
Using cylindrical algebraic decomposition and local
Fourier analysis to study numerical methods: two

examples
Stefan Takacs

Faculty for Mathematics,
Research Group Numerical Mathematics (Partial Differential Equations),

TU Chemnitz, Germany
Email: stefan.takacs@numa.uni-linz.ac.at

Abstract—Local Fourier analysis is a strong and well-
established tool for analyzing the convergence of numerical
methods for partial differential equations. The key idea of local
Fourier analysis is to represent the occurring functions in terms
of a Fourier series and to use this representation to study
certain properties of the particular numerical method, like the
convergence rate or an error estimate.

In the process of applying a local Fourier analysis, it is
typically necessary to determine the supremum of a more or less
complicated term with respect to all frequencies and, potentially,
other variables. The problem of computing such a supremum
can be rewritten as a quantifier elimination problem, which can
be solved with cylindrical algebraic decomposition, a well-known
tool from symbolic computation.

The combination of local Fourier analysis and cylindrical
algebraic decomposition is a machinery that can be applied to a
wide class of problems. In the present paper, we will discuss two
examples. The first example is to compute the convergence rate
of a multigrid method. As second example we will see that the
machinery can also be used to do something rather different: We
will compare approximation error estimates for different kinds
of discretizations.

Index Terms—Multigrid; Fourier analysis; Cylindrical alge-
braic decomposition

I. INTRODUCTION

In this paper, we want to give some examples where the
combination of cylindrical algebraic decomposition (CAD),
as a tool from symbolic computation, and local Fourier
analysis (LFA) yield helpful results. LFA was introduced by
A. Brandt, who proposed to use Fourier series to analyze
multigrid methods, cf. [1]. For a detailed introduction into
LFA, see, e.g., [10]. LFA provides a framework to determine
sharp bounds for the convergence rates of multigrid methods
and other iterative solvers for problems arising from partial
differential equations. This is different to classical analysis,
which typically yields qualitative statements only. So classical
convergence proofs for multigrid solvers, cf. [5], show that
the method is convergent and that the convergence rates are
uniformly bounded away from 1 for all grid sizes, however
there is no sharp, nor realistic bound for the convergence rate
given. Besides the analysis of linear solvers, the idea of LFA
can be carried over to other applications, like the computation

of approximation error estimates or the computation of inverse
inequalities.

LFA can be justified rigorously only in special cases, e.g., on
rectangular domains with uniform grids and periodic boundary
conditions. However, results obtained with LFA can be carried
over to more general cases, see, e.g. [2]. In cases, where such a
extension is not possible, it can be seen as heuristic approach.

To compute the quantities of interest using LFA, typically
one has to compute the supremum of a more or less com-
plicated term. The key for involving symbolic algorithms is a
proper reformulation of the problem of computing a supremum
as a quantifier elimination problem, which can be solved using
a CAD algorithm, cf. [4]. Understanding the combination of
LFA and CAD as a machinery for analyzing a numerical
method, we apply this machinery in the present paper to two
examples, keeping in mind that there are more.

The first example is related to the classical idea of analyzing
multigrid solvers. In Sec. II, we will introduce a classical finite
element framework for the Laplace equation and analyze a
standard Jacobi iteration for solving the discretized system.
There, we will introduce the reader to the finite element
method to keep the paper readable also for non-numerical
analysts. In Sec. III, we will extend the analysis to be able
to learn about convergence properties of a multigrid solver.
The given example is rather simple (and could be solved also
without use of CAD, just per hand). However, we refer to other
examples, where the terms get much more complicated, which
make symbolic tools more interesting, cf., e.g., [7] and [8].

The second example, which will be discussed in Sec. IV, is
a new result. It is given to show that the machinery of LFA can
also be extended to analysis beyond analyzing the convergence
of a multigrid solver. We will see that the method can also be
used to develop approximation error estimates. Moreover, we
will see that LFA can capture any kind of discretization. To
keep it simple, we will stay in the one dimensional case, so
the terms, that have to be resolved using CAD, are rather easy.
We will provide supplementary material that covers also the
extension to two dimensions. There, one can see that in this
case the terms get much more complicated.

This list of examples is not complete. So, CAD has already

ar
X

iv
:1

50
2.

03
92

6v
1

 [
m

at
h.

N
A

]
 1

3
Fe

b
20

15

been applied earlier in the analysis of (systems of) ordinary
and partial differential-difference equations, [6], where the
necessary conditions for stability, asymptotic stability and
well-posedness of the given systems were transformed into
statements on polynomial inequalities using Fourier or Laplace
transforms.

II. FINITE ELEMENT METHOD AND A SIMPLE ITERATION
SCHEME

We start our analysis with a simple example, the Laplace
equation. For a given function f , we are interested in finding
a function u such that

− u′′(x) = f(x) (1)

is satisfied for all x ∈ Ω := (0, 1) and, moreover, the boundary
condition u(0) = u(1) = 0 holds.

The standard way of solving this, is to introduce a varia-
tional formulation. Let H1(Ω) be the standard Sobolev space
of weakly differentiable functions and H1

0 (Ω) ⊂ H1(Ω) be
the space of functions that moreover satisfy the boundary
condition u(0) = u(1) = 0. Then, the strong formulation (1)
can be rewritten in weak formulation as follows: Find u ∈
V := H1

0 (Ω) such that∫
Ω

u′(x)v′(x)dx =

∫
Ω

f(x)v(x)dx (2)

for all v ∈ V , cf. standard literature on finite elements, like [3].
For any finite dimensional subset Vk ⊂ V , we can introduce

a discretized problem: Find uk ∈ Vk such that∫
Ω

u′k(x)v′k(x)dx =

∫
Ω

f(x)vk(x)dx (3)

for all vk ∈ Vk. The approach to use the same space, Vk,
for both, uk and vk, is called the Galerkin principle. This
guarantees that uk is the orthogonal projection of the exact
solution u ∈ V into Vk.

The easiest way to set up the space Vk is to choose the
Courant element: Here the domain Ω is subdivided into inter-
vals (in one dimension) or into triangles (in two dimensions).
We call these intervals or triangles elements. The space Vk
consists of all globally continuous functions that are linear on
each element.

Each function in Vk can be characterized just by prescribing
its values on the end points of the intervals or at the vertices
of the triangles, respectively – we call these points nodes. This
fact can be used to construct a basis: The nodal basis of Vk
is the collection of all functions ϕk,i ∈ Vk that take the value
1 on exactly one of the nodes and the value 0 on all of the
other nodes. One such basis function is visualized in Fig. 1.

Having this basis, we can represent the functions uk and vk
in terms of the basis:

uk(x) =

N∑
i=1

uk,iϕk,i(x), vk(x) =

N∑
i=1

uk,iϕk,i(x),

where the functions uk and vk can be represented by the
coefficient vectors uk := (uk,i)

N
i=1 and vk := (vk,i)

N
i=1.

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 1. Basis functions of standard Courant element

The variational equality (3) can be rewritten in matrix-vector
notation as follows:

vTkKkuk = vTk fk, (4)

for all vk ∈ RN , where Kk := (
∫

Ω
ϕ′k,j(x)ϕ′k,i(x)dx)Ni,j=1

and f
k

:= (
∫

Ω
fk(x)ϕk,i(x)dx)Ni=1. As (4) is supposed to be

satisfied for all vk, it can be rewritten as follows: Find uk such
that

Kkuk = f
k
. (5)

To obtain a good approximation, it is often necessary to refine
the intervals (or triangles) used for the discretization of the
partial differential equation. In this case both, the number of
unknowns and the condition number of the matrix Kk, grow.
However, Kk has a nice property: it symmetric and positive
definite.

A simple linear iteration scheme to solve a matrix-vector
problem (5) for Kk being symmetric and positive definite,
is the (damped) Jacobi iteration. Assuming u

(0)
k to be some

starting value, the iteration procedure is given by

u
(m+1)
k := u

(m)
k + τ(diagKk)−1(f

k
−Kku

(m)
k),

where τ > 0 is a given damping parameter. For τ = 1, we
obtain the standard Jacobi iteration.

As a next step, we are interesting in analyzing the con-
vergence of the Jacobi iteration scheme. So, using the exact
solution u∗k := K−1

k f
k
, we obtain

u
(m+1)
k − u∗k = (I − τ(diagKk)−1Kk)(u

(m)
k − u∗k)

and further

‖u(m+1)
k −u∗k‖Kk

≤ ‖I−τ(diagKk)−1Kk‖Kk
‖u(m)

k −u∗k‖Kk
,

where Sk := I−τ(diagKk)−1Kk is called the iteration matrix
and ‖ · ‖Kk

is the vector norm ‖vk‖Kk
:= (vTkKkvk)1/2 or

the associated matrix norm. We have

‖Sk‖Kk
= ‖K1/2

k (I − τ(diagKk)−1Kk)K
−1/2
k ‖,

where ‖ · ‖ is the standard Euclidean norm. As K1/2
k (I −

τ(diagKk)−1Kk)K
−1/2
k is symmetric, obtain further

‖Sk‖Kk
= ρ(K

1/2
k (I − τ(diagKk)−1Kk)K

−1/2
k) = ρ(Sk),

where ρ(·) is the spectral radius.
To determine the spectral radius, we use LFA: We compute

the spectral radius of Sk explicitly for a special case. We
assume to have

• an infinitely large domain Ω (this neglects all influence
coming from the boundary of the domain),

which is
• discretized using an uniform (equidistant) grid.

For simplicity, here, we restrict ourselves to the one dimen-
sional case. However, LFA can also be worked out for two or
more dimensions, cf. [10].

For such an equidistant grid, we can compute the stiffness
matrix Kk explicitly:

Kk =
1

hk



. . .
. . .

. . . 2 −1
−1 2 −1

−1 2 −1
−1 2 . . .

. . .
. . .

 ,

where hk is the grid size (length of the intervals).
As next step, we define for any frequency θ ∈ [0, 2π)d a

vector of complex exponentials

φ
k
(θ) := (φk,j(θ))j∈Z := (ejθi)j∈Z

and observe that

Kkφk(θ) =
1

hk
(−e−θi + 2− eθi)︸ ︷︷ ︸

K̂k(θ):=

φ
k
(θ) (6)

is satisfied, i.e., that φ
k
(θ) is an eigenvector of Kk. In the

LFA world, the eigenvalue K̂k(θ) is also called the symbol of
Kk.

Based on the symbol of Kk, we can determine the sym-
bol (eigenvalue) of the iteration matrix Sk. First note that
diagKk = 2

hk
I and therefore d̂iagKk(θ) = 2

hk
. So, we obtain

Ŝk(θ) = 1− τ hk
2
K̂k(θ)

= 1− τ

2
(−e−θi + 2− eθi) = 1− τ(1− cos θ). (7)

As we have mentioned above, we are interested in ρ(Sk). This
spectral radius can be expressed using the symbol:

q(τ) := ρ(Sk) = sup
θ∈[0,2π)

|Ŝk(θ)| = sup
θ∈[0,2π)

|1− τ(1− cos θ)|.

By substituting the variable θ by c := cos θ, we can completely
eliminate the occurrence of trigonometric functions and obtain

q(τ) := sup
−1≤c≤1

|1− τ(1− c)|.

By definition, the supremum is smallest upper bound, i.e., the
smallest λ such that

∀−1≤c≤1 − λ ≤ 1− τ(1− c) ≤ λ. (8)

To determine the smallest λ satisfying (8), we have to elim-
inate the quantifiers, i.e. to solve a quantifier elimination
problem.

A quantifier elimination problem is the problem to find
a quantifier free formula that is equivalent to a quantified
formula:

0.5 1.0

0.5

1.0

1.5

Fig. 2. Reduction of the high frequency modes as function of τ

Quantified formula:

(Q1)x1
. . . (Qn)xn

A(x1, . . . , xn, y1 . . . , ym),

where Qi ∈ {∃,∀} and A is a finite boolean
combination of polynomial inequalities

⇔

Quantifier free formula: B(y1 . . . , ym),

where B is a finite boolean combination of poly-
nomial inequalities.

The solution of such a problem is possible using CAD, cf. [4],
[9]. By applying a CAD algorithm to (8), we obtain

(τ ≤ 0 ∧ λ ≥ 1− 2τ) ∨ (0 < τ ≤ 1 ∧ λ ≥ 1)

∨ (τ > 1 ∧ λ ≥ −1 + 2τ) (9)

Here, the smallest λ satisfying (9) is piecewise given by the
terms 1− 2τ , 1 and −1 + 2τ . So, we obtain

q(τ) =

 1− 2τ for τ ≤ 0
1 for 0 < τ ≤ 1
−1 + 2τ for 1 < τ.

We observe that there is no choice of τ such that q(τ) < 1.
This reflects knowledge on the Jacobi iteration (which is also
true for other simple linear iteration schemes): the convergence
is not robust in the grid size hk, so the convergence rate
cannot be bounded away from 1. (Although, we did not have
an explicite dependence on the grid size hk, the fact that
we have considered an unbounded domain Ω is equivalent
to considering an infinitely small gird size.)

It is known by intuition that simple linear iteration schemes
reduce high frequency error modes. This statement can be
formally expressed using LFA: Here, we only consider θ ∈
[0, π/2) ∪ [3π/2, π) or, equivalently, 0 ≤ c ≤ 1. In this case,
we obtain using the same arguments as above

qSM (τ) = sup
0≤c≤1

|1− τ(1− c)|

Again, we can compute using CAD (or still per hand) that

qSM (τ) =

 1− 2τ for τ ≤ 0
1− τ for 0 < τ ≤ 2

3
−1 + 2τ for 2

3 < τ.

This function is visualized in Fig. 2. We see that qSM takes
its minimal value 1

3 for τ = 2
3 .

III. ANALYSIS OF A MULTIGRID SOLVER

In the last section, we have seen that the Jacobi iteration re-
duces the high frequency error modes. The idea of a multigrid
method is to use the fact that low frequency error modes can
be resolved well also on a coarse grid. So, we combine the
Jacobi iteration (or any other simple linear iteration scheme)
with a coarse grid correction, which reduces the low frequency
error modes.

We assume to have for k = 1, 2, 3, . . . a hierarchy of grid
levels, where a grid level k is obtained from grid level k −
1 by uniform refinement, i.e., in the case of one dimension:
by subdividing each interval into two equally sized intervals.
Starting from an iterate x(m)

k , the next iterate x(m+1)
k of the

multigrid method on grid level k is given by the following
three steps:
• Pre-Smoothing: Compute

u
(m,1)
k := u

(m)
k + τ(diag Kk)−1

(
f
k
−Kk u

(m)
k

)
.

• Coarse-grid correction:
– Compute the defect f

k
−Kk u

(m,1)
k and restrict it to

grid level k − 1:

r
(m)
k−1 := PTk−1

(
f
k
−Kk u

(m,1)
k

)
.

– Solve the following coarse-grid problem approxima-
tively:

Kk−1 p
(m)
k−1

= r
(m)
k−1. (10)

– Prolongate p(m)
k−1 to the grid level k and add the result

to the previous iterate:

u
(m,2)
k := u

(m,1)
k + Pk−1 p

(m)
k−1

.

• Post-Smoothing: Compute

u
(m+1)
k := u

(m,2)
k + τ(diag Kk)−1

(
f
k
−Kk u

(m,2)
k

)
.

As we have nested spaces, i.e., Vk−1 ⊆ Vk, there is canonical
embedding from Vk−1 into Vk, which is chosen as prolonga-
tion operator Pk−1.

If the problem (10) is solved exactly, we obtain the two-
grid method. In practice, the problem (10) is approximatively
solved by applying one step (V-cycle) or two steps (W-cycle)
of the multigrid method, recursively. Only on the coarsest grid
level, (10) is solved exactly.

For computing the convergence rate of the multigrid solver,
we set up again the iteration matrix Gk, which is the product
of the iteration matrix Sk of the damped Jacobi iteration, of
the iteration matrix Ck of the coarse-grid correction and, once
more, of the iteration matrix Sk of the damped Jacobi iteration:

Gk = SkCkSk,

where
Ck = I − Pk−1K

−1
k−1P

T
k−1Kk

ϕk -1 (x2 i-2)

(ϕk -1 (x2 i-2)+ϕk (x2 i))/2

ϕk -1 (x2 i)

(ϕk -1 (x2 i)+ϕk -1 (x2 i+2))/2

ϕk -1 (x2 i+1)

=:ϕk (x2 i-2)

=:ϕk (x2 i-1)

=:ϕk (x2 i)

=:ϕk (x2 i +1)

=:ϕk (x2 i+1)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fig. 3. Canonical embedding of Vk−1 into Vk

and, as in the last section,

Sk = I − τ(diag Kk)−1Kk.

As in the last section, we are interested in computing

q(τ) = ‖Gk‖Kk
= ρ(Gk).

To be able to determine the symbol of the iteration matrix
Gk, we have to take a closer look onto the prolongation opera-
tor Pk−1 first. We recall that there is an isomorphism between
RN , the space of coefficient vectors, and the function space
Vk. So, for each coefficient vector φ

k
(θ) = (φk,j(θ))j∈Z, there

is a function φk(θ, ·) ∈ Vk, which is assigned to it:

φk(θ, x) =
∑
j∈Z

φk,j(θ)ϕk,j(x).

By definition, Pk−1 is the canonical embedding operator,
which is visualized in Fig. 3.

The next step is to represent the function φk−1(2θ, x) as a
linear combination of functions on the fine grid. We observe,
that this can be done using the ansatz

φk−1(2θ, x) = Aφk(θ, x) +Bφk(θ + π, x).

It is sufficient to consider the nodes xj = jhk only. First
we consider the even nodes x2j , which are also nodes of the
coarse grid:

φk−1(2θ, x2j) = Aφk(θ, x2j) +Bφk(θ + π, x2j). (11)

As the (ϕk,i)i∈Z, form a nodal basis, (11) is equivalent to

φk−1,j(2θ) = Aφk,2j(θ) +Bφk,2j(θ + π),

ej2θi = Ae2jθi +Be2j(θ+π)i

and, finally,
1 = A+B.

Now, we consider the odd nodes x2j+1, which do not occur
on the coarse grid:

φk−1(2θ, x2j+1) = Aφk(θ, x2j+1)+Bφk(θ+π, x2j+1). (12)

As the (ϕk,i)i∈Z, form a nodal basis, (12) is equivalent to

1

2
(φk−1,j(2θ) + φk−1,j+1(2θ))

= Aφk,2j+1(θ) +Bφk,2j+1(θ + π)

-1.0

-0.5

0.5

1.0

Fig. 4. Coarse-grid function φk−1(2θ, x) in black and the two components
1
2
(1 + cos(θ))φk(θ, x) and 1

2
(1− cos(θ))φk(θ + π, x) in gray.

and
1

2

(
ej2θi + e2(j+1)θi

)
= Ae(2j+1)θi +Be(2j+1)(θ+π)i

and, finally,
1

2

(
e−θi + eθi)︸ ︷︷ ︸
cos(θ)=

= A−B.

We obtain A = 1
2 (1 + cos(θ)) and B = 1

2 (1− cos(θ)), which
can be observed also in Fig. 4. This allows to introduce the
symbol of the prolongation operator:

P̂k−1(θ) =
1

2

(
1 + cos(θ)
1− cos(θ)

)
.

Here, the symbol cannot be understood as eigenvalue any-
more. However, for all θ = [0, 2π), the prolongation operator
Pk−1 maps the linear span, spanned by

φ
k−1

(2θ) (13)

to the linear span, spanned by

φ
k
(θ) and φ

k
(θ + π), (14)

and the restriction operator PTk−1 maps the linear span,
spanned by (14), to the linear span, spanned by (13).

Having this, we can set up the symbol for the two-grid
operator Gk. We make use of the fact that the multiplication
of Gk with a vector in the linear span, given by the basis (14),
maps into the same linear span. So, we have to set up the
symbol of Gk with respect to the two dimensional basis (14).

The symbol of Sk has been a scalar in the last section. This
means that every frequency was preserved by the action of Sk.
If we represent the symbol of Sk with respect to the basis (14),
we just obtain a diagonal symbol:

Ŝk(θ) =

(
Ŝk(θ)

Ŝk(θ + π)

)
,

where Ŝk(θ) is as defined in (7). Exactly the same way, we
obtain the symbol K̂k(θ) based on K̂k(θ), given in (6). Using
this, we can determine the symbol of Ck,

Ĉk(θ) = I − P̂k−1(θ)[K̂k−1(θ)]−1P̂k−1(θ)∗K̂k(θ),

where A∗ is the conjugate complex of AT . Consequently, the
symbol of Gk is

Ĝk(θ) = Ŝk(θ)Ĉk(θ)Ŝk(θ).

0.5 1.0

0.5

1.0

1.5

Fig. 5. Convergence rate of the multigrid solver as a function of τ

Here, the computation of Ĝk(θ) and of ρ(Ĝk(θ)) is straight-
forward. We obtain:

ρ(Ĝk(θ)) = |(τ − 1)2 + τ(3τ − 2) cos2(θ)|.

As in the last section, we are again interested in computing
the supremum

q(τ) = ρ(Gk) = sup
θ∈[0,2π)

|(τ − 1)2 + τ(3τ − 2) cos2(θ)|,

where we again substitute cos θ by c and obtain

q(τ) = sup
c∈[−1,1]

|(τ − 1)2 + τ(3τ − 2)c2|.

Also here, we can resolve the supremum using a CAD
algorithm (or, still, per hand) and obtain

q(τ) =

 1− 4τ + 4τ2 for τ < 0
1− 2τ + τ2 for 0 ≤ τ < 2

3
1− 4τ + 4τ2 for 2

3 ≤ τ.

This function is shown in Fig. 5. We see that q takes its
minimal value 1

9 for τ = 2
3 .

So far, all computations had been so easy such that it
would have been possible to do them per hand. However,
the methodology presented in this section can be carried over
to more complex (and more interesting) problems. The first
extension would be to consider two or more dimensions. Here,
one could represent everything use a tensor-product structure,
cf. [10]. Consequently, one has to deal with tuples of d
frequencies for d dimensional spaces. Also in this case, the
θi can be substituted by ci := cos(θi) and solved as discussed
in this session. However, the complexity of the expressions
(particularly in terms of the polynomial degree) grows very
fast if d is increased.

Besides that, the presented methodology can be extended
to non-standard problems. This is of practical use because the
convergence analysis has to be worked out for each problem
class, separately. Here, LFA can be of great help.

One example where the presented approach has been ap-
plied in this fashion was in a in a joint work with V. Pillwein1,
cf. [7], [8], where LFA and CAD have been used to compute
convergence rates of a multigrid solver for a system of PDEs
which characterizes the solution of an optimal control problem.
There, not only the robustness of the convergence rates in
the grid size hk, but also the robustness of the convergence
rates in a regularization parameter, which is part of the

1Research Institute for Symbolic Computation, Johannes Kepler University
Linz, Austria

problem description, was of interest and could be studied.
The supplementary material, that came with the cited paper,
is available in the web2. The author wants to refer the reader,
which is interested in analyzing multigrid convergence, to that
material.

In the following of the present paper, the author wants to
draw the reader’s attention to another application of LFA that
is also of interest in numerical analysis: the estimation of
approximation error estimates.

IV. ESTIMATE THE APPROXIMATION ERROR

In this section, we are interested in comparing estimates of
the approximation error

inf
uk∈Vk

‖u− uk‖L2(Ω)

for different kinds of discretizations. One of the discretizations
will be the Courant element, two more will be introduced
below. Here and in what follows ‖ · ‖L2(Ω) is the standard
L2-norm, i.e., ‖f‖2L2(Ω) :=

∫
Ω
f2(x)dx

One important approximation error estimate reads as fol-
lows:

inf
uk∈Vk

‖u− uk‖2L2(Ω) ≤ CAh
2
k|u|2H1(Ω)

for all u ∈ L2(Ω), where CA > 0 is a constant, hk is the grid
size and |u|H1(Ω) := ‖u′‖L2(Ω). For classical discretizations,
it is well-known that such an estimate exists. However, often
there is no realistic bound for the constant CA. So, it might
be of interest to compute an realistic (not necessarily sharp)
upper bound for the constant CA for discretizations of interest.

The approximation error can be bounded from above using
an interpolation error ‖u−Πku‖L2(Ω), where Πk : H1(Ω)→
Vk is an arbitrarily projection operator. So, it suffices to
estimate

‖u−Πku‖2L2(Ω) ≤ CAh
2
k|u|2H1(Ω) (15)

for any projection operator Πk. Using the following lemma,
we show (15) for Πk being the H1-orthogonal projection.

Lemma 1: Let for all grid levels k ∈ N, the operator
Πk be the H1-orthogonal projection form H1(Ω) into Vk.
Assume that for all k the following quantitative estimate on
two consecutive grids is satisfied:

‖(I −Πk)uk+1‖2L2(Ω) ≤ CAh
2
k|uk+1|2H1(Ω) (16)

for all uk+1 ∈ Vk+1. Moreover, we assume to know qualita-
tively that

‖(I −Πk)u‖L2(Ω) → 0 for k →∞ (17)

for all u ∈ L2(Ω). Then the following estimate is satisfied:

‖(I −Πk)u‖2L2(Ω) ≤ 4CAh
2
k|u|2H1(Ω)

for all u ∈ L2(Ω).
Proof: The proof is based on a simple telescoping argu-

ment. Due to (17), for any ε > 0 there is some K > 0 such that
‖(I − ΠK)u‖L2(Ω) < ε|u|H1(Ω). Now, we obtain due to the

2http://www.risc.jku.at/people/vpillwei/sLFA/

triangular inequality, (16) and the fact that the H1-orthogonal
projection is stable in H1(Ω), i.e., |Πku|H1(Ω) ≤ |u|H1(Ω),

‖(I −Πk)u‖L2(Ω)

≤ ‖(I −ΠK)u‖L2(Ω) +

K−1∑
m=k

‖(I −Πm)Πm+1u‖L2(Ω)

≤

(
ε+

K−1∑
m=k

C
1/2
A hm

)
|u|H1(Ω) =: Ψ.

As hm = 2k−mhk, we obtain using the summation formula
for the geometric series that Ψ ≤ (ε+ 2C

1/2
A hk)|u|H1(Ω) and

for ε→ 0 the desired result.
The statement (17) is well-known for all standard dis-

cretizations. However, there might not be a good estimate for
CA. So, we are interested in the results by this lemma. The
estimate (16) can be treated using LFA. We can rewrite (16)
in matrix-vector notation as follows:

‖(I − PkK−1
k PTk Kk+1)uk+1‖2Mk+1

≤ CAh2
k‖uk+1‖2Kk+1

,

where Mk := (mi,j)
N
i,j=1 := (

∫
Ω
ϕk,j(x)ϕk,i(x)dx)Ni,j=1 is

the mass matrix. Here, the upper bound is obtained using the
matrix norm:

C
1/2
A =

1

hk

∥∥∥M1/2
k+1(I − PkK−1

k PTk Kk+1)K
−1/2
k+1

∥∥∥ .
Using the definition of the Euclidean norm and the fact that
(I − PkK−1

k PTk Kk+1)2 = (I − PkK−1
k PTk Kk+1), we obtain

CA =
1

h2
k

ρ
(
Mk+1(I − PkK−1

k PTk Kk+1)K−1
k+1︸ ︷︷ ︸

Gk+1:=

)
.

Here, again, the spectral radius can be determined using the
symbol

CA = sup
θ∈[0,2π)

ρ
(
Ĝk+1(θ)

)
, where

Ĝk+1(θ) :=
1

h2
k

M̂k+1(θ)Ĉk+1(θ)
(
K̂k+1(θ)

)−1

,

Ĉk+1(θ) :=

(
I − P̂k(θ)

(
K̂k(θ)

)−1

P̂k(θ)∗K̂k+1(θ)

)
.

As we have mentioned above, we are interested in comput-
ing CA for different discretizations. The details can be found
in an accompanying Mathematica notebook, which is available
in the web3, the main ideas will be given in the following three
subsections.

A. The Courant element

The symbols K̂k+1(θ) and P̂k(θ) for the Courant element
have already been determined in the last section. The mass
matrix Mk has also a tridiagonal form. The symbol can be
computed completely analogous as for the stiffness matrix:

M̂k+1(θ) =

(
M̂k+1(θ)

M̂k+1(θ + π)

)
,

3http://www.numa.uni-linz.ac.at/∼stefant/J3362/slfa/

http://www.risc.jku.at/people/vpillwei/sLFA/
http://www.numa.uni-linz.ac.at/~stefant/J3362/slfa/

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 6. Basis functions for the P 2-spline discretization

where
M̂k+1(θ) =

1

6
(e−θi + 4 + eθi).

Based on this, we can derive

Ĝk+1(θ) =
1

12

(
2 + cos θ −2 + cos θ
−2− cos θ 2− cos θ

)
.

The eigenvalues of Ĝk+1(θ) are 0 and 1
3 . As this is already

independent of θ, we immediately obtain that for the Courant
element CA = 1

3 is satisfied.

B. A P 2-spline discretization

We can set up the same framework also for other discretiza-
tions, like the discretization with splines. Here, assume that Vk
is the space of all continuously differentiable functions, which
are piecewise polynomials of degree 2. One possible basis for
Vk is the basis of B-splines:

ϕk,i(x) =


1

2h2
k

(x− xi−1)2 for xi−1 ≤ x < xi
3
4 −

1
4h2

k
(2x− xi − xi+1)2 for xi ≤ x < xi+1

1
2h2

k
(x− xi+2)2 for xi+1 ≤ x < xi+2

0 otherwise,

where xi = ihk, see Fig. 6 for a visualization of such a basis
function.

For the B-splines, we can again compute the integrals that
are necessary to set up the mass matrix Mk. As the support of
the B-splines is larger than the support of the basis functions
of the Courant element, we obtain a band matrix with a
bandwidth of 5, with mi,i = 66

120hk, mi,i±1 = 26
120hk and

mi,i±2 = 1
120hk. Also for this case, we can determine the

symbol

M̂k(θ) =
hk
120

(
e−2iθ + 26e−iθ + 66 + 26eiθ + e2iθ) .

We can set up the the stiffness matrix Kk and its symbol in
a completely analogous way and obtain

K̂k(θ) =
1

6hk

(
−e−2iθ − 2e−iθ + 6− 2eiθ − e2iθ) .

For setting up the symbol of the prolongation operator Pk−1,
it is sufficient to solve again the equations (11) and (12). For
details, we refer to the Mathematica notebook. The overall
symbol Ĝk+1(θ) is again just obtained by multiplying the
individual symbols. The eigenvalues of Ĝk+1(θ) are 0 and

−51 + 14 cos(2θ) + cos(4θ)

40(−2 + cos(θ))(2 + cos(θ))(2 + cos(2θ))
. (18)

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 7. Basis functions of the first kind of the P 2-discretization

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 8. Basis functions of the second kind of the P 2-discretization

This second eigenvalue can be rewritten using the replacement
cos θ → c as rational function, where the terms cos(2θ)
and cos(4θ) are treated using the corresponding Chebyshev
polynomials. Here we obtain – using CAD – that 2

5 is the
largest value taken by (18), so we obtain CA = 2

5 .

C. A standard P 2-discretization

Besides the spline functions, there is another possibility of
setting up a discretization based on polynomials of degree
2, which is even more popular in finite elements: we define
Vk to be the space of continuous functions that are piecewise
polynomials of degree 2. Here, we can introduce a nodal basis,
i.e., a basis where each basis function is associated to node
(this basis function takes the value 1 on that node and the value
0 on all other nodes). Here, the nodes are allocated on the ends
of the intervals (as for the Courant element) and, additionally,
on the midpoints of the elements. Here, we have two types of
basis functions, cf. Fig. 7 and Fig. 8 for visualizations.

Because there are two types of elements, the mass matrix
has alternating coefficients, see the Mathematica notebook for
details:

Mk =
hk
30



. . .
. . .

. . .
. . . 8 2 −1
. . . 2 16 2 0
−1 2 8 2 −1

0 2 16 2 0
−1 2 8 2 . . .

0 2 16 . . .
. . .

. . .
. . .


.

For determining the symbol of Mk, we rewrite Mk as a sum of
a band-matrix and of a residual matrix with alternating signs:

Mk = Ak +Bk,

where Ak = (ai,j)i,j∈Z is a band matrix with ai,i = 2
5hk,

ai,i±1 = 1
15hk and ai,i±2 = − 1

60hk and Bk is a matrix with

alternating coefficients:

Bk :=
hk
60



. . .
. . .

. . .
. . .−8 0 −1
. . . 0 8 0 1
−1 0 −8 0 −1

1 0 8 0 . . .

−1 0 −8 . . .
. . .

. . .
. . .


.

Based on this decomposition, we can find the symbol. The
symbol of Ak is obviously just

Âk(θ) =
hk
60

(−e−2θi + 4e−1θi + 24 + 4eθi − e2θi).

The symbol corresponding to Bk is determined as follows:

Bkφk(θ) = (2(−1)jejθi + (−1)j(e(j+2)θi + e(j−2)θi))j∈Z

= (2ej(θ+π)i + (e2θi + e−2θi)ej(θ+π)i)j∈Z

= (2 + e2θi + e−2θi)︸ ︷︷ ︸
B̂k(θ):=

φ
k
(θ + π).

So, we obtain

Mkφk(θ) = Âk(θ)φ
k
(θ) + B̂k(θ)φ

k
(θ + π)

and, as θ + 2π h θ, also

Mkφk(θ + π) = B̂k(θ + π)φ
k
(θ) + Âk(θ + π)φ

k
(θ + π).

This shows, that Mk does not preserve a one dimensional
linear span anymore, but a two-dimensional span, spanned by
φ
k
(θ) and φ

k
(θ+π). This is similar to the coarse-grid operator

in the last section and in the last two subsections. So, the
symbol is a representation of Mk with respect to the basis
formed by these two vectors:

M̂k(θ) =

(
Âk(θ) B̂k(θ)

B̂k(θ + π) Âk(θ + π)

)
.

The symbol K̂k(θ) of the stiffness matrix Kk can be deter-
mined completely analogous.

Also the symbol of the prolongation operator can be de-
termined similarly to the cases of the last sections. However,
we need four frequencies to be able to reconstruct a function
on the coarse grid, so we use the ansatz φk−1(2θ, x) =∑3
j=0Ajφk(θ + jπ/2, x),where it is again sufficient to con-

sider the values on the nodes (midpoints and end points of the
intervals). This can be used determine the coefficients A0, A1,
A2 and A3.

For all θ = [0, 2π), the prolongation operator Pk−1 maps
the linear span, spanned by

φ
k−1

(2θ) and φ
k−1

(2θ + π) (19)

to the linear span, spanned by

φ
k
(θ), φ

k
(θ + π/2), φ

k
(θ + π) and φ

k
(θ + 3π/2),

(20)
and the restriction operator PTk−1 maps the linear span,
spanned by (20), to the linear span, spanned by (19). So, the

symbol P̂k−1 is a 2 × 4-matrix, for details we refer to the
Mathematica notebook. Based on the symbols of the individual
components, we can again compute Ĝk+1(θ), the symbol of
the overall operator. The eigenvalues of this matrix are 0, 0, 1

30
and 1

10 , so we obtain CA = 1
10 .

So, we have seen that the constant CA takes the value
1
3 for the Courant element, the value 2

5 for the P 2-spline
discretization and 1

10 for the standard P 2 discretization.
This indicates that the standard P 2 discretization has the

best approximation properties. However, the standard P 2 dis-
cretization needs two degrees of freedom per element, while
the other two discretizations need, each, one degree of freedom
per element. By defining ĥk to be the distance between two
nodes, i.e., ĥk = 1

2hk for the standard P 2-discretization and
ĥk = hk for the other two discretizations, we can redefine the
approximation error estimate as follows:

‖u−Πku‖2L2(Ω) ≤ ĈAĥ
2
k|u|2H1(Ω).

Here, we obtain ĈA = 1
3 for the Courant element and ĈA = 2

5
for both of the quadratic discretizations.

As we have already mentioned, an extension to two dimen-
sions is possible, however the terms get much more compli-
cated. We refer to the complementary material, where we made
an attempt to generalize the analysis to two dimensions.

V. CONCLUDING REMARKS

We have seen that the terms that are constructed using LFA
can be treated well using symbolic computation, particularly
using CAD. Moreover, we have seen that the method of
LFA can be applied in a wide range of problems. Besides
is application to multigrid solvers, which is well studied in
literature, cf. [1], [2], [10], LFA can be applied to other
problems occurring in numerical analysis, like the computation
of approximation error estimates.

REFERENCES

[1] A. Brandt, Multi-level adaptive solutions to boundary-value problems,
Math. Comp. 31 (1977), 333 – 390.

[2] , Rigorous Quantitative Analysis of Multigrid, I: Constant Coef-
ficients Two-Level Cycle with L2-Norm, SIAM J. on Numerical Analysis
31 (1994), no. 6, 1695 – 1730.

[3] S. Brenner and L. Scott, The Mathematical Theory of Finite Element
Methods, Springer-Verlag, New York, 1994.

[4] G.E. Collins, Quantifier elimination for real closed fields by cylindrical
algebraic decomposition, Automata theory and formal languages (Sec-
ond GI Conf., Kaiserslautern, 1975), Springer, Berlin, 1975, pp. 134 –
183. Lecture Notes in Comput. Sci., Vol. 33.

[5] W. Hackbusch, Multi-Grid Methods and Applications, Springer, Berlin,
1985.

[6] H. Hong, R. Liska, and S. Steinberg, Applications of quantifier elimina-
tion (Albuquerque, NM, 1995), J. Symbolic Comput. 24 (1997), no. 2,
161 – 187.

[7] V. Pillwein and S. Takacs, Smoothing analysis of an all-at-once multigrid
approach for optimal control problems using symbolic computation,
Numerical and Symbolic Scientific Computing: Progress and Prospects
(U. Langer and P. Paule, eds.), Springer, Wien, 2011.

[8] , An exemplary convergence analysis of a multigrid method using
symbolic computation, 2012, submitted.

[9] A. Strzeboński, Solving systems of strict polynomial inequalities, J.
Symbolic Comput. 29 (2000), no. 3, 471 – 480.

[10] U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Academic
Press, London, 2001.

	I Introduction
	II Finite element method and a simple iteration scheme
	III Analysis of a multigrid solver
	IV Estimate the approximation error
	IV-A The Courant element
	IV-B A P2-spline discretization
	IV-C A standard P2-discretization

	V Concluding remarks
	References

