state with a marking satisfying a constraint

(i.e., a boolean combination of condition on the number
of tokens in places)

• maximum (minimum) value of an expression involving
the number of tokens in places (possibly restricting the
evaluation to markings satisfying a given constraint)

V. TOOL ARCHITECTURE

Fig. 4. reference architecture

The analysis technique described in this paper has been
implemented as a command line tool written in Java. The
tool architecture depicted in Fig. 4 presents the various com-
ponents that communicate by means of files. The tgraphgen
module receives as input a Time Basic Petri net (either in the
legacy file format used by the Cabernet tool, or in a PNML
format generated, for example, by a customized version of
PIPE2 open source tool[10]). It generates as outputs the graph
in binary format (used by the property verification module
tgrapheval), and in an annotated DOT text format (used by
the GraphViz tool). The tool is going to be integrated as an
analysis module in the customized PIPE open source tool. That
will permit accessing all the functions by means of menu, and
exploiting in an integrated environment consolidated structural
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Figure 4. TB net for the gas burner control system.

Time-Functions:

HrOn [IDLE PHASE + 0.01,max({IDLE PHASE + 0.01, HeatReq + 0.1})]
IgnOn [max({PURGE PHASE + 0.01, IDLE PHASE bis+ 30}),

max({PURGE PHASE + 0.01, IDLE PHASE bis+ 30})]
GasOn [enab+ 0.01, enab+ 0.1]
FlameOn [IGNITE PHASE S + 0.01,max({Flame+ 0.1, IGNITE PHASE S + 0.01})]
IgnOff [enab+ 0.01, enab+ 0.1]
HrOff [BURN PHASE S + 0.01,max({BURN PHASE S + 0.01, NoHeatReq + 0.1})]
GasOff [enab+ 0.01, enab+ 0.1]
FlameOff [STOP PHASE F + 0.01,max({STOP PHASE F + 0.01, NoF lame+ 0.1})]
FlameOff2 [BURN PHASE S + 0.01,max({BURN PHASE S + 0.01, NoF lame+ 0.1})]
GasOff2 [enab+ 2, enab+ 2]
IgnOff2 [enab+ 0.01, enab+ 0.1]
GasOff3 [enab+ 0.01, enab+ 0.1]
IgnLightOff [IgnActOffReq + 0.2, IgnActOffReq + 0.2]
IgnLightOn [IgnActOnReq + 0.2, IgnActOnReq + 0.2]
CloseV alve [V alActCloseReq + 0.2, V alActCloseReq + 0.2]
OpenV alve [V alActOpenReq + 0.2, V alActOpenReq + 0.2]
FlameLightOn [max({Gas, Ignition}) + 0.5,max({Gas, Ignition}) + 0.5]
FlameLightOff [enab,NoGas+ 0.1]
SwitchHROn [enab, enab+ 10]
switchHROff [enab+ 120, enab+ 120]
FlameLightOff2 [enab, enab+ 100]
Inc Conc [enab+ 0.1, enab+ 0.1]
Dec Conc [enab+ 30, enab+ 30]

Fig. 5. Use case Net: Gas Burner

analysis algorithms for the verification of the untimed part of
TB nets (e.g., P/T nets invariant analysis).

VI. USE CASE AND COMPARISON WITH OTHER TOOLS

In order to make a comparison with the previous analysis
techniques and tools available for TB nets, we consider now
the complete gas burner example (Fig. 5), already analyzed in
[6].

The main critical parameter of the system was identified in
the maximum concentration value of uncombusted gas. With
the old analyzers it was only possible to do an approximate

analysis, by verifying the safety requirement having fixed a
time threshold [6], or by building a small part of the reach-
ability tree able to invalidate the property [11]. A significant
improvement of the new tool-set against the old analyzer is
that it is now possible to compute the upper bound for such a
parameter.

Table I reports the outcomes of the analysis on the use case.
In particular the considered parameter has been measured with
three versions of the net. They differ in the time granularity
used for the uncombusted gas process, i.e., the time function
of the transition Inc Conc. The first thing to note is however



that the analysis result is coherent in the various situations,
identifying the maximum amount of uncombusted gas as
corresponding to a leaking period of two seconds.

The test has been performed on a Toshiba Notebook with
2.4Ghz Intel Core 2 Duo processor and 4GB of memory. The
operating system is Ubuntu 10.10 and the Java Virtual Machine
is OpenJDK IcedTea6 1.9.5.

On the table we report also the number of states of the final
reduced graph against the overall number of states generated
by the algorithm, and the execution times. Even if the sample
is too little, a first interpolation suggests that a likely trend is
quadratic (with a small constant factor).

In Fig. 6 some profiling data -relating the 0.1 time granu-
larity version of the model- are presented. On the x axis there
is the execution time expressed in minutes, on the y axis there
are the number of built nodes, of reduced (final) nodes, and
of nodes ready to be processed, respectively. This picture is
important for two reasons: first it shows that the performance
degradation of state construction process is very small (the
number of states created is pretty much constant in time after
an initial burst); second, it supports the idea that a parallel
(distributed) version of the graph builder, currently under
development, should substantially improve the performances
(the front of expansion remaining consistently wide).

TABLE I
USE CASE ANALYSIS RESULTS

Inc Conc granularity max(Conc) # [final/built] states exec. time
0.5 4 865/1217 ≈ 75secs

0.25 8 2233/2983 ≈ 400secs
0.1 20 14563/23635 ≈ 7.5hrs
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Fig. 6. state creation advancement

VII. CONCLUSION AND FUTURE WORKS

The analysis technique presented in this paper overtakes
the existing available analysis technique for Time Basic Nets

(a very expressive timed version of Petri nets) because it
permits the building of a sort of (symbolic) time-coverage
reachability graph keeping interesting timing properties of the
nets. In particular the introduction of the concept of time
anonymous timestamps, allows for a major factorization of
symbolic states. An extension of the technique that further
exploits the time anonymous concept in order to deal with
topologically unbounded nets (by means of a coverage of TA
tokens, i.e., a sort of ωTA) is under definition.
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[11] F. Calzolari and M. Pezzè, “Property decomposition to speed up analy-

sis,” Real-Time Systems, Euromicro Conference on, vol. 0, p. 147, 1995.

http://portal.acm.org/citation.cfm?id=104878.104897
http://dx.doi.org/10.1109/32.75415
http://portal.acm.org/citation.cfm?id=951807.951821
http://portal.acm.org/citation.cfm?id=630793.631022
http://portal.acm.org/citation.cfm?id=630793.631022
http://portal.acm.org/citation.cfm?id=951807.951826
http://portal.acm.org/citation.cfm?id=951807.951826
http://portal.acm.org/citation.cfm?id=196668.196672
http://portal.acm.org/citation.cfm?id=196668.196672

	I Introduction
	II TBnets
	III Time coverage reachability analysis
	III-A Graph construction
	III-B Time-coverage graph
	III-C Formal Definitions

	IV Property Evaluation
	V Tool Architecture
	VI Use Case and Comparison with other tools
	VII Conclusion and future works
	References

