
ar
X

iv
:1

30
4.

76
54

v1
 [

cs
.D

C
]

 2
9

A
pr

 2
01

3

Optimised hybrid parallelisation of a CFD code on Many
Core architectures

Adrian Jackson
EPCC

The University of Edinburgh
Mayfield Road

Edinburgh
EH9 3JZ, UK

Adrian.Jackson@ed.ac.uk

M. Sergio Campobasso
Department of Engineering

Lancaster University
Engineering Building

Bailrigg
Lancaster LA1 4YR, UK

m.s.campobasso@lancaster.ac.uk

ABSTRACT
Reliable aerodynamic and aeroelastic design of wind tur-
bines, aircraft wings and turbomachinery blades increasingly
relies on the use of high-fidelity Navier-Stokes Computa-
tional Fluid Dynamics codes to predict the strongly non-
linear periodic flows associated with structural vibrations
and periodically varying farfield boundary conditions. On a
single computer core, the harmonic balance solution of the
Navier-Stokes equations has been shown to significantly re-
duce the analysis runtime with respect to the conventional
time-domain approach. The problem size of realistic simula-
tions, however, requires high-performance computing. The
Computational Fluid Dynamics COSA code features a novel
harmonic balance Navier-Stokes solver which has been pre-
viously parallelised using both a pure MPI implementation
and a hybrid MPI/OpenMP implementation. This paper
presents the recently completed optimisation of both paral-
lelisations. The achieved performance improvements of both
parallelisations highlight the effectiveness of the adopted
parallel optimisation strategies. Moreover, a comparative
analysis of the optimal performance of these two architec-
tures in terms of runtime and power consumption using some
of the current common HPC architectures highlights the re-
duction of both aspects achievable by using the hybrid par-
allelisation with emerging many-core architectures.

Keywords
CFD, Harmonic Balance, Navier Stokes, Parallel, Hybrid,
MPI, OpenMP, Power Efficiency

1. INTRODUCTION
Reliable aerodynamic and aeroelastic design of wind turbine
and rotorcraft blades, aircraft wings and turbomachinery
blades increasingly relies on the use of high-fidelity Navier-
Stokes (NS) Computational Fluid Dynamics (CFD) codes
to predict the strongly nonlinear periodic flows associated
with structural vibrations and periodically varying farfield

boundary conditions. Many examples of using NS codes for
such simulations have been published [16, 15]. These simu-
lations have high computational costs even when parallel or
high performance computing is adopted. This is particularly
true for unsteady time-domain (TD) three-dimensional (3D)
NS equations, which can require many months of computa-
tional time on a single computer. The use of a frequency-
domain (FD) technique can dramatically reduce the required
runtime for simulation of unsteady periodic flows with re-
spect to that of TD solvers. On a single computer core,
the FD harmonic balance (HB) solution of the NS equations
has been shown to reduce at least by an order of magni-
tude the analysis runtime with respect to the conventional
time-domain approach[5, 14]. The problem size of realistic
periodic flow problems, however, is such that, despite the
above discussed reduction, the HB NS analysis still requires
high-performance computing.

Computational hardware has been rapidly evolving over re-
cent years, particularly with the advent of multi-core proces-
sors and many-core hardware. Clusters of shared-memory
servers have been common for high-end computational re-
sources but the advent of multi- and many- core proces-
sors is bringing significant shared-memory computational
resources at the node level for these clusters. Distributed
memory parallelisations (based on the message passing li-
brary MPI [7]) have been the primary method for parallelis-
ing scientific codes, such as the one considered in this paper,
for the past fifteen years; primarily due to the availability of
large distributed memory systems and the prohibitive cost
of large shared memory systems. Shared memory paralleli-
sations, generally undertaken using the OpenMP [6] shared
memory library, have been restricted to a number of spe-
cialised high performance computer (HPC) systems or to
very small numbers of processors.

The CFD structured multi-block COSA code features a novel
HB NS solver which has been previously parallelised using
both a pure MPI implementation and a hybridMPI/OpenMP
implementation[8, 9]. This paper presents the recently com-
pleted optimisation of both parallelisations aiming to opti-
mise performance and thereby reduce time to solution, or
improve computational efficiency, for a given simulation.

An increasing number of research programmes aimed at de-
veloping efficient hybrid parallelisation technologies are un-

http://arxiv.org/abs/1304.7654v1

der way. The OP2 library[13] provides users with func-
tionality to implement CFD applications using unstructured
meshes on a range of different computational hardware, in-
cluding multi-core and many-core (particularly GPGPU) sys-
tems. OP2 undertakes the parallelisation and distribution
of work and data for users, however it is not directly ap-
plicable to structured multi-block codes. Multi-block struc-
tured codes do not require mesh partitioning software to
run a simulation; they rather require a user to create the
mesh partitioning separately to the simulation. Beside the
OP2 project, a number of large scale CFD packages have re-
cently investigated hybrid parallelisations, adding OpenMP
to the existing MPI parallel functionality, including Open-
FOAM[10] where both a task based parallelism and a stan-
dard data parallel (parallelisation of loops using OpenMP)
have been added and been shown to improve performance.
Fluidity[18], along with other Algebraic Multigrid[2] solver
based CFD packages, has added OpenMP to parallelise the
intensive task of constructing the matrix of equations to
be solved, often coupled with a hybrid solver library such
as PETSc[17]. There has also been a strong move towards
porting CFD codes to GPGPU architectures with a number
of commercial code, such as ANSYS’s Fluent[1] application,
being ported to a range of GPGPU hardware.

Mixed-mode, or hybrid, parallelisation of scientific simula-
tion code have been undertaken across a wide range of sci-
entific disciplines, from gyrokinetic codes for plasma sim-
ulations[12], to molecular dynamics packages[3], and finite
element simulations of electrical systems[4]. In general, all
these efforts have provided performance improvements over
the standard MPI or OpenMP parallelisations previously
implemented in these applications when using shared mem-
ory clusters, although careful optimisation work is required
to ensure performance improvements are realised.

The work presented in this paper builds on previous paral-
lelisation work of the COSA HB NS solver [9, 8], and has
been undertaken to 1) improve the efficiency of the MPI
parallelisation through rationalisation of the messages sent
between processes and optimisations of the MPI-I/O utilisa-
tions, and 2) improve the hybrid parallelisation performance
by extending the amount of functionality covered by the
OpenMP implementation, and re-engineering the OpenMP
code to reduce overheads and improve performance.

The harmonic formulation of the HB NS equations and the
main structural features of the COSA code are summarised
in the next two Sections. We then describe the optimisations
undertaken to the MPI and hybrid parallelisations in the
following two sections, and finally discuss the benchmarking
undertaken on a range of the worlds largest HPC resources,
and draw some conclusions, in the final sections of the paper.

The OpenMP parallelisation can work for all three solvers,
with different parallelisations available over the blocks in
the multi-block grids, over the harmonics for the HB solver,
and over the grid points for those problems that use low
numbers of blocks or harmonics (for instance a single block,
TD, simulation). However, the OpenMP code is limited to
the size of shared-memory machine available.

The MPI parallelisation distributes the blocks of the multi-

block grid over the available MPI processes to distribute the
work of the simulation. Communication is required between
the blocks where data on the edge of blocks (called cuts in
COSA) needs to be communicated to neighbouring blocks
(halo communications). The maximum number of processes
that the MPI parallelisation can use is limited by the number
of geometric partitions (grid blocks) in the simulation.

The hybrid parallelisation combines the MPI code with ei-
ther the harmonic OpenMP parallelisation or the grid point
OpenMP parallelisation, depending on the simulation being
performed.

2. OPTIMISATIONS
Of the three different parallelisations of COSA the MPI ver-
sion is the one currently used for production simulations.
In general the efficiency of the original MPI implementa-
tion is acceptable, for example with test case 1 (described
in Section 3) experiencing around 50% efficiency when run
on 512 cores (compared to running on a single core on a
Cray XE6), or around 70% efficiency if considering the per-
formance without writing any data to file at the end of the
simulation1.

The hybrid parallelisation was implemented to enable fur-
ther reduction in time to solution for a given problem be-
yond what could be achieved by using the pure MPI code
by enabling the usage of more computational resources (by
scaling beyond the number of blocks in the simulation). The
MPI code is limited in the number of processing elements,
or cores, it can use by the number of blocks in the simu-
lation. For instance, for test case 1 and 2 that we used to
benchmark COSA for this paper the MPI code is limited to
512 and 2048 cores respectively. The hybrid code can enable
further resource to be used, provided the HPC machine that
the code is being run on is a shared memory cluster (as is
generally true of modern HPC machines), by underpopulat-
ing each node with MPI processes and enabling each MPI
process to create a number of OpenMP threads to utilise the
cores left free of MPI processes. If a machine is composed
of 32-core nodes, such as the Cray XE6 described in Sec-
tion 3, then we can, for example, place 4 MPI processes on
to each node, let them each create 8 OpenMP threads, and
we can utilise 128 nodes for a simulation with 512 blocks as
compared to 16 nodes for the MPI code.

However, the existing hybrid code does not provide opti-
mal performance, and therefore resource usage. For test
case 1 we can reduce the runtime of the simulation by four
times when using eight times the amount of resources as the
MPI code can utilise. Therefore, both the MPI and hybrid
parallelisations were optimised to improve performance and
thereby reduce the time to solution required to solve a given
simulation on a given amount of computational resources,
as outlined in the following subsections.

2.1 MPI Optimisations
The initial focus of our optimisation work was on the MPI
communications in COSA. The current code utilises non-

1This is when using a small number of simulation iterations,
100. Normal simulations would run with thousands of iter-
ations

blocking MPI communications, but for a large simulation
there can be as many as 5,000 messages sent between pairs of
communicating processes at each Runge-Kutta step to com-
municate halo or cut data to neighbouring processes. This
is because the original implementation sends small parts of
the boundary data to neighbouring processes at a time, with
an example of this shown in the following pseudo code:

do i = 0,boundary length

if(myblock1 .and. myblock2) then

do n = 0, 2*nharms

do ipde = 1, npde

copy 1st part of q2 to q1

copy 2nd part of q2 to q1

end do

end do

else if(myblock1) then

receive 1st part of q1 from remote process

receive 2nd part of q1 from remote process

else if(myblock2) then

send 1st part of q2 to remote process

send 2nd part of q2 to remote process

end if

end do

Note that in the above pseudo code we can see that the MPI
communications have already been partially optimised, as
they don’t send a message for each element of the n and
ipde loops, they aggregate the data to be sent or received
into an array and then send that array, as shown in the
following code (which implements one of the send steps in
the pseudo code above):

datasize = npde*((2*nharms)+1)

tempindex = 1

do n = 0, 2*nharms

do ipde = 1, npde

sendarray(tempindex,localsendnum) =

& q2(in1,jn1,ipde,n)

tempindex = tempindex + 1

end do

end do

call sendblockdata(sendarray(1,localsendnum),iblk1,

& iblk2,datasize,sendrequests(localsendnum))

However, as the send and receive functionality is within a
loop, and for that loop the send and receive processes do
not change (the same sender and receiver are involved in all
the communications for a given invocation of the loop) it is
possible to reduce all these send and receives down to one
send and one receive by further aggregating the data into a
single send array and using a single receive array.

We performed a similar optimisation for the collective com-
munications used in the code, where the original collective
functionality was of the following form:

do i=1,nbody

temparray(1) = cl(n,i)

temparray(2) = cd(n,i)

datalength = 2

if(functag.eq.3) then

temparray(3) = cm(n,i)

datalength = 3

end if

call realsumallreduce(temparray,datalength)

cl(n,i) = temparray(1)

cd(n,i) = temparray(2)

if(functag.eq.3) then

cm(n,i) = temparray(3)

end if

end do

As well as a collective operation being undertaken for each
iterations of the nbody loop this functionality is also called
from within a loop over harmonics (which sets the variable
n in the above code), enabling us to rationalise the num-
ber of collective operations undertaken from nbody ∗ ((2 ∗

nharms) + 1) to 1 for each Runge-Kutta step in the sim-
ulation by collecting all the data to be sent into a single
buffer, performing one collective all reduce, and unpacking
the results at the end of the communication, as shown next:

j = 1

do k = 0,2*nharms

do i=1,nbody

temparray(j) = cl(k,i)

j = j +1

temparray(j) = cd(k,i)

j = j + 1

temparray(j) = cm(k,i)

j = j + 1

end do

end do

call realsumallreduce(temparray,j-1)

j = 1

do k = 0,2*nharms

do i=1,nbody

cl(k,i) = temparray(j)

j = j +1

cd(k,i) = temparray(j)

j = j + 1

cm(k,i) = temparray(j)

j = j + 1

end do

end do

As with the previous communication aggregation we have
performed this at the expense of extra memory requirements
for the routine, however these are not significantly large so
do not adversely impact the overall memory footprint of the
code, even for high nbody and harmonic sizes.

Finally, it was also evident from profiling that the MPI
I/O functionality in COSA was consuming large amounts of
runtime, especially as larger simulations were undertaken.
COSA produces a number of different output files, but for
optimisation there are two types of file that are important,
as they are the largest and require the most time to write;
the flowtec files and the restart file. COSA produces a single
restart file at the end of the simulation (or more frequently

if requested by the user) which can be used to restart the
simulation from the point the restart file was written. It also
produces one flowtec file per real harmonic at the end of the
simulation. The flowtec files contain the solution in a format
suitable for use with the commercial CFD postprocessor and
flow visualisation software TECPLOT.

When large simulations are executed the output can be ex-
tremely large, with the restart file being many gigabytes
(GB) in size and each flowtec file being close to a GB in size.
The current code does use parallel I/O functionality, calling
MPI I/O routines to perform the output from all processes
at once. However, the I/O is performed, as shown in the
example below, through individual writes of data elements
to the file one at a time:

call setupfile(fid(n),disp,MPI_INTEGER)

call mpi_file_write(fid(n), 4*doublesize,1,

& MPI_INTEGER,MPI_STATUS_IGNORE,ierr)

disp = disp + integersize

call setupfile(fid(n),disp,MPI_DOUBLE_PRECISION)

call mpi_file_write(fid(n),x(i,j,n),1,

& MPI_DOUBLE_PRECISION,MPI_STATUS_IGNORE, ierr)

disp = disp + doublesize

call setupfile(fid(n),disp,MPI_DOUBLE_PRECISION)

call mpi_file_write(fid(n),y(i,j,n),1,

& MPI_DOUBLE_PRECISION, MPI_STATUS_IGNORE, ierr)

disp = disp + doublesize

call setupfile(fid(n),disp,MPI_DOUBLE_PRECISION)

call mpi_file_write(fid(n),rho,1,

& MPI_DOUBLE_PRECISION, MPI_STATUS_IGNORE, ierr)

disp = disp + doublesize

call setupfile(fid(n),disp,MPI_DOUBLE_PRECISION)

call mpi_file_write(fid(n),ux,1,

& MPI_DOUBLE_PRECISION, MPI_STATUS_IGNORE, ierr)

disp = disp + doublesize

call setupfile(fid(n),disp,MPI_INTEGER)

call mpi_file_write(fid(n), 4*doublesize,1,

& MPI_INTEGER,MPI_STATUS_IGNORE,ierr)

Where the setupfile subroutine invokes the MPI_FILE_SEEK
function. This use of MPI I/O is not optimal; generally MPI
I/O gives the best performance when large amounts of data
are written in a single call to the file. However, the way the
data is structured in COSA, and the format of the output
files, currently prohibits doing this.

It is important to the developers and users of COSA that
the output files of the serial and parallel version of the code
are the same therefore in the scope of this work it was not
possible to change the way it currently writes the data. How-
ever, we optimised the current functionality, aggregating the
data to be written into arrays and then writing that data all
at once. An example of this optimisation of the I/O code
outlined above is provided below:

call setupfile(fid(n),disp,MPI_INTEGER)

call mpi_file_write(fid(n), 4*doublesize,1,

& MPI_INTEGER,MPI_STATUS_IGNORE,ierr)

disp = disp + integersize

tempdata(tempindex) = x(i,j,n)

tempindex = tempindex + 1

tempdata(tempindex) = y(i,j,n)

tempindex = tempindex + 1

tempdata(tempindex) = rho

tempindex = tempindex + 1

tempdata(tempindex) = ux

tempindex = tempindex + 1

call setupfile(fid(n),disp,MPI_DOUBLE_PRECISION)

call mpi_file_write(fid(n),tempdata(1),tempindex-1,

& MPI_DOUBLE_PRECISION, MPI_STATUS_IGNORE, ierr)

disp = disp + doublesize*(tempindex-1)

call setupfile(fid(n),disp,MPI_INTEGER)

call mpi_file_write(fid(n), 4*(tempindex-1),1,

& MPI_INTEGER,MPI_STATUS_IGNORE,ierr)

2.2 Hybrid Optimisations
Using profiling information from COSA we worked to op-
timise the OpenMP functionality by focussing on the core
routines that are heavily used for these types of simulations.
This necessitated removing OpenMP functionality from ar-
eas of code that were not heavily used, and therefore remov-
ing the OpenMP overheads for those sections of the code,
and re-implementing some of the existing OpenMP func-
tionality, including replacing some heavily used small shared
arrays with private variables and reduction operations.

Furthermore, the loops in the code that compute over the
harmonics of the simulation are contained within subrou-
tines which are called for each block in the simulation, and
in each subroutine there can be a number of separate loops
over harmonics. Simply parallelising each harmonic loop
with an OpenMP parallel do directive meant that there were
a lot of places that OpenMP parallel regions are started and
finished in the code. There is an overhead associated with
starting and finishing a parallel region in OpenMP, there-
fore we re-engineered the OpenMP code we had added to
reduce these overheads by hoisted OpenMP parallel regions
to higher levels in the program (where appropriate).

We also implemented first touch initialisation functionality
to ensure that data is initialised on the cores that will be
processing it. The original code zeros all the data arrays
when they are allocated, and the allocation is done by the
MPI process. We have altered the zeroing of the arrays so it
is done in parallel, following the parallelisation pattern that
is used in the rest of the code.

Finally, there were also a number of parts of the code that
had not been parallelised with OpenMP, primarily the I/O
and MPI message passing code. The MPI communications
are performed over a loop of the cut, or halo, data. Each
cut is independent so they can be performed by separate
threads. However, as they involve MPI communications
then we need to ensure that we are using the threaded ver-
sion of the MPI library using the function MPI_INIT_THREAD

rather than the usual MPI_INIT function. Furthermore, we
need to ensure that the MPI library being used can support
individual OpenMP threads performing MPI communica-
tions (MPI_THREAD_MULTIPLE).

The MPI communication code within COSA also implicitly
depends on the order that the messages are send and re-
ceived to match data with its correct location on the re-

ceiving process. Each cut is processed in order and the
individual sections of the cut are sent sequentially. There-
fore, simply parallelising this process using OpenMP will not
guarantee that data is placed in the correct arrays once it is
received. To address this issue we added extra functionality
to calculate where the data for each part of the cut should
be placed in the send and receive arrays for each processes
communications, and combined this with a unique identifier
in the MPI tag for each message, to enable threads to send
and receive the MPI messages as required and ensure that
they place the received data in the correct places in the data
arrays.

The I/O undertaken through the MPI code used MPI I/O
functionality. In general the I/O operations are indepen-
dent for each block and each harmonic within the block.
However, there are a number of collective operations (op-
erations that all processes must be involved in) in the I/O
functionality, particularly opening and closing files. To en-
able the OpenMP threads to be able to write to the restart
and flowtec files independently we needed to ensure that all
the threads are involved in the opening of the files so they
each have a separate file handle to write. Therefore, we
implemented a hybrid file opening and closing strategy as
follows:

!$OMP DO ORDERED

do i=1,omp_get_num_threads()

!$OMP ORDERED

call openfile(fid,’restart’,iomode)

!$OMP END ORDERED

end do

!$OMP END DO

Where openfile calls MPI_FILE_OPEN. The only other modi-
fication that need to be made to enable file writing from the
OpenMP threads was to ensure that they could correctly
calculate where the data for each harmonic need to be writ-
ten to (rather than each block as was the case previously).

3. EXPERIMENTAL SETUP
We evaluated the performance of the MPI and hybrid par-
allelisations of COSA, and the optimisations we have under-
taken, using a range of common large scale HPC platforms
and a range of representative test cases.

3.1 Test cases
Two different simulations were used to evaluate the perfor-
mance of COSA, outlined in the following sections.

3.1.1 Test case 1
This first test case is a HB analysis of a heaving and pitch-
ing wing designed to extract energy from an oncoming air
stream. The 512-block grid has 262,144 cells, and 31 real
harmonics are used. This HB analysis has the same mem-
ory requirements of a steady flow analysis with more than
8 million cells. Further details on the aerodynamics of this
device and the analysis of its efficiency based on COSA time-
domain simulations are reported in the articles [1,3].

3.1.2 Test case 2
The other test case is a HB flow analysis of the blade sec-
tion at 90% span of a multi-megawatt horizontal axis wind
turbine operating in yawed wind. The analysis has been
performed using a fine grid with 2048 blocks, and 4,194,304
cells. In the simulations we have used 17 real harmonics.
Further details on the time-domain and HB COSA analyses
of this problem are reported in[2].

3.2 Computing Resources
We used three different large scale HPC machines to bench-
mark performance. The first was a Cray XE 6, HECToR,
which is the UK National Supercomputing Service consists
of 2816 nodes, each containing two 16-core 2.3 GHz Inter-
lagos AMD Opteron processors per node, giving a total of
32 cores per node, with 1 GB of memory per core. This
configuration provides a machine with 90,112 cores in total,
90TB of main memory, and a peak performance of over 800
TFlop/s. We used the PGI FORTRAN compile on HEC-
ToR, compiled with the -fastsse optimisation flag.

The seconds was a Bullx B510, called HELIOS, that is
based on Intel Xeon processors. A node contains 2 Intel
Xeon E5-2680 2.7 GHz processors giving 16-cores and 64
GB memory. HELIOS is composed of 4410 nodes, providing
a total of 70,560 cores and a peak performance of over 1.2
PFlop/s. The network is built using Infiniband QDR non-
blocking technology and is arranged using a fat-tree topol-
ogy. We used the Intel FORTRAN compiler on HELIOS,
compiling with the -O2 optimisation flag.

The final resource was aBlueGene/Q, JUQUEEN at Forsch-
ungszentrum Juelich, which is and IBM BlueGene/Q system
based on the IBM POWER architecture. There are 28 racks
composed of 28,672 nodes giving a total of 458,752 compute
cores and a peak performance of 5.9 PFlop/s. Each node
has an IBM PowerPC A2 processor running at 1.6 GHz and
containing 16 SMT cores, each capable of running 4 threads,
and 16 GB of SDRAM-DDR3 memory. IBM’s FORTRAN
compile, xlf90, was used on JUQUEEN, compiling using the
-qhot -O3 -qarch=qp -qtune=qp optimisation flags.

Further technical details of these systems are provided in Ta-
ble 3.2. The power listed in the table is the nominal power
per node calculated using the reported power consumed dur-
ing the LINPACK benchmark for the Top5002 list entries
divided by the number of nodes in the system.

4. PERFORMANCE RESULTS
We evaluated the effect of our performance optimisation on
COSA on the different systems using a range of MPI pro-
cess counts per shared memory node on each system, and
also comparing the best performing MPI benchmarks with
the hybrid code using four OpenMP threads for every MPI
process used. We also used different iteration counts for the

2http://www.top500.org
3The HECToR Top500 entry does not include power data
so the Cray XE6 power figure is calculated using the data
from the Gaea C2 entry in the list which is a comparable
Cray XE6
4The network latency and bandwidth figures have been cal-
culated used the mpbench benchmark which is part of the
llcbench benchmark suite[11]

Table 1: Details of the computer hardware used for
the benchmarking

BlueGene/Q Cray
XE6

Bullx
B510

Processor IBM Pow-
erPC A2

AMD
Opteron
6276

Intel
Xeon
E5-2680

Processor Frequency
(GHz)

1.6 2.3 2.7

Processor Cores 16 16 8
Processors per Node 1 2 2
Number of Cores 458,752 90,112 70,560
Memory per node (GB) 16 32 64
Peak performance per node
(GFlop/s)

204.8 294.4 345.6

Power (Watt) 80 4003 498
Network latency4 (µs) 1.4 1.2 0.6
Network bandwidth per
node (GB/s)

3.4 5.6 3.0

test cases to enable evaluation of the performance across a
full range of node counts (for the small number of iterations)
and for a more realistic usage scenario on a reduced num-
ber of nodes (using a large number of iterations). Ideally the
code would have benchmarked using a large number of itera-
tions for all node counts, however the restrictions on the job
queues on the systems we were using meant that the longest
job we could run was 12 hours which limited the number
of iterations that could be completed within this limit on a
single node for the slowest system used.

There are two performance metrics we are evaluating for
this code, overall time to solution and cost. The user is
generally looking to obtain results as quickly as possible,
but may also be interested in getting results as efficiently as
possible so they can utilise the HPC resource they have in
the more efficient way. Because each of the systems we are
using for the benchmarking uses different processor, mem-
ory, network, and disk technology it is difficult to directly
compare the performance based purely on runtime between
the systems. Therefore, we are evaluating relative perfor-
mance (and therefore cost) using the estimated electrical
power required for an iteration of the simulations on each
system.

4.1 MPI Results
Figure 1a presents the runtime of the optimised MPI code
on all three systems, using 100 iteration of test case 1, for
fully populated and under populated nodes. The Cray XE6
has 32 cores per node, meaning a full populated node has 32
MPI processes per node. The Bullx B510 has 16 MPI pro-
cesses per node when fully populated. The BG/Q is slightly
different as it has 16 hardware cores per node, but each core
can run 4 separate threads very efficiently (which means each
core can run 4 MPI processes), therefore a fully populated
BG/Q node can have either 64 or 16 MPI processes depend-
ing on how a user wishes to utilise the hardware. The dotted
lines on the graph represent the ideal runtimes for their cor-
responding case based on the single node runtime figure.

We can compare the performance of the different machines
using the graph in Figure 1a. We can see that, in terms of
time to solution, the Bullx B510 gives the best performance.

Table 2: Node scaling efficiency of the parallelisa-
tions

Architecture Code Iterations Efficiency

BlueGene/Q MPI 100 103%
Hybrid 100 74%
Hybrid 1000 89%

Cray XE6 MPI 100 76%
Hybrid 100 76%
MPI 1000 117%

Hybrid 1000 82%
Bullx B510 MPI 100 101%

Hybrid 100 50%
MPI 1000 131%

Hybrid 1000 70%

It is significantly faster than the Cray XE6, even when using
the same number of nodes (for instance 16 nodes on each
system) which involves using double the number of cores on
the Cray compared to the Bull machine. We can also see
that underpopulating nodes on the Cray and Bull does not
improve performance, with underpopulated nodes requiring
twice the number of nodes to achieve the same performance
as the fully populated case.

The scaling of the code is better on the Bull (with the excep-
tion of the transition from 1 to 2 nodes) than on the Cray,
and the scaling is also good on a node basis on the BG/Q
system. Underpopulating nodes on the BG/Q does signifi-
cantly improve performance, reducing the time to solution
for the simulation at the cost of extra resources. However,
we can see that when the BG/Q nodes are fully populated
(i.e. using 64 MPI processes per node) we get better re-
source usage compared to the underpopulated case. If we
compare the 64 MPI processes per node case with the 16
MPI processes per node results we can see that the same
time to solution is achieved using 8 nodes (when fully pop-
ulating) compared to 16 nodes (when underpopulating by a
factor of 4). The downside of fully populating BG/Q nodes
is that it is not always possible to run a given simulation
on a set of fully populated nodes. For instance, it was only
possible to run test case 1 on 4 or 8 nodes, few nodes and
there was not enough memory to execute the simulations.
The memory effect experienced is likely due the memory
consumption associated with the MPI library rather than
the COSA application itself.

We also ran the same simulation with a large number of iter-
ations to evaluate the efficiency of the main computational
part of the code (increasing the iterations reduces the impact
of the initial and final I/O functionality on the overall run-
time). Figure 2a presents the time to solution for the same
testcase with 1000 iterations. Now we can see the overall
runtime scaling has improved, with all three architectures
exhibiting better than ideal scaling (on a node level scal-
ing). For 1000 iterations it was only possible to run on the
BG/Q with 64 processes per node on the maximum number
of nodes for that test cases (8 nodes) as any fewer nodes re-
quired longer runtime than the queuing system would allow
on that particular machine. However, we can see that the 8
node runtime for fully populated BG/Q has approximately
the same runtime as 16 nodes of under-populated BG/Q.

(a) MPI Parallelisation (b) Hybrid Parallelisation

Figure 1: Runtime of test case 1 using 100 iterations

(a) MPI Parallelisation (b) Hybrid Parallelisation

Figure 2: Runtime of test case 1 using 1000 iterations

We also present the efficiency of the node scaling of the code
on the different machines in Table 2. The efficiency of the
MPI code is calculated using the following equation:

EMn =

TMs

TMn

n

s

(1)

Where EMn is the efficiency of the MPI code at n nodes,
TMs is the runtime on s (the smallest number of nodes
used for the benchmark), and TMn is the runtime on n

nodes. Note that on the BG/Q we could only run the 1000
iteration version of test case 1 on 8 nodes so we cannot
calculate the scaling of this test case. We are using the
most efficient configurations of these systems for this table
(64 MPI processes per node on BG/Q, 32 MPI processes
per node on Cray XE6, 16 MPI processes per node on Bullx
B510).

We can see that, especially when using a larger number of
iterations, we achieve excellent node scaling efficiency with
the optimised COSA MPI code.

4.2 Hybrid Results
The hybrid code was run using the same test cases and
the performance compared with the MPI code. Figure 1b
presents the runtime for the hybrid code using a range of
nodes. The dotted lines on this plot are the best MPI run-
time from the respective systems (64 MPI processes per node
for the BG/Q; 32 and 16 processes per node for the Cray and
Bull machines respectively). It is evident from this graph
that the hybrid code can provide improved time to solution
over the MPI code for all the architectures. On the BG/Q
the hybrid code exhibits similar performance to the MPI
code for the comparable node counts, and reduces the run-
time by around 3 times when 4 times the number of nodes
is used. For the Cray and Bull machines the hybrid code
has significantly lower performance than the MPI code for
comparable node counts, but still reduces time to solution
compared to the MPI code when more resources are used
(3.26 times faster for the Cray and 2.11 times fast for the
Bull when using 4 times the resources).

As with the MPI benchmarking we have evaluated the per-
formance using 1000 iterations instead of 100 iterations, as
shown in Figure 2b. As with the MPI evaluation, increasing

the iterations has improved the overall scaling of the hybrid
code, bring the results closer to those of the pure MPI code
(shown as the dotted lines the graph).

We have also evaluated the efficiency of the Hybrid code is
calculated using the following equation:

EHn =

TMn

THm

m

n

(2)

Where EHn is the efficiency of the hybrid code at m nodes,
TMn is the runtime of the best MPI code on n (the max-
imum nodes it can use for test case 1), and THm is the
runtime of the hybrid code on m nodes (the maximum num-
ber of nodes the hybrid code can exploit using 4 OpenMP
threads per MPI process using test case 1).

As shown in Table 2 we can see the hybrid code does not
show as good performance as the MPI code, but is still giv-
ing acceptable performance for the Cray and BG/Q architec-
tures considering that we are using four times the resources
as the MPI code, and therefore we are reducing the amount
of work for each thread to undertake by a factor of 4.

4.3 Resource Efficiency
As previously discussed, to enable us to evaluate the perfor-
mance of COSA across a range of resources we are looking
at the notional power consumption of the code when run-
ning a simulation. To perform this analysis we are using the
power figures presented in Table 3.2, which as previously ex-
plained is the amount of power reported consumed by each
node during LINPACK benchmarking. We have used this
figure, along with the runtime of the simulation, to calcu-
late the power consumed per iteration of the simulation, as
shown in equation 3:

Pi =
Tt

3600
∗ Pn

ni
(3)

Where Pi is the power consumed per iteration in Watt hours,
Tt is the total runtime of the simulation in seconds, Pn is
the notional power per node figure, and ni is the number of
iterations undertaken.

Figure 3a displays the relative power usage of the simulation
on the three systems. We can see that the BG/Q has the
best power performance for the simulations we have under-
taken, requiring less power to complete the simulation for
all the configurations of fully populated or underpopulated
nodes when compared to the other two systems. It is also
evident that fully populating the nodes makes much more
efficient use of the resources, albeit for an increased time to
solutions.

We should note that these are estimated power figures, not
recorded power usage, so the actual power consumed may
vary when under populating nodes, which may mean the
figures for the BG/Q 16 and 32 MPI processes per node are
not accurate.

The Bull machine shows generally fixed power efficiency re-
gardless of the number of nodes used (disregarding the 2
node results), which highlights the MPI code is scaling well
across nodes on this machine, whereas the power consumed
by the Cray increases as we increase the number of nodes,
highlighting sub-optimal scaling of the code in this instance.
We can also observe that the Cray requires less power than
the Bull machine for small numbers of nodes, and indeed is
close to the performance of the underpopulated BG/Q us-
ing only one node (even though the Cray completes the 1
node run nearly 5 times faster than the BG/Q), but as we
scale the number of nodes the efficiency of the code on the
Cray gets progressively worse, becoming less efficient than
the Bull machine when going from 4 to 8 nodes.

When considering the power efficiency of the hybrid code,
shown in Figure 3b (where the dotted lines are the power
per iteration of the most efficient MPI runs for compari-
son), we can see that for the Cray and Bull machines the
hybrid code generally has considerably lower efficiency than
the pure MPI code, with the hybrid code on the Cray now
showing similar or better efficiency when compared to the
hybrid code on the Bull, although the hybrid code on the
Cray has similar efficiency compared to the pure MPI code
when using 8 and 16 nodes, whereas on the Bull machine the
efficiency is always much worse than the pure MPI code.

On the BG/Q the picture is different. Here the efficiency
of the hybrid code still does not beat that of the pure MPI
code, however it is much closer, and if compared to the un-
derpopulated BG/Q MPI result (where 16 MPI processes
are used per node) it is considerably better. Given that the
hybrid code on BG/Q enables a user to exploit as many
nodes as the underpopulated approach takes (4 times the
number of nodes that the fully populated MPI code can use
for this code) at an efficiency that is close to that of the fully
populated case we can see that the hybrid code is extremely
beneficial on the BG/Q.

If we consider the efficiency of the code using 1000 itera-
tions for the same test case we can see a further improved
picture, as we so with the runtime scaling of the code in
the previous section. We can now see that the efficiency of
the Cray has much improved, no longer increasing with as
the nodes increase. A similar effect is also exhibited by the
Bull and IBM machines, and it is also evident that the in-
creased iterations have reduced the gap between the power
consumption of the hybrid implementation on the Bull and
Cray with that of the MPI implementation. We can also
see that the performance of the hybrid code on the BG/Q
is also much improved. The hybrid implementation uses
approximately the same power as the fully populated MPI
code despite scaling out to 4 times the node and reducing
the runtime by around 3.5 times.

4.4 Large Benchmark
We have also evaluated the optimisations using test case
2 on the different computing resources we have access to.
Test case 2 can utilise 2048 MPI processes using the pure
MPI code, but only has half the real harmonics that test
case 1 had so we are only utilising 2 OpenMP threads for
the hybrid case, meaning we can use up to 4096 cores for
the hybrid case. When we evaluate the optimised codes

(a) MPI Parallelisation (b) Hybrid Parallelisation

Figure 3: Power usage of test case 1 using 100 iterations

(a) MPI Parallelisation (b) Hybrid Parallelisation

Figure 4: Power usage of test case 1 using 1000 iterations

using this test case we get a scaling efficiency of around 80%
efficiency on the Cray and more than 90% efficiency on the
Bull (we could only run one test on the BG/Q as lower node
counts would not run for the fully populated configuration).
The BG/Q required between 4 and 5 times less energy per
iteration than the other two machines.

The hybrid version of this code exhibited around 80% effi-
ciency when using 2 OpenMP threads per process for the
machines used in this evaluation.

5. CONCLUSIONS
Through the optimisation we have undertaken on the par-
allelisations of COSA we are able to ensure that the code
scales with excellent efficiency as the number of nodes are
increased for the MPI parallelisation, with around or ex-
ceeding 100% efficiency across a range of systems providing
a realistic number iterations are used in the simulation. It
should be noted that this performance is including the full
functionality of the code, including input and output of data.

We have demonstrated that on hardware which is designed
for explicit multi-threading, such as the BG/Q, the hybrid

code gives excellent performance when scaling beyond the
number of nodes that the MPI code can used, enabling users
to efficiently reduce the time to solution at almost ideal effi-
ciency. When comparing to more traditional hardware, such
as used in the AMD based Cray or the Intel based Bull ma-
chines the hybrid code does not provide as good efficiency
when scaling the number of nodes. However, it should be
noted that the hybrid code is, but it’s nature, going to be
most efficient when using more resources than the pure MPI
code. This is because the hybrid code undertakes paralleli-
sation of the harmonics of each block in the simulation. If an
MPI process has more than one block then it will encounter
OpenMP overheads for each block it processes, whereas if
the MPI code is maximally parallelised (i.e. 1 block per
MPI process) then these overheads are minimised. If we ex-
amine the performance of the hybrid code in that scenario
we can see that we are achieving between 70% and 90% ef-
ficiency, enabling time to solution to be significantly reduce
for a minimal reduction in efficiency.

We have also observed the the BG/Q architecture gives sig-
nificantly better power to iteration performance than the
other two systems, albeit for a longer overall time to solu-

tion. However, the low memory per thread on the BG/Q
(256 MB per thread when using 64 threads per node) is
a significant barrier to memory applications utilising such
a system, but we have shown that a hybrid approach can
alleviate this problem by enabling all the resources on the
node to be used by a code without having to have 64 MPI
processes per node (with all the associated fixed memory
requirements those MPI processes have).

We have further work to undertake to understand the per-
formance difference between the Cray and Bull systems, par-
ticularly why the Bull system exhibits poorer hybrid perfor-
mance than the rest. However, a preliminary hypothesis is
that the higher performance of the individual nodes means
that the test cases we are using are not sufficiently com-
putationally demanding on the Bull system to warrant the
hybrid parallelisations. It is also possible that the ratio of
MPI processes to OpenMP threads was not optimal for this
system. Furthermore, we have not investigated the thread
assignment behaviour of any of these systems, simply using
what is provided by default through the batch systems (as-
signing the requisite MPI processes per node and OpenMP
threads per process) so it is possible that non-optimal thread
and process binding in affecting performance.

6. ACKNOWLEDGMENTS
This work was supported by Dr M. Sergio Campobasso at
Lancaster University.

Part of this work was funded under the HECToR Distributed
Computational Science and Engineering (CSE) Service op-
erated by NAG Ltd. HECToR – A Research Councils UK
High End Computing Service – is the UK’s national super-
computing service, managed by EPSRC on behalf of the
participating Research Councils. Its mission is to support
capability science and engineering in UK academia. The
HECToR supercomputers are managed by UoE HPCx Ltd
and the CSE Support Service is provided by NAG Ltd.
http://www.hector.ac.uk

Part of this work was supported by NAIS(the Centre for Nu-
merical Algorithms and Intelligent Software) which is funded
by EPSRC grant EP/G036136/1 and the Scottish Funding
Council.

7. REFERENCES
[1] http://developer.download.nvidia.com/GTC/PDF/

GTC2012/PresentationPDF/RobertStrzodka_

Accelerated_ANSYS_Fluent_SC12.pdf.

[2] A. Baker, M. Schulz, and U. Yang. On the
performance of an algebraic multigrid solver on
multicore clusters. In J. M. M. Palma, M. Dayde,
O. Marques, and J. C. Lopes, editors, High
Performance Computing for Computational Science -
VECPAR 2010, volume 6449 of Lecture Notes in
Computer Science, pages 102–115. Springer Berlin
Heidelberg, 2011.

[3] I. Bethune. Improving the performance of cp2k on the
cray xt. In Cray User Group 2010 (CUG2010), 2010.

[4] S. Boehmer, T. Cramer, M. Hafner, E. Lange,
C. Bischof, and K. Hameyer. Numerical simulation of
electrical machines by means of a hybrid

parallelisation using mpi and openmp for
finite-element method. Science, Measurement
Technology, IET, 6(5):339–343, 2012.

[5] M. S. Campobasso and M. H. Baba-Ahmadi. Analysis
of Unsteady Flows Past Horizontal Axis Wind Turbine
Airfoils Based on Harmonic Balance Compressible
Navier-Stokes Equations With Low-Speed
Preconditioning, pages 729–745. ASME International,
2011.

[6] M. Forum. Openmp architecture review board.
openmp fortran application program interface, version
1.1. available from: http://www.openmp.org.

[7] M. Forum. MPI: A message-passing interface standard.
available at: http://www.mpi-forum.org.

[8] A. Jackson and M. S. Campobasso. Shared-memory,
distributed-memory, and mixed-mode parallelisation
of a cfd simulation code. Computer Science - R&D,
26(3-4):187–195, 2011.

[9] A. Jackson, M. S. Campobasso, and M. H.
Baba-Ahmadi. On the Parallelization of a Harmonic
Balance Compressible Navier-Stokes Solver for Wind
Turbine Aerodynamics, pages 747–761. ASME
International, 2011.

[10] Y. Liu. Hybrid parallel computation of openfoam
solver on multi-core cluster systems.

[11] llcbench. http://icl.cs.utk.edu/projects/llcbench/.

[12] K. Madduri, K. Z. Ibrahim, S. Williams, E.-J. Im,
S. Ethier, J. Shalf, and L. Oliker. Gyrokinetic toroidal
simulations on leading multi- and manycore hpc
systems. In Proceedings of 2011 International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’11, pages
23:1–23:12, New York, NY, USA, 2011. ACM.

[13] G. R. Mudalige, M. B. Giles, I. Reguly, C. Bertolli,
and P. H. J. Kelly. Op2: An active library framework
for solving unstructured mesh-based applications on
multi-core and many-core architectures ?.

[14] A. D. Ronch, M. Ghoreyshi, K. Badcock, S. Goertz,
M. Widhalm, R. Dwight, and M. Campobasso. Linear
frequency domain and harmonic balance predictions of
dynamic deritvates. In 28th AIAA Applied
Aerodynamics Conference, 2010.

[15] R. Steijl and G. Barakos. Sliding mesh algorithm for
cfd analysis of helicopter rotor-fuselage aerodynamics.
International Journal for Numerical Methods in
Fluids, 58(5):527–549, 2008.

[16] M. Vahdati, A. I. Sayma, M. Imregun, and
G. Simpson. Multibladerow forced response modeling
in axial-flow core compressors. Journal of
Turbomachinery, 129(2):412, 2007.

[17] M. Weiland, L. Mitchell, G. Gorman, S. Kramer,
M. Parsons, and J. Southern. Mixed-mode
implementation of petsc for scalable linear algebra on
multi-core processors. CoRR, pages –1–1, 2012.

[18] M. A. A. S. Xiaohu Guo, G. Gorman. Developing
hybrid openmp/mpi parallelism for fluidity-icom -
next generation geophysical fluid modelling
technology. In Cray User Group 2012: Greengineering
the Future (CUG2012), 2012.

http://www.hector.ac.uk
http://developer.download.nvidia.com/GTC/PDF/GTC2012/PresentationPDF/RobertStrzodka_Accelerated_ANSYS_Fluent_SC12.pdf
http://developer.download.nvidia.com/GTC/PDF/GTC2012/PresentationPDF/RobertStrzodka_Accelerated_ANSYS_Fluent_SC12.pdf
http://developer.download.nvidia.com/GTC/PDF/GTC2012/PresentationPDF/RobertStrzodka_Accelerated_ANSYS_Fluent_SC12.pdf
http://icl.cs.utk.edu/projects/llcbench/

	1 Introduction
	2 Optimisations
	2.1 MPI Optimisations
	2.2 Hybrid Optimisations

	3 Experimental Setup
	3.1 Test cases
	3.1.1 Test case 1
	3.1.2 Test case 2

	3.2 Computing Resources

	4 Performance Results
	4.1 MPI Results
	4.2 Hybrid Results
	4.3 Resource Efficiency
	4.4 Large Benchmark

	5 Conclusions
	6 Acknowledgments
	7 References

