
Deciding Conjugacy in Thompson’s Group F in
Linear Time

Nabil Hossain, Robert W. McGrail, and James Belk
The Laboratory for Algebraic and Symbolic Computation

Reem Kayden Center for Science and Computation
Bard College

Annandle-on-Hudson, New York 12528

Francesco Matucci
Département de Mathématiques
Faculté des Sciences d’Orsay

Université Paris-Sud 11
Bâtiment 425, Bureau 21 F-91405 Orsay Cedex, France

Abstract—We present an efficient implementation of the so-
lution to the conjugacy problem in Thompson’s group F , a
certain infinite group whose elements are piecewise-linear home-
omorphisms of the unit interval [0, 1]. This algorithm checks
for conjugacy by constructing and comparing directed graphs
called strand diagrams. We provide a comprehensive description
of our solution algorithm, including the data structure that stores
strand diagrams and methods to simplify them. We prove that
our algorithm theoretically achieves an O(n) bound in the size
of the input, and we present a O(n2) working solution.

I. INTRODUCTION

Given a finitely-presented group G, the conjugacy problem
is the decision problem of determining whether two elements
g, h ∈ G are conjugate, i.e. whether there exists an element
k ∈ G so that g = khk−1. This problem cannot be solved
in general [1], but solutions are known for many classes of
infinite groups, including free groups, braid groups, and so
forth [2], [3]. Moreover, the conjugacy problem in free groups
has been proven to be solvable in linear time [2].

Thompson’s group F is a certain infinite group of
piecewise-linear homeomorphisms of the unit interval. It can
be described by a presentation with two generators and two
relations:

F = 〈x0, x1 | x2x1 = x1x3, x3x1 = x1x4〉
where xn is shorthand for x1−n0 x1x

n−1
0 for n ≥ 2.

This group is well-known in geometric group theory, and
has been studied extensively. See [4] for a comprehensive
introduction to F .

Guba and Sapir [5], [6] provided a solution to the con-
jugacy problem in Thompson’s group F using graphs called
diagrams. Building upon this solution, Belk and Matucci [7]
introduced certain directed graphs called strand diagrams,
and described a reduction of the conjugacy problem in group F
to isotopy of strand diagrams. In this paper we describe a
further reduction of this problem to isomorphism of planar
graphs and include an implementation of this reduction. This
reduction algorithm takes as input two words in {x0, x1}
of length at most n, and produces two planar graphs in

Francesco Matucci gratefully acknowledges the Fondation Mathematique
Jacques Hadamard (FMJH - ANR - Investissement d’Avenir for the support
received during the development of this work.

output

left
input

right
input

input

left
output

right
output

Fig. 1. A merge and a split (image taken from [7]).

O(n) time. Given a linear time algorithm for determining
isomorphism of planar graphs, as is theoretically possible
according to Hopcroft and Wong [8], this gives rise to a linear
time algorithm for the conjugacy problem in Thompson’s
Group F . The Hopcroft-Wong algorithm is quite complex,
and no implementation of it currently exists. Therefore, we
also describe a O(n2) Java program for checking conjugacy
in F .

For an alternate approach to solving the conjugacy problem
in F , the reader is referred to [9].

II. ANNULAR STRAND DIAGRAMS

All of the material in this section are taken from [7].

Definition 1. A simple annular strand diagram is a finite
directed multigraph drawn on an annulus without edge cross-
ings, having the following properties:

1) Each vertex has degree three, and is either a merge or a
split (see Fig. 1).

2) Every directed cycle winds counterclockwise around the
central hole.

An annular strand diagram is a simple annular strand
diagram along with a finite number of free loops, which are
directed cycles without any vertices.

In [7], Belk and Matucci describe a procedure for obtaining
an annular strand diagram corresponding to any element
of F . Specifically, let B(x0), B(x1), B(x−10) and B(x−11)
denote the four building blocks shown in Fig. 2. Given any
word s1s2 · · · sn in F , i.e. any finite sequence of elements
from {x0, x−10 , x1, x

−1
1 }, the corresponding annular strand

diagram is obtained by gluing together the building blocks
B(s1), B(s2), . . . , B(sn) in counterclockwise order around

(a) B(x0) (b) B(x−10) (c) B(x1) (d) B(x−11)

Fig. 2. The four building blocks B(x0), B(x−1
0), B(x1), B(x−1

1), corre-
sponding to the generators for F and their inverses.

Fig. 3. Annular strand diagram corresponding to the word x0x0x1. Each
green split is marker for the start of its building block. The red edge glues
the last building block to the first, creating a directed cycle.

the annulus, as shown in Fig. 3. Note that different words for
the same element of F will correspond to different annular
strand diagrams.

Before stating the conjugacy theorem from [7], we need a
few more definitions:
• A reduction of an annular strand diagram is a simplifi-

cation of the directed graph using one of the three moves
shown in Fig. 4. This set of reductions is confluent and
terminating [7], so every annular strand diagram reduces
to a unique normal form. We say that an annular strand
diagram has been reduced if it is a normal form for this
rewriting system. Fig. 5 shows the reductions performed
on an annular strand diagram until it is reduced.

• Two annular strand diagrams are said to be isotopic if the
second can be obtained from the first by some continuous
motion in the annulus. The edges of the diagram are not

I II

III

Fig. 4. The three reduction rules for annular strand diagrams. The blue
indicates “empty regions”, i.e. regions which are devoid of vertices and edges,
and do not contain the central hole of the annulus.

Fig. 6. A type II move at the red region splits the connected annular strand
diagram into two connected components.

allowed to cross during this motion, and no edge may
move across the central hole of the annulus.

We now present the solution to the conjugacy problem in F
described by Belk and Matucci [7].

Theorem 1. Let a = a1 · · · am and b = b1 · · · bn be words
representing elements of Thompson’s group F . Let A and B be
the corresponding annular strand diagrams, and let A′ and B′

be reduced annular strand diagrams obtained by reducing A
and B, respectively. Then a and b represent conjugate elements
of F if and only if A′ and B′ are isotopic.

Our algorithm simplifies annular strand diagrams through
the rewrite rules of Fig. 4 in linear time before performing
any check for isotopy of annular strand diagrams.

III. CHECKING FOR ISOTOPY

During the process of reduction, an annular strand diagram
might become disconnected into several components. For
example, Fig. 6 shows an annular strand diagram that splits
into two components after a type II reduction. Keeping track
of the relative positions of these components is one of the
most difficult aspects of our algorithm.

Because every vertex of an annular strand diagram has
at least one outgoing edge, every component must have at
least one directed cycle. Since directed cycles are required
to surround the central hole, it follows that the connected
components of an annular strand diagram are arranged con-
centrically around the central hole of the annulus. We will use
the following concept to keep track of the concentric order of
these components.

Definition 2. Let A be an annular strand diagram. A cutting
path in A is a path from the central hole of the annulus to the
outside circle such that the cutting path crosses an edge only
from left to right with respect to the orientation of the edge
(see Fig. 7).

The following theorem explains the usefulness of cutting
paths.

Theorem 2. Let A1, ..., Am be the connected components of
a reduced annular strand diagram A′ in concentric order, and
let e1, ..., en be the sequence of edges crossed by a cutting path

see

next

line

Fig. 5. Reducing an annular strand diagram to a free loop. The green regions are subject to type I moves, and the red and blue regions are each subject to
type II moves.

for A′. Then e1, ..., en consists of one or more edges from A1

followed by one or more edges from A2 and so forth, ending
with one or more edges from Am.

To prove this theorem, we require the following lemma on
the structure of reduced annular strand diagrams.

Lemma 1. Let A′ be a reduced annular strand diagram. Then
each component of A′ that is not a free loop lies in a closed
annular region bounded by two directed cycles.

Proof: Let Ai be a component of A′ that is not a free
loop, and consider any directed cycle of Ai. If this cycle were
to have both merges and splits, then at some point there would
be a merge followed by a split, which would be subject to a
type II reduction. Since A′ is reduced, it follows that every
directed cycle in Ai consists solely of either merges or splits.
Therefore, all of the edges attached to the outermost directed
cycle of Ai must lie on the inside of the cycle, and all of the
edges attached to the innermost cycle of Ai must lie on the
outside of the cycle, so Ai lies in the annular region between
these two cycles.

Cutting Path

Edge in Annular

Strand Diagram

ALLOWED

Cutting Path

Edge in Annular

Strand Diagram

NOT ALLOWED

Fig. 7. The cutting path crosses each edge in the annular strand diagram
from left to right.

Proof of Theorem 2: Clearly the cutting path must cross
each of the components Ai at least once. Moreover, because
of the edge crossing rules for cutting paths, a cutting path can
cross a directed cycle only one time. Since every component
is either a free loop or is bounded by two directed cycles, the
result follows.

Our algorithm keeps track of a cutting path for the annular
strand diagram of each element, modifying the path as the
annular strand diagram is reduced. After reduction, we use
Theorem 2 to reconstruct the concentric order of the com-
ponents, a necessary step in checking for isotopy. Indeed,
because of the concentric arrangement of the components, we
can check isotopy for each pair of components separately:

Proposition 1. Let A be an annular strand diagram with
components A1, . . . , Am in concentric order, and let B be
an annular strand diagram with components B1, . . . , Bn in
concentric order. Then A and B are isotopic if and only if
m = n and Ai is isotopic to Bi for each i.

We use the following theorem to check isotopy for con-
nected components:

Theorem 3. Let Ai and Bi be connected annular strand
diagrams. Then Ai and Bi are isotopic if and only if there
exists an isomorphism ϕ : Ai → Bi of directed multigraphs
satisfying the following conditions:

1) For every split vertex v in Ai, the isomorphism ϕ maps
the left output of v to the left output of ϕ(v), and the
right output of v to the right output of ϕ(v).

2) For every merge vertex v in Ai, the isomorphism ϕ maps
the left input of v to the left input of ϕ(v), and the right

input of v to the right input of ϕ(v).

Proof: Observe that an isomorphism ϕ satisfies conditions
(1) and (2) if and only if it preserves the counterclockwise
order of the edges incident on each vertex. That is, ϕ satisfies
(1) and (2) if and only if ϕ respects the “rotation systems”
associated to Ai and Bi (see [10]). Therefore, there exists an
isomorphism ϕ satisfying (1) and (2) if and only if Ai and Bi

are isotopic as directed graphs on a sphere.
To relate isotopy on the sphere with isotopy on the annulus,

observe that the region of Ai containing the central hole
is the only region whose boundary is a counterclockwise
directed cycle. Similarly, the region of Ai corresponding to
the outside of the annulus is the only region whose boundary
is a clockwise directed cycle. The same holds true for Bi.
Therefore, given any isotopy from Ai to Bi on the sphere, the
regions containing the central holes must correspond, as must
the outer regions. It follows that Ai and Bi are isotopic on
the sphere if and only if they are isotopic on the annulus.

IV. THE ALGORITHM

In this section, we describe and analyze the algorithm for the
conjugacy problem in F . This algorithm refines the solution
stated in Theorem 1 to achieve the best possible running time.

The steps in the algorithm are summarized in Fig. 8. We
believe that the following key points will make it easier for the
reader to understand the analysis of the algorithm presented
later in this section:

1) The two inputs w1 and w2 are strings in the alphabet
{x0, x1, x−10 , x−11 }.

2) The algorithm keeps track of a cutting path. After the
annular strand diagrams are reduced, their connected
components are labeled in concentric order using the
sequence of edges in this cutting path (see Theorem 2).

3) We reduce the problem of determining whether two
reduced annular strand diagrams are isotopic to the
problem of determining whether two planar graphs are

Fig. 8. Overview of the algorithm for the conjugacy problem in Group F

isomorphic. This is done by applying a one-to-one
encoding on each connected component to convert it
to a connected planar graph. The purpose of this step
is to apply the O(|V |) algorithm proposed by Hopcroft
and Wong [8] for the isomorphism problem in planar
graphs to make our algorithm achieve a linear running
time. Whether w1 and w2 represent conjugate elements
is then decided by using Proposition 1.

Theorem 4. Given two input words w1 and w2 in 〈x0, x1〉
representing two elements of F , the proposed algorithm for
the conjugacy problem decides whether the two elements are
conjugate in O(n), where n = |w1|+ |w2|.

The rest of this section proves this theorem.

A. The Data Structure

Table I shows the data structure for representation and
manipulation of annular strand diagrams.

Below we discuss the data structure, with particular empha-
sis on key fields and methods.

Class: Edge
This class holds edges in annular strand diagrams.
1) The field type is an array of two integers that records

the type to which the edge belongs (see Section IV-D
for a discussion of “type”). In this array, the first integer
denotes the input type and the second integer denotes
the output type for the edge. These integers can be the
following:
• 0 → free loop
• 1 → left input or left output
• 2 → right input or right output

2) The node field denotes the container node in the linked
list representing the cutting path to which the edge
belongs.

3) Given an edge e1 with source vertex s, the
combineEdge() method takes an edge e2 with target
vertex t as input, and then merges the two edges. As
a result, both e1 and e2 are the same edge with source
vertex s, target vertex t, and their type and node fields
are modified if required.

Class: Vertex
The Vertex class represents merges and splits.
The field type denotes the vertex type, which can be either

“merge” or “split”. Using the type field, we can safely decide
which of the four Edge fields are valid for a vertex, as shown
in Table II.

TABLE II
THE EDGE OBJECTS ASSOCIATED WITH CERTAIN VERTEX TYPES.

merge split
leftParentEdge 3 3

rightParentEdge 3 7
leftChildEdge 3 3

rightChildEdge 7 3

TABLE I
THE JAVA MODEL OF THE DATA STRUCTURE USED IN THE ALGORITHM. NOTE THAT ALL THE LINKED LISTS ARE DOUBLY LINKED.

Class Vertex Edge Annular Graph
type: String source: Vertex vertices: LinkedList <Vertices> vertices: List<Vertex>
leftParentEdge: Edge target: Vertex stackReduceSplits: Stack<Vertex> edges: List <Edge>
rightParentEdge: Edge ID: Integer cuttingPath: LinkedList<Edge>
leftChildEdge: Edge type: Integer

Fields rightChildEdge: Edge isFreeLoop: Boolean
ID: Integer node: Node<Edge>
node: Node<Vertex> flagged: Boolean
isPaired: Boolean
correspondent: Vertex
getLeftParent(): Vertex combineEdge(Edge) reduce()

Methods getRightParent(): Vertex makeFreeLoop() getComponents()
getLeftChild(): Vertex encodeToPlanarGraph()
getRightChild(): Vertex

Note that the Vertex data structure keeps track of the
counterclockwise order of the edges (i.e. the rotation system)
since it keeps track of the left and right parents of a merge, and
similarly the left and the right children of a split. Therefore,
by Theorem 3, this data structure is sufficient to keep track of
the isotopy class of the annular strand diagram.

Class: Graph
The Graph data structure is used to hold the planar graphs

that are generated from the components of reduced annular
strand diagram (discussed in Section IV-D). A list of the
vertices and a list of the undirected edges are sufficient to
represent these planar graphs.

Class: Annular
This data structure represents elements of F in annular

strand diagram forms.
1) An Annular object is constructed by going through the

input word from left to right, and creating and gluing
the corresponding building blocks together.

2) The stack stackReduceSplits stores vertices that
may be involved in reduction (discussed in Sec-
tions IV-B and IV-C).

3) The field cuttingPath is a linked list that stores a
sequence of edges in a particular cutting path in the
annular strand diagram.

4) The reduce() method performs all the possible re-
duction moves on an annular strand diagram, thereby
reducing it.

5) The getComponents() method returns a concentric
ordered list of the connected components in the annular
strand diagram. These connected components are also
Annular objects.

6) The method encodeToPlanarGraph() encodes
connected components to planar graphs, which are
Graph objects.

Now we begin a thorough discussion and analysis of the
algorithm for the conjugacy problem.

B. Annular Strand Diagram Generation
Each building block for creating an annular strand diagram

has a constant number of vertices and edges (see Fig. 2).

Therefore, construction of the annular strand diagram corre-
sponding to the input word requires O(n) vertices and edges,
and O(n) gluing of the building blocks, proving that creation
of an annular strand diagram is O(n). Note the following key
points:

1) During the construction of an annular strand diagram, we
put all the splits at the gluing points into a stack called
stackReduceSplits as we know that these splits
mark the regions of all possible reductions that can be
performed on the annular strand diagram at that instant.
To be precise, these regions are exposed to type II
reduction moves. For instance, in Fig. 3, these are the
green splits.

2) The edge that glues the last building block to the first
is added to a doubly linked list called cuttingPath
that represents the cutting path which the algorithm will
dynamically keep track of.

C. Reduce

We now analyze the reduce() method and prove that
it takes O(n) to reduce an annular strand diagram. For our
purposes, it suffices to show that the cutting path update, the
number of reductions, and the number of checks for reductions
collectively take O(n).

Cutting Path Update: Fig. 9 shows the strategy we employ
to update the cutting path. Reductions are performed by first
removing edges and vertices, and then combining edges using
combineEdge(). Each new edge created after a reduction
represents both the edges that were combined to create the
new edge. This means that in the case of a reduction I, we do
not need to worry about updating the cutting path if it crosses
edges e1 or e4 prior to the reduction because the reduction
will update the cutting path accordingly. Similarly, in the case
of a reduction II, we do not need to update the cutting path
if it does not cross e3 prior to the reduction. Hence, the only
cases where the algorithm has to update the cutting path are
the cases shown in Fig. 9. Also recall that the node field
for edges ensures that each edge knows whether it is in the
cutting path. Therefore, it is easy to see that deciding whether
the cutting path needs to be updated during a reduction, and
also updating the cutting path during a reduction both take

I
e1

e2 e3

e4

e1 e4 II
e1 e2

e3

e4 e5

e1

e4

e2

e5

(a) reduction I (b) reduction II

III

(c) reduction III

Fig. 9. Update of the cutting path (colored red) for each reduction move.

O(1). Fig. 10 shows the edges in an annular strand diagram
that the cutting path intersects before and after the annular
strand diagram is reduced.

Number of Reductions: Observe that each type I or type II
move deletes two vertices from an annular strand diagram.
Since the number of vertices in the annular strand diagram
after its creation is O(n), it follows that the number of type I
or type II moves is also O(n). The number of type III moves is
also bounded by O(n) because each of these moves merge two
concentric edges, and there can be at most O(n) concentric
edges in the annular strand diagram.

Number of Checks for Reductions: Observe that a re-
duction can create a new region of reduction nearby. We
perform reductions locally and keep track of all possible
regions in which new reductions may appear as a result of
a local reduction. Notice that both type I or type II moves
happen around a split. We use stackReduceSplits to
store all possible splits that may be involved in these reduction
moves. After any of these reduction moves are performed, we
push onto stackReduceSplits the splits connected to the
newly created edges (for instance, the splits connected to e1
in Fig. 9.(a) after the reduction) because such a split might
be now exposed to a reduction move. In this way we can
check for all possible type I and type II moves. Observe that
these reductions involve a constant number of pushes onto
the stack. Because there are O(n) reductions, there are at
most O(n) pushes onto the stack, and hence O(n) checks
for reduction I and II. We perform the type III moves after all
possible type I and type II moves are performed. The type III
moves are detected by finding all the adjacent free loops in
the cutting path, which involve O(n) checks since the cutting
path can have at most O(n) edges in it. This proves that the
reduce() method takes O(n).

After the annular strand diagrams are reduced, the connected
components are detected in concentric order.

Connected Component Labeling: Recall that the data
structure for edges holds the source and target vertices, and
the data structure for vertices holds the connected edges.
Therefore, given the cutting path for a reduced annular strand
diagram, for each edge that meets the cutting path in order,

we can perform a breadth first search along both directions of
the edge to discover the connected component to which the
edge belongs. Because all the components collectively have a
sum of vertices and edges bounded by O(n), it follows that
all connected components are identified in concentric order in
O(n).

D. Encoding to Planar Graphs

In this section, we explain and analyze the part of the
algorithm which reduces the problem of determining isotopic
annular strand diagrams to the problem of determining iso-
morphic planar graphs.

Theorem 5. Any two connected, reduced annular strand
diagrams A′1 and A′2 can be encoded into two planar graphs
p1 and p2 respectively such that A′1 and A′2 are isotopic if
and only if p1 and p2 are isomorphic.

Sketch of Proof: To prove the theorem above, it suffices
to demonstrate an encoding that is one-to-one. First we will
describe the encoding, and then show that it is one-to-one.

We will now describe the function φ that encodes connected,
reduced annular strand diagrams into planar graphs. First,
notice that there are three possible input types for an edge,
namely the left input or the right input to a merge, or the lone
input to a split (see Fig. 1). Similarly an edge can have three
possible output types. Hence there are nine different input-
output combinations for an edge. In addition, an edge can be
a free loop. Therefore, we have ten different types of edges.
We provide unique encodings of each type of edge, as shown
in Table III that φ will make use of. Note that the type to which
an edge e belongs uniquely identifies the corresponding planar
graph for the edge using the number of edges created between
the vertices u and v2 in the corresponding planar graph (see
Table III).

Let φ : X → G be a function that maps the set of connected,
reduced annular strand diagrams X to the set of planar graphs
G. Assume that E = {e1, e2, ...en} is the edge set of A′ ∈ X .
To obtain pA′ = φ(A′), follow the steps below:

1) Create a null graph pA′ .
2) Copy all the vertices from A′ to pA′ .
3) For each edge e ∈ E, identify its edge type in Table III,

and perform the appropriate encoding of e.
The function φ uniquely encodes its input annular strand

diagram to a planar graph. Moreover, this process is one-to-
one. Indeed if two (reduced) annular strand diagrams encode
the same planar graph via φ, then it is easy to recover
the original vertices and determine the left and right inputs
of corresponding merges, and the left and right outputs of
corresponding splits. This means that both annular strand
diagrams have the same rotation systems. Theorem 3 asserts
that they must be isotopic.

Analysis of the Encoding Algorithm: Recall that all the
connected components together have a total of O(n) vertices
and edges. Because the encoding creates a constant number
of vertices and edges for each edge in E, it follows that φ
creates a planar graph with O(n) vertices and edges.

1

ec

2

1 1

2
3

(a) (b) (c)

Fig. 10. Status of a cutting path (a) after closing a strand diagram (crosses edge ec), (b) after performing a type II reduction, and (c) after the annular strand
diagram is reduced. The numbers denote the order in which the cutting path crosses the edges of the annular strand diagram.

E. Determining Isotopy

To check whether two reduced annular strand diagrams
are isotopic, we use Proposition 1 and Theorem 5. In other
words, all corresponding planar graphs from both annular
strand diagrams are compared to determine whether they are
isomorphic using the O(V) algorithm for the isomorphism
problem in planar graphs proposed by Hopcroft and Wong [8],
where V is the number of vertices in the input. Note that their
algorithm accepts planar graphs with loops and multiple edges
between vertices. Because the total number of vertices from
our planar graph encodings are collectively bounded by O(n),
it follows that all the checks for isomorphism between planar
graphs take O(n).

This concludes the proof of Theorem 4, confirming that the
algorithm for the conjugacy problem is linear in the input size.
A Java-style pseudocode version of the algorithm is shown in
Algorithm 1.

F. Implementation

To the best of our knowledge, the linear time algorithm for
the isomorphism problem in planar graphs proposed in [8]
has not been implemented yet. This is due to the complicated
design of the algorithm. Moreover, the authors of [8] stated
that this algorithm is not practical. As a result, we have not
attempted an implementation of this algorithm, and instead
programmed a direct isotopy search as a substitute for the
following steps:

1) planar graph encoding of each component in the two
annular strand diagrams, and

2) checking for isomorphism between all corresponding
pairs of planar graph encodings.

Our implementation, called ConjugacyF, is a brute force im-
plementation of Theorem 3. In particular, it substitutes the two
steps above with a method that checks the rotation systems of
the two reduced annular strand diagrams to determine whether
the graphs are isotopic. This involves fixing a reference vertex
vr in one of the reduced annular strand diagrams A′1, and
then for each vertex vc in the other reduced annular strand
diagram A′2 as a possible correspondent of vr, a breadth first
expansion is performed in both A′1 and A′2 along the edges
connected to each of vr and vc in counterclockwise order. If
any of these expansions produces the same graphs, then A′1

Input: String w1, String w2

Output: Whether w1 and w2 represent conjugate
elements

1 for w in {w1, w2} do
2 Annular asd = new Annular(w)
3 asd.reduce()
4 List<Annular> components =

asd.getComponents(asd.cuttingPath)
5 Pw = new List<Graph>()
6 for c in components do
7 Pw.add(c.encodeToPlanarGraph())
8 end
9 end

10 if Pw1
.size() 6= Pw2

.size() then
11 return false
12 for i = 0→ Pw1 .size()− 1 do
13 Graph p1 = Pw1.get(i)
14 Graph p2 = Pw2

.get(i)
15 if !(isIsomorphic(p1, p2)) then

// the linear method from [8]
16 return false
17

18 end
19 return true

Algorithm 1: Algorithm for the conjugacy problem in F .

and A′2 represent conjugate elements. In the worst case (when
the graphs are not isotopic), this algorithm performs two linear
time expansions for each vertex vc in A′2. Hence ConjugacyF
is O(n2).

We made ConjugacyF publicly available on [11] as a web
application in the form of a Java applet and an executable
JAR file (compiled on Windows 7). These applications allow
users to check whether two elements of F are conjugate, to
sort a list of elements into conjugacy classes, and to compute
the reduced annular strand diagram for any element. We also
shared the Java source code for ConjugacyF on [11].

TABLE III
DIFFERENT TYPES OF EDGES IN THE ANNULAR STRAND DIAGRAM, AND

THEIR ENCODINGS TO PLANAR GRAPHS

free loop

v

v1

v2

out,
in v1 uw v2

v1

v2out,
left in

v1 uw v2

v1

v2
out,

right in
v1 uw v2

v1

v2

left out,
in

v1 uw v2

v1

v2

left out,
left in

v1 uw v2

v1

v2
left out,
right in

v1 uw v2

v1

v2

right out,
in

v1 uw v2

v1

v2

right out,
left in

v1 uw v2

v1

v2

right out,
right in

v1 uw v2

V. CONCLUSION AND FUTURE WORK

We presented a linear time reduction of the conjugacy
problem in Thompson’s Group F to the isomorphism problem
of planar graphs using directed graphs called annular strand
diagrams, along with data structures for efficient storage and
manipulation of the associated mathematical objects. Given a
linear time algorithm for the isomorphism problem of planar
graphs [8], this leads to a linear time algorithm for the
conjugacy problem in F . Moreover, the conjugacy problem
in F requires linear time, so such an algorithm represents the
best runtime generally speaking.

Due to the impractical nature of the linear algorithm for the
isomorphism problem in planar graphs [8], we implemented
a quadratic solution that directly determines whether two
reduced annular strand diagrams are isotopic, and we made
the software publicly available. This is the first public software
implementation of an algorithm for the conjugacy problem in
F . It is our hope that our software will be useful to the research
community in Thompson’s Groups.

For future work, we believe that it would not be too hard to
modify our software to create algorithms for the conjugacy
problems in the other two Thompson’s Groups, namely V
and T . The cutting path used in the algorithm for F is
representative of the cutting class [7] used in solving the
conjugacy problem in V . However, the algorithm for V is not
expected to be linear because checking whether two cutting
paths represent the same cutting class might require Gaussian
elimination [12], which is worse than linear.

REFERENCES

[1] P. S. Novikov, “Unsolvability of the conjugacy problem in the theory of
groups.(Russian),” Izv. Akad. Nauk SSSR. Ser. Mat, vol. 18, pp. 485–524,
1954.

[2] K. Madlener and J. Avenhaus, “String matching and algorithmic prob-
lems in free groups.” Revista colombiana de matematicas, vol. 14, pp.
1–16, 1980.

[3] F. A. Garside, “The braid group and other groups,” The Quarterly
Journal of Mathematics, vol. 20, no. 1, pp. 235–254, 1969.

[4] J. W. Canon, W. J. Floyd, and W. R. Parry, “Introductory notes on
Richard Thompson’s groups,” Enseignement Mathématique, vol. 42, pp.
215–256, 1996.

[5] V. Guba and M. V. Sapir, Diagram groups. AMS Bookstore, 1997,
vol. 620.

[6] V. S. Guba and M. V. Sapir, “On subgroups of R. Thompson’s group
F and other diagram groups,” Sbornik: Mathematics, vol. 190, no. 8, p.
1077, 1999.

[7] J. Belk and F. Matucci, “Conjugacy and dynamics in Thompson’s
groups,” Geometriae Dedicata, pp. 1–23, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s10711-013-9853-2

[8] J. E. Hopcroft and J.-K. Wong, “Linear time algorithm for isomorphism
of planar graphs (preliminary report),” in Proceedings of the sixth annual
ACM symposium on Theory of computing. ACM, 1974, pp. 172–184.

[9] I. Short and N. Gill, “Conjugacy in Thompson’s group F,” Proceedings
of the American Mathematical Society, vol. 141, pp. 1529–1538, 2013.

[10] J. L. Gross and S. R. Alpert, “The topological theory of current graphs,”
Journal of Combinatorial Theory, Series B, vol. 17, no. 3, pp. 218–233,
1974.

[11] N. T. Hossain. (2013, May) Algorithm for the conjugacy problem in
Thompson’s group F. Accessed: 30 June 2013. [Online]. Available:
http://www.asclab.org/asc/nhossain/conjugacyF

[12] J. Edmonds, “Systems of distinct representatives and linear algebra,” J.
Res. Nat. Bur. Standards, Sect. B, vol. 71, no. 4, pp. 241–245, 1967.

