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Abstract—We show how to generate and validate logical proofs numerical procedures in the computation. Indeed, not ahef
of unsatisfiability from delta-complete decision procedues that ynsat answers that we have obtained can be proof checked.
rely on error-prone numerical algorithms. Solving this problem The challenge lies in validating basic axioms about noaline

is important for ensuring correctness of the decision procéures. functi th | hich b i tablished b
At the same time, it is a new approach for automated theorem unctions over the reals, which can be easlly established by

proving over real numbers. We design a first-order calculusand ~ humerical algorithms (such as Newton iteration), but not sy
transform the computational steps of constraint solving itto logic ~ bolically. Ideally, we need to formalize most of the numatic

proofs, which are then validated using proof-checking algothms.  algorithm in as-complete decision procedure to achieve full
As an application, we demonstrate how proofs generated from \5jiqation. We regard this as an interesting direction tolsa
our solver can establish many nonlinear lemmas in the the fonal bridging the gap between numerical and symbolic methods in
proof of the Kepler Conjecture. <
solving formulas over the real numbers.
We will describe our approach in the following steps:
|. INTRODUCTION 1. We formalize the ICP algorithm in the framework of

Abstract DPLL [L3]. The similarity between ICP and SAT
%solving techniques has been explored in existing wa@k [
With this formulation, the branch-and-prune framework is
viewed as a transition system with a small set of transition
rules. (Sectioril)

2. We use a simple first-order proof calculdg, relativized
0 a setA of axioms over the reals, and show how to transform
a run of the Abstract ICP to a proof in the system. (Sectibn

3. We show how to validate the generated proofs using
a stand-alone proof checker implementing simple rules and
reliable interval arithmetic. The proof checker interasfith
the solver in an abstraction refinement loop to obtain proof
trees of sufficient detail (SectiolV). In the end, we show
experimental results towards the proving nonlinear lemmas

play a crucial role in the formal verification of safety-ail
embedded systems. For full reliability, decision solvérsudd
provide, besidessat/unsat” answers, certificates of correct-
ness for such answers. Feat answers, we can certify by
just plugging in a solution of the formula (value assignrsen[
for all variables). Forunsat answers, there is no such wit-
ness, and we need mathematipabofs of unsatisfiabilityto
guarantee correctness. Such proofs are especially inmpanta
the framework ofé-complete decision procedured,[ which
rely on numerical procedures that are potentially erranpr
For instance, the following is an actual bug we experienoed
building our SMT solver dReald]:

With the standard C library implementati@glibc- the Flyspeck project, in Sectiow.

2.15 included in the latestbuntu 12.10 the ex- Related Work.:Our work is closely related to several
ponential and trigonometric functions contain seri-  Jines of research in the existing literature. For provingrialas
ous errors. For instance, in upward rounding mode,  with transcendental functions, MetiTarskig], [1], [15] is the
sin(—2.437592) > 10°%. Clearly, this leads to bugs  |eading tool that reduces problems to polynomials and calls

in all constraint solvers using this standard C library.  quantifier elimination procedures. Note that in MetiTarske

Note that when we obtain a proof of unsatisfiability, thepolynomial problems are solved using external tools, witho
the correctness of the result becomes independent from fhieducing proofs. For problems with only polynomials, Bern
numerical procedures that were used to obtain them. stein polynomials are used in PVS for formal proof<]|

Besides certifying correctness of solvers, obtaining su€bur approach aims to automatically produce complete formal
proofs is also important from the perspective of automatgdoofs for formulas with transcendental functions. TheTSA
theorem proving. Decision solvers can establish mathealatisolver B] also contains strategies for certifying their answers
theorems by solving satisfiability of the negation of a teeoy in a different framework 10]. There are now several SMT
and establish correctness through the absence of couaterexsolvers B], [14] for formulas with nonlinear polynomials over
ples. Valid proofs of unsatisfiability can be directly usexl ahe reals based on CAD with no proof-producing capacities,
formal proofs for the theorems. As an approach to automatedt a proof-producing algorithm is possible, as sketched
theorem proving over the real numbers, the scalability caém [11]. Proofs for correctness in general SMT solvers have
outperform existing symbolic approaches. For instancey Tdoeen well studied, for instance iri§], which allows us to
Hales’ Flyspeck projectd], [7] for the formalization of his focus on the nonlinear theory solver in our framework.
proof the Kepler conjecture, requires proving hundreds of
nonlinear real inequalities. We will demonstrate that wa ca !l A FORMALIZATION OF INTERVAL CONSTRAINT
automatically generate proofs for many of such formulas. PROPAGATION

It is worth pointing out that after proof generation, proof Interval Constraint Propagation (ICFJ][finds solutions of
checking is still a nontrivial problem because of the use oéal constraints using the “branch-and-prune” method,-com
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bining interval arithmetic and constraint propagationeTiea with S is defined by

is to use interval extensions of functions to “prune” outsset

of points that are not in the solution set and “branch” on BS) =1 x - x L,
intervals when such pruning can not be done, recursively unihere 7, = (I : (z; € I) or (z; € I)* occurs inS}. Also,
a small enough box that may contain a solution is foungle write 3(S); to denotel;.

or inconsistency is observed. A high-level description lod t

decision version of ICP is given in Algorithrh [2], [4]. Definition 4 (ICP Transitions) LetZ = (z1,...,z,) be a

vector of real variables. We write(%) to denote a constraint
overR"™, and S an interval assignment sequence overlet
Algorithm 1 ICP(f1, ..., fm, Bo = I{ X -+ x I}, ) S || ¢ be the current state. We will always writ&(S;) = I,
to denote the current interval assignment on variable We

LS < Bo now define the following transition rules frofh|| ¢ to another

2: while S # () do state

3 BhT %pOpQ g (Pruning): Let I! be a subset off; such thatva <

4 whie 1 <i<m,B #; Prune(B, f;) do B(S,x; € I}), (@) is false. Then, if we lef? be an interval

o B « Prune(B, fi) satisfyingl; C I' U I?, then

6: end while

7. if B#( then Sle =& S (riel?)|c

& it 3} = S}Tn’ 5/:(B)] (2 0 t)hen is called a pruning step

9: B, Bo} < Branch(B, i L 1 .

10: S.push({B1, By}) (Branching): Let/; be a subset of;. Then

o else Sle & S@mel) e

12: return sat

13: end if is called a branching step.

14: end if (Backtracking): Letl} be a subset of;, such thatva €

15: end while B(S,z; € I},S"), c(a) is false. Let/? be an interval such

16: return unsat that 7 C I} U IZ. If in addition, S’ does not contain any
d-assignment (of the formw € 1)), then we can make a
transition

Our task now is to formalize ICP algorithms so that we e bt )
can extract symbolic proofs from its computation processes S,(zi € ;)% 5" le= S, (@i e I}) |l ¢
Similar to Abstract DPLL, we represent ICP as a transitiognich is called a backtracking step.
system, whose states consist of interval assignments a&nd th (Failure): Suppose&/a € 3(S5), c(a) is false, and there is
real constraints to be solved. An intervalis any connected ng ¢-assignment inS. Then we can make the transition
subset ofR and we writeIR to denote the set of all the
intervals. We first formalize how ICP maintains interval as- S e N 01 e

signments to a set of variables as follows: which is called a failure step.

Definition 1 (Interval Assignment Sequencelet z1, ..., 2n  pefinition 5 (Abstract ICP) An n-dimensional ICP frame-
be real variables. Annterval assignment sequenoger 7' is o is a transition system

a sequencéss, ..., s, ), where
(IR",S,C,=,¢)

SiG{(IiEIj):ISiSn,IjGHR} . . .
d , where S is the set of all interval assignment sequences over
Ui(wi € ;)" 1< i <n, I; € IR}, IR™, and C is any set of constraints ovék”. A state is an

We write (S1,5,) to denote the concatenation of two se€lementinS || C. The transition rules=: S xC = S x C

quencesS; and S,. The parentheses can be omitted whe@d€ as specified in DefinitioA. ¢ € Q* is an error bound. A
appropriate. run of ICP is any sequence

It will be clear later that when we writér € 1)¢, it means Sull ey Skl e,

an arbitrary choice on the value of(called a d-assignment), \yhere eithers), is 0, or Sy, # 0 and ||B(Sk)|| < e.

which is consequently a backtrack point. ) _ _
Remark 6. We have defined ICP in a general way, without

Remark 2. ICP can maintain unions of intervals for vari- enforcing conditions on the pruning operators, such as-well
ables. In principle this is not needed if we only consider thgefinedness. Thus, many invalid ICP runs can be generated.
decision problem, which only searches for one solution and this way, we treat ICP as a proof searching algorithm, and
the components of a union can be tested sequentially. So#§ on the proof checkers to determine the correctness of an
assume that only connected subsets of values are used haEp run. In practice, of course, only “correct” ICP algoritins

Definition 3 (Box Domain) Let S be an interval assignmentCan provide proofs that can always be validated.

sequence over variables, ..., x,,. Thebox domainassociated Example 7. Consider a constraint(xz,y) : y = z Ay =



z?, andx € [1.5,2] andy € [1,2] are the initial interval Interval Axioms:
assignment. A possible ICP run is:

= = — IA
ze[l5,2,ye1,2]] c ViZel »ZecLVIeEl)

2 oz e(15,2,ye 1,2, (z e [L7,2) | ¢ Constraint Axioms:

Lz e[15,2,yel,2,z€[1517] ¢

(backtracking, sinc&/a € [1.7,2] x [1,2], ¢(d) is false,
and [1.5,2] C [1.5,1.7] U [1.5,2] for ) Deri\_/ations in DA are as standardly defined, as natural
» deductions following these rules. Clearly, the two firstiar
= we[l5,2,ye(l,2,z €[15 17,z €[1516] [ c les are valid. Thus, if all the axioms i are valid, then the
(pruning, sinceva € [1.6,1.7] x [1,2], ¢(d) is false) system only produces valid formulas over

p
= re[l52ye(l,2xe(l5 17, Proposition 9 (Soundness)If Dy F ¢ andR = A A, then
re([l51.6,zel|c RE¢.

(pruning, sinceva € [1.5,1.6] x [1,2], ¢(@) is false)

VZ(Z € T — (7))

Remark 10. Clearly, the constraint axioms are the most
=L flc (sinceVd € 0 x [1,2],¢(q) is false.) nontrivial part. They are the basic facts of real functiohsait

a numerical procedure relies on, usually concerning thegen
of functions within a small interval. The interval axiomsar
sometimes not trivial either (for instance, compare ins&dsv
A. First-Order Proofs of Unsatisfiability ending withe™ and 7 respectively). Proof-checking involves

We focus on the proof the unsatisfiability of conjunctionalidation of these axioms, which we discuss in Sedton
of theory atoms in the DPLL(T) framework, i.e., formulas of We now describe the construction of proof trees from ICP

the form runs, which will be represented as labeled binary trees. A
labeled binary tree is defined as a tuffle= (V,V,, %, 4, o).
Here,V = {vo, ..., v}, is a finite set of nodes, whetg € V
always denotes the root nodgg is the set of leaf nodes in
where~€ {=,#,>, >, <, <}.Itis clear that once such proofsy’. s is a set of labels, which in our case is the setof-

are obtained, the proof of unsatisfiability of Boolean comabi formulas.s :C V x {l,r} — V is a partial mapping from a
tions of the theory atoms can be obtained, by simply pluggifgde to its descendant nodes, whéfe, 1) andd(v, r) denote
them in the high level resolution proof. Also, it is importanthe left and right descendant nodes, respectivelz V — &

to note that the ICP algorithm SO|V8$Stem3)f constraints, is a |abe|ing function that maps each nade V to a formula
and it regards the conjunctioh;’, fi(z1,....#,) ~ 0 as 4(v) € ¥. In addition, the edges in the tree can be labeled as

one constrainic(z1, ..., z,). Consequently, our task is nowwell, through a function : V x vV — Q where2 is a set of
reduced to obtaining proofs for the validity of formulas okdge-labels.

IIl. EXTRACTING PROOFS FROMICP RUNS

gy I, /\ filx1,oyxpn) ~0
i=1

the formVz, ---Vo,.(z1 € L A+ Nap € In) = —c(), 1) Tree Generation:Let an ICP run be
from the failure of ICP search for a solution to the original . .
SMT formula3z.z € I A ¢(Z). Solle= =% Sm ¢

We will construct a simple first-order proof calculus, an
show how to transform ICP runs into proofs in the system
Again, we consider formulas in a signatufg = (<, F),
where constants are considered as 0-ary functiods iWhen
we write z € I, where! denotes an interval, it is regarde
as an abbreviation for their equivalefii--formula. Note that
this means thaf only usesL r-terms as end-points. Also, as o(vg) := VE(& € B(So) — —c¢).
mentioned aboveg(Z) abbreviates a conjunction of atomic

0 )

formulas. We also allow the use of vectors in the formulak®t V2 = {vo} denote the current collection of leaf nodes.

writing 7 € T'to denote/\. z; € I, Note that this formula is the negation of the input SMT
; )

formula.
Definition 8 (SystemD4). We definéD 4 to be the first-order Casei = k+1 (1 < k <m).: Suppose/} ando have

proof system consisting of only the following two rules:  peen defined fok, ..., s;. Write s, = Sj, || ¢ and spq1 =

guch that the ending transitiap, is a failure step, i.e.S,, =
0. We now define the procedure by defining the functiéns
and V, through induction ons;. The edges can be labeled
OPaturally withQ = {VI, VM, IA, CA}.

Casei = 0.: We label the root node, by

V() — ) VI — @) Sk+1 || ¢ Now we split the cases on the type of the step
V() VY — ) VI t from s; to si41 as follows. Again, we use the convention
v that 3(S); = I; denotes the current interval assignment on a
VE(D) — VE( variablex;.
Y g{) ; uiClind?) vYMP (Pruning Case):Supposes, = si4+1 IS @ pruning step.
V(Y = @) That is,

and a set4 of axioms of the following two types: Si || ¢ = Sk, (z; € I?) || ¢,



wherel; C I} UI? andVa € 3(Sk,z; € I}'), c(a) is false. If whenVa € 3(5), c(@) is false andS has nod-assignments.
we write Let I = 3(S). This step corresponds to

I_;l = B(Skv (Il € Ill))al_é - B(Skv ('rl € 112))7 andf: B(Sk)a

then this step corresponds to the sub-tree as shown in Fig. 1,
Case A. We setVF ! = VF\ {v} and do not update-.
Complete tree.in all, after all the steps in the ICP run are

Formally, the sub-tree is added as follows. bet V} be an followed, the tree that we construct® = (V, V", ¥, 6, o).
existing leaf node that is labeled by the formula correspend The axiom set is given by ThT

to Sy || ¢; namely,

——F
VE(E € I) = —c

A={o):veV}

It is easy to see thaf' is a valid proof tree ifD 4:

o(v) = Vi@ e I — —c).

(We will inductively prove that such a node exists.) We then
define Proposition 11. For every ICP run ending with) || ¢, the

tree construction procedure above produces a valid natural

1 1 =2 (7 7 . . . . . . .
8(v,1) = wiiy,0(vhy) =VYE(F € I, VT € I) — ¢); deduction tree inD 4. The size of the proofs is linear in the
S(v,r) = viii,0(iy,) =VE@ el — (el vie LEgmputation steps.
(Uk+17 ) = U?;H,a(v}’;ﬂ) = V(¥ € L — - c) Proof: It is clear that each proof step, as represented by
S(vpy1s) = Vhy1,0(ve) =VET € 1 = —c) the subtree created in each case, is a valid natural deductio

step inD4. We only need to show that the tree can be
U {U}EH}- constructed. For this, we need to show that for each step
Sk || ¢ L Sk+1 || ¢ where Syq1 is not (, it is always
(Branching Case):Supposes, = sj+1 is @ branching the case thas), || ¢ labels a leaf node in the tree constructed
step. That is, so far. Whenk = 0, this is the case sinc&? = {vy}. Now
supposeS;; || ¢ labels a leaf node. If is a pruning step, then
VZ(Z € I — —c) labelsv}, ;, which is added i/} *'. The
under the condition that! C I;. If we write same applies to the other branching and backtracking.Iinal
4 P ) - the stepS,,—1||c = 0||c corresponds to closing the last leaf
Iy = (S, (i € I;)), L2 = B(S, (2: € I}))), and ] = (), |apelled byvz(z € T — —c). -
wherel C I! U I,, then this step corresponds to the sub-tree Again, once the proof tree is constructed, the details of the
as shown in Fig. 1, Case B. Formally it is defined as follow$CP algorithm no longer matters. The only rules involved are
Again, letv € V} be a leaf node such that(v) = VZ(Z € the two first-order rules i) 4. Following relative soundness
I — —¢). We then define of the system, to establish validity of the formula, now we
only need to validate the axiom sdt

and setVFt! = (VF\ {v}

~—

b
Sk |l ¢ = Sk,(xielil)d | e,

§5(v,0) U;H, o(vpy,) =VE(E@ e L VEE L — —c);
S(v,r) = v, 0(i,)=ViFel— (TelVviech)); IV. VALIDATING THE PROOFS
S(upi1,l) = Vi, 0(vie) =VET € I — ) A. Validating the Axioms
0(Vk1sm) = Vhyr,0(viyy) = VE(T € I — —c) There are two types of axioms that we allow in the proofs

constructed from ICP runs: interval axioms and constraint
and setV/ ! = (VF\ {v}) U {v},y, vy ) axioms. To validate such axioms, we still need numerical
computations. The difference is that the proof checker only
(Backtracking Case):Supposes;, = si+1 is a branch- needs to implement simple interval computation that can be
ing step. That is, validated through stand-alone arbitrary-precision or lsgtic
/ bt computation. Note that the validation of the axioms can fail
S, (@i €)% S e = S (@ie ) e, Wheﬁ the solver correctly returnsnsat, if the solver uses
whenva € 8(S, (z; € I})4,5"), (@) is false, andl; C I2 U complex numerical heuristics that can not be verified by
I}, wherel; = 3(Sk/);. S is a previous interval assignmentreliable numerical computation. In practice, we ensure the
sequence, withk’ < k. If we write correctness of the proof checker first, and use an abstractio
- P ) - refinement loop that allows the proof checker to ask for more
Ly =85, (zi € I})), I = B(S, (zi € I7), and I = S(Sk'),  getailed proofs from the solver.
then this step corresponds to the sub-tree as shown in FigThe interval axioms do not contain any real functions, and
1, Case C. Formally, we simply SWH VF, and do not are of the formvVz(z € Iy Vo € I, — x € I). We only need

update the labeling. to check thatl is a subset off; U I by comparing the end
points of the intervals, which is an easy numerical task.
(Fail Case): Suppose it is a failure step. That is, The constraint axioms are of the fordx (& € I — ¢(Z)),

' and can only be verified by considering the functions that
S e L 9 | e occur inc. Although they are of the same form as the formulas



A. Pruning Case:

= - CA
VE(Z € o = —c) VZ(z € [1 = —c) Vi A
Ve((Z e L VielL) — —c) Va(w €I, — (x € I} va € I?)) P
VE(z € I — —c)
B. Branching Case:
Vi el —» ) VEZ el — —c) A
Ve(Ze L VE e I — —c) Ve(z el —» (x eI} Ve lD)) P

VE(Z e T — —c)

C. Backtracking Case:

y— TNd o CA
VE(Z € B(Sk, (z € 1;)",S) = —c)

ViE(E € I — —c)

YMP

Fig. 1: Proof Trees

we solve, these axioms should contain evident propertigseof mean value theorem, we have that for a?)g; eD

functions involved, usually on small intervals. Such facas . of
be verified using reliable interval computations, for insa /(b)) — f(@) = Vf(§) - (b—a) = Z D, (&) - (b; — a;)
as follows. i v

for some¢ € D. Thus, we can boundl(x) on D by computing

Definition 12 (Interval Extensions)Let f : R™ — R be a real the interval bound on the function

function. An interval functiod” : IR"™ — IR is a function that

satisfies: f(@) + Z (ﬁ(%) (D)) D,
VI € dom(F), {f(z) : z € I} C F(I). ; i

. ) . ) ) where #(-) denotes interval extension, anfi@) is on the
A simple example of interval extensions is thatural inter- boundary ofD.

val extensiorfor arithmetic operations, based on computations

of functions on the end points of intervals. It is obvioustthaExample 15. f(z1,22) = 27 + 23 on domain(z1,x2) €
[0,1] x [0,1]. We have) f/0x1 = 2z1 € [0,2] and D f /Oxs €
Proposition 13. Let I” be an interval extension of, and [0 2]. Thus

I Cdom(f). If F(I) C A, thenVz(x € I — f(z) € A).
7 F(@) e > [0,2]- (1-0)+0=1[0,4].

Thus, the axioms are validated if we can verify that they i—1.2
are consistent with all the interval extensions.

Example 14. The second pruning step in Examflgenerates C. The Branch and Prove Loop

an axiom In practice, ICP usually implements complicated heursstic

Vavy(z € 17,2 Ay € [1,2] = —(y = 22) V ~(y = z)) that are more p_owerfgl than What can be ver_ified_ through
direct interval arithmetic. A practical approach first isuse
This can be easily validated through the natural intervan abstraction refinement loop that allows the proof chettker
extension ofy — z?), which is[1,2] —[1.7,2]? = [-3,—-0.89] ask the solver for proof traces of the right amount of details
and does not contain. We sketch the procedures in Algorith?nand Algorithm3.
When we fail to prove an axiom through simple interval
arithmetic, the proof checker generates new subprobleats th
B. Taylor Proofs are returned to the solver. At this stage, the axioms bechme t
new theorems to be proved. This is an abstraction refinement
Suppose we want to verify the inequalifyz1, ...,x,,) > 0 procedure. Algorithn8 illustrates the procedure. By executing
on a domaint € D = I; x --- x I,,. Using the multivariate the loop, we may obtain proof trees that contain more and



Algorithm 2 ProofCheck
1: procedure PROOFCHECK(p, 9)

of the Kepler conjecture. As lemmas for the proof, hundreds
of nonlinear real inequalities need to be verified. Although

2: if MATCH (p, Axiom(Vx (& € = c(7)))) then the formulas usually contain only around ten variablesy the
3: if ﬁc(f) then > use interval arithmetic, taylor contain a huge number of nonlinear arithmetic operatiors an
extension.. trigonometric functions, and are mathematically chaliegg

4 return 0 In the original proof, Hales implemented procedures that-co

5: else bine linear programming and interval arithmetic to estbli

6: (I, I3) « Split(I) all these formulas, but the algorithms are formally verlfy.

7: (61,02) « (min(d, %||]1||),min(5, %||12||)) fact, the formal verification of these nonlinear inequasti

8: retun {(Vz(Z € I, — ¢(&)),01), (Va(Z € s the last main piece of work needed to complete the full
I — o)), 02)} project. Without any particular optimization on ICP, we bav

o end if observed promising results. Out of 916 nonlinear formutas i

10.  else if MATCH (p, Branch(ps, p2, 1)) then the Flyspeck project repository, the solver retuumsat for

11: Uy + PROOFCHECK(p1, 6) 107 of them with a timeout of 5 minute each, and a precision

12: U, + PROOFCHECK (pa, §) § =103, Out of these formulas, we automatically generated

13: if ¢ (dom(p;)Udom(ps)) then and validated the proofs for 72 instances. The proof traces

14: return Error of these formulas can be very large; for instance, we proved

15: else one with more than 2M lines in the proof (54MB file). In

16: return U, U Us Table Il, we list some of the representative benchmarks to

17- end if show scalability. Many of these formulas are highly nordine

18: end if for instance the formula encoded in 760.smt2 is following on

19: end procedure

Algorithm 3 Branch-and-Prove

1: procedure BRANCH-AND-PROVE(p, )
2: U < PROOFCHECK(p, d)

3 if U # () then

4 for all (a,0’) € U do

5: p’ + SOLVE(a,d")

6: BRANCH-AND-PROVE(p', ¢')
7 end for
8 end if
9: end procedure

more detailed steps. There are two ways that the prover
generate the subproblems, branching on a variable in

formula or using a smalled. Note that under the condition
that the pruning operators in the solver is WeII-definedhboE
procedures never change thiesat result. The branching may

give exponentially many new problems; while thechange

( Ay ()
VAL(Z) + A2(F)? + /A1(2)
—0.458(\/:v_g+\/:6—3+\/x—4+\/:C_5)+0.342\/x—1+3.319204) < 0.0

where

)

Vi € [4.0,6.3504]° (2arctan

Al(f) = 4x (8%1(—1‘1 + 2o +x3+ 24 + 25 — 8)
+l‘21‘5($1 — 2o+ r3+ x4 — 25 +8
—|—.§C3.§C4(I1 + Ty — T3 — T4 —|— xIs —|— 8) + 8172173
—T1X3T5 — L1X2X4 — 8564175))
Ag(f) =  Xok5 — L2X3 + T3Tg — T4T5 + l‘% — T1T2
—T1T3 — T1T4 — T1T5
On the other hand, as mentioned above, we fail to establish
Tﬁtﬂ)ut the proofs of unsatisfiability of about 30 instancesld
€hows some of these instances. They typically generate
roofs that are large in size, or that the branch-and-prave |

as to generate too many sub-instances such that the proof
checking can not terminate.

does not give new problems, but may exponentially slow down
the solver in each round. In practice we observe that such
a refinement loop is very useful, as we will show in the

V1. CONCLUSION

experiments.

V. EXPERIMENTS

We presented our approach for extracting formal proofs
from a numerically-driven decision procedure in the
DPLL(ICP) framework. We formalized the ICP algorithm, and

We implemented the proof generation capacity into oghowed how to validate proof trees from the unsat answers.

open-source solvedReal'. All the experiments below are

A main focus for our tool is to prove nonlinear lemmas in

performed on a machine of with a 32-core 2.0GHz Intel Xed® Flyspeck project, and we have observed promising ex-
E5-2600 Processor and 64GB of RAM. The benchmarks aRgfimental results. We believe the approach can be combined

full tables of experiment statistics are also available lo@
tool page.

A main set of benchmarks that we studied is from the Fl ) : ) e
¢ of numerical algorithms, proof abstractions, local heigss

speck project§], [17], which aims at a fully formalized proo

http://dreal.cs.cmu.edu

tWith existing symbolic methods, and is a first step towards
a framework that bridges the gap between symbolic and nu-
);perical approaches. Further work would involve formalmat

and an implementation of our proof checker in standard proof
assistants.


http://dreal.cs.cmu.edu

ID || #Var | #Arith

Nonlinear || Times | Proof Size| #Sub| #Axiom [ Timepc |

461 6 36 poly || 1.740| 2145155 2 17442| 203.886
789 6 86 atan2,sqrt| 1.640 350329 2 2464 | 128.077
792 6 828 atan2,sqrt|| 0.400 19837 2 118 | 113.004
745 6 36 poly || 0.750 677580 2 5222 | 59.865
785 6 80 atan2,sqrt|| 0.470 63388 2 526 | 26.450
760 6| 2767 atan2,sqrt|| 0.140 711 2 5| 21.089
820 6 95 atan2,sqrtf| 0.080 9134 2 54| 14.703
815 6 95 atan2,sqrt|| 0.330 41954 2 279 | 14.703
814 6 95 atan2,sqrtf| 0.350 42102 2 278 | 14.703
816 6 96 atan2,sqrtf| 0.110 12195 2 92 4.994
817 6 96 atan2,sqrt|| 0.090 11792 2 93 4.993
784 6 80 atan2,sqrt|| 0.060 7203 2 56 3.595
781 6 86 atan2,sqrtf| 0.060 7481 2 45 2.657
793 6 834 atan2,sqrt|| 0.020 18 1 1 1.855
796 6 834 atan2,sqrtf| 0.010 18 1 1 1.710
752 6 17 poly || 0.080 46360 2 277 1.709
783 6 825 atan2,sqrtf| 0.020 93 1 1 1.549
779 6 201 atan2,sqrt|| 0.010 10 1 1 0.705
867 6 17 poly || 0.040 25820 2 147 0.683
742 6 55 | acos,atan2,sqit 0.001 7 1 1 0.299
508 6 53 acos,sqrt|| 0.001 8 1 1 0.286
507 6 29 acos,sqrt|| 0.001 8 1 1 0.278
744 6 24 asin,cos,sin| 0.001 8 1 1 0.275

TABLE I. Experimental results (Proved instances): ID = Reob ID, #Var = Number of variables, #Arith = Number of
arithmetic operators, Nonlinear = Nonlinear operatorsioed in problem, Proof Size = Number of lines of the prabfM Eg

= Solving time in seconds, #Sub = Number of subproblems ggeeiby proof checking, #Axiom = Number of proved axioms,
TIMEpc = Proof-checking time in seconds.

| ID | #Var | #Arith | Nonlinear || Times | Proof Size| #Sub]
260.smt2 6 90 poly || 5.030 6281203 1
866.smt2 6 38 sqgrt || 0.390 543061| 21476
775.smt2 6 2765 atan2,sqrt| 4.040 130253 2
764.smt2 6 2767 atan2,sqrt| 1.700 49657 2
762.smt2 6 2767 atan2,sqrt| 2.040 42238 2
484.smt2 6 1835| acos,atan2,sqnif 0.060 16 1
485.smt2 6| 1961] acos,atan2,sqrff 0.070 16 1
498.smt2 6 573 | acos,matan,sqff 0.010 11| 8191

TABLE IlI: Experimental results (Unproved instances, Timee 300 sec): ID = Problem ID, #Var = Number of variables,
#Arith = Number of arithmetic operators, Nonlinear = Nowelam operators occurred in problem, Proof Size = Number e&lin
of the proof, TIMEg = Solving time in seconds, #Sub = Number of subproblems g¢eerby proof checking,
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