
ar
X

iv
:1

40
9.

64
14

v1
 [

cs
.L

O
]

23
 S

ep
 2

01
4

1

Proof Generation from Delta-Decisions
Sicun Gao, Soonho Kong, and Edmund M. Clarke

Carnegie Mellon University, Pittsburgh, PA, USA 15213

Abstract—We show how to generate and validate logical proofs
of unsatisfiability from delta-complete decision procedures that
rely on error-prone numerical algorithms. Solving this problem
is important for ensuring correctness of the decision procedures.
At the same time, it is a new approach for automated theorem
proving over real numbers. We design a first-order calculus,and
transform the computational steps of constraint solving into logic
proofs, which are then validated using proof-checking algorithms.
As an application, we demonstrate how proofs generated from
our solver can establish many nonlinear lemmas in the the formal
proof of the Kepler Conjecture.

I. I NTRODUCTION

Decision solvers for logic formulas over the real numbers
play a crucial role in the formal verification of safety-critical
embedded systems. For full reliability, decision solvers should
provide, besides “sat/unsat” answers, certificates of correct-
ness for such answers. Forsat answers, we can certify by
just plugging in a solution of the formula (value assignments
for all variables). Forunsat answers, there is no such wit-
ness, and we need mathematicalproofs of unsatisfiabilityto
guarantee correctness. Such proofs are especially important in
the framework ofδ-complete decision procedures [4], which
rely on numerical procedures that are potentially error-prone.
For instance, the following is an actual bug we experienced in
building our SMT solver dReal [9]:

With the standard C library implementationeglibc-
2.15, included in the latestUbuntu 12.10, the ex-
ponential and trigonometric functions contain seri-
ous errors. For instance, in upward rounding mode,
sin(−2.437592) > 1053. Clearly, this leads to bugs
in all constraint solvers using this standard C library.

Note that when we obtain a proof of unsatisfiability, then
the correctness of the result becomes independent from the
numerical procedures that were used to obtain them.

Besides certifying correctness of solvers, obtaining such
proofs is also important from the perspective of automated
theorem proving. Decision solvers can establish mathematical
theorems by solving satisfiability of the negation of a theorem,
and establish correctness through the absence of counterexam-
ples. Valid proofs of unsatisfiability can be directly used as
formal proofs for the theorems. As an approach to automated
theorem proving over the real numbers, the scalability can
outperform existing symbolic approaches. For instance, Tom
Hales’ Flyspeck project [6], [7] for the formalization of his
proof the Kepler conjecture, requires proving hundreds of
nonlinear real inequalities. We will demonstrate that we can
automatically generate proofs for many of such formulas.

It is worth pointing out that after proof generation, proof
checking is still a nontrivial problem because of the use of

numerical procedures in the computation. Indeed, not all ofthe
unsat answers that we have obtained can be proof checked.
The challenge lies in validating basic axioms about nonlinear
functions over the reals, which can be easily established by
numerical algorithms (such as Newton iteration), but not sym-
bolically. Ideally, we need to formalize most of the numerical
algorithm in aδ-complete decision procedure to achieve full
validation. We regard this as an interesting direction towards
bridging the gap between numerical and symbolic methods in
solving formulas over the real numbers.

We will describe our approach in the following steps:
1. We formalize the ICP algorithm in the framework of

Abstract DPLL [13]. The similarity between ICP and SAT
solving techniques has been explored in existing work [3].
With this formulation, the branch-and-prune framework is
viewed as a transition system with a small set of transition
rules. (SectionII)

2. We use a simple first-order proof calculusDA, relativized
to a setA of axioms over the reals, and show how to transform
a run of the Abstract ICP to a proof in the system. (SectionIII)

3. We show how to validate the generated proofs using
a stand-alone proof checker implementing simple rules and
reliable interval arithmetic. The proof checker interactswith
the solver in an abstraction refinement loop to obtain proof
trees of sufficient detail (SectionIV). In the end, we show
experimental results towards the proving nonlinear lemmasin
the Flyspeck project, in SectionV.

Related Work.:Our work is closely related to several
lines of research in the existing literature. For proving formulas
with transcendental functions, MetiTarski [16], [1], [15] is the
leading tool that reduces problems to polynomials and calls
quantifier elimination procedures. Note that in MetiTarski, the
polynomial problems are solved using external tools, without
producing proofs. For problems with only polynomials, Bern-
stein polynomials are used in PVS for formal proofs [12].
Our approach aims to automatically produce complete formal
proofs for formulas with transcendental functions. The iSAT
solver [3] also contains strategies for certifying their answers
in a different framework [10]. There are now several SMT
solvers [8], [14] for formulas with nonlinear polynomials over
the reals based on CAD with no proof-producing capacities,
but a proof-producing algorithm is possible, as sketched
in [11]. Proofs for correctness in general SMT solvers have
been well studied, for instance in [18], which allows us to
focus on the nonlinear theory solver in our framework.

II. A F ORMALIZATION OF INTERVAL CONSTRAINT

PROPAGATION

Interval Constraint Propagation (ICP) [2] finds solutions of
real constraints using the “branch-and-prune” method, com-

http://arxiv.org/abs/1409.6414v1

2

bining interval arithmetic and constraint propagation. The idea
is to use interval extensions of functions to “prune” out sets
of points that are not in the solution set and “branch” on
intervals when such pruning can not be done, recursively until
a small enough box that may contain a solution is found
or inconsistency is observed. A high-level description of the
decision version of ICP is given in Algorithm1 [2], [4].

Algorithm 1 ICP(f1, ..., fm, B0 = I01 × · · · × I0n, δ)

1: S ← B0

2: while S 6= ∅ do
3: B ← S.pop()
4: while ∃1 ≤ i ≤ m,B 6=δ Prune(B, fi) do
5: B ← Prune(B, fi)
6: end while
7: if B 6= ∅ then
8: if ∃1 ≤ i ≤ m, |♯fi(B)| ≥ δ then
9: {B1, B2} ← Branch(B, i)

10: S.push({B1, B2})
11: else
12: return sat
13: end if
14: end if
15: end while
16: return unsat

Our task now is to formalize ICP algorithms so that we
can extract symbolic proofs from its computation processes.
Similar to Abstract DPLL, we represent ICP as a transition
system, whose states consist of interval assignments and the
real constraints to be solved. An intervalI is any connected
subset ofR and we writeIR to denote the set of all the
intervals. We first formalize how ICP maintains interval as-
signments to a set of variables as follows:

Definition 1 (Interval Assignment Sequence). Let x1, ..., xn
be real variables. Aninterval assignment sequenceover ~x is
a sequence(s1, ..., sm), where

si ∈ {(xi ∈ Ij) : 1 ≤ i ≤ n, Ij ∈ IR}
∪ {(xi ∈ Ij)d : 1 ≤ i ≤ n, Ij ∈ IR}.

We write (S1, S2) to denote the concatenation of two se-
quencesS1 and S2. The parentheses can be omitted when
appropriate.

It will be clear later that when we write(x ∈ I)d, it means
an arbitrary choice on the value ofx (called a d-assignment),
which is consequently a backtrack point.

Remark 2. ICP can maintain unions of intervals for vari-
ables. In principle this is not needed if we only consider the
decision problem, which only searches for one solution and
the components of a union can be tested sequentially. So we
assume that only connected subsets of values are used here.

Definition 3 (Box Domain). Let S be an interval assignment
sequence over variablesx1, ..., xn. Thebox domainassociated

with S is defined by

β(S) = I1 × · · · × In,
whereIi =

⋂{I : (xi ∈ I) or (xi ∈ I)d occurs inS}. Also,
we writeβ(S)i to denoteIi.

Definition 4 (ICP Transitions). Let ~x = (x1, ..., xn) be a
vector of real variables. We writec(~x) to denote a constraint
overRn, andS an interval assignment sequence over~x. Let
S ‖ c be the current state. We will always writeβ(Si) = Ii
to denote the current interval assignment on variablexi. We
now define the following transition rules fromS ‖ c to another
state.

(Pruning): Let I1i be a subset ofIi such that∀~a ∈
β(S, xi ∈ I1i), c(~a) is false. Then, if we letI2i be an interval
satisfyingIi ⊆ I1i ∪ I2i , then

S ‖ c p
=⇒ S, (xi ∈ I2i) ‖ c

is called a pruning step.
(Branching): LetI1i be a subset ofIi. Then

S ‖ c br
=⇒ S, (xi ∈ I1i)d ‖ c,

is called a branching step.
(Backtracking): LetI1i be a subset ofIi, such that∀~a ∈

β(S, xi ∈ I1i , S
′), c(~a) is false. LetI2i be an interval such

that I ⊆ I1i ∪ I2i . If in addition, S′ does not contain any
d-assignment (of the form(x ∈ I)d), then we can make a
transition

S, (xi ∈ I1i)d, S′ ‖ c bt
=⇒ S, (xi ∈ I2i) ‖ c,

which is called a backtracking step.
(Failure): Suppose∀~a ∈ β(S), c(~a) is false, and there is

no d-assignment inS. Then we can make the transition

S ‖ c f
=⇒ ∅ ‖ c

which is called a failure step.

Definition 5 (Abstract ICP). An n-dimensional ICP frame-
work is a transition system

〈IRn,S, C,=⇒, ε〉
whereS is the set of all interval assignment sequences over
IR

n, and C is any set of constraints overRn. A state is an
element inS ‖ C. The transition rules=⇒: S × C → S × C
are as specified in Definition4. ε ∈ Q+ is an error bound. A
run of ICP is any sequence

S1 ‖ c, ..., Sk ‖ c,
where eitherSk is ∅, or Sk 6= ∅ and ||β(Sk)|| < ε.

Remark 6. We have defined ICP in a general way, without
enforcing conditions on the pruning operators, such as well-
definedness. Thus, many invalid ICP runs can be generated.
In this way, we treat ICP as a proof searching algorithm, and
rely on the proof checkers to determine the correctness of an
ICP run. In practice, of course, only “correct” ICP algorithms
can provide proofs that can always be validated.

Example 7. Consider a constraintc(x, y) : y = x ∧ y =

3

x2, and x ∈ [1.5, 2] and y ∈ [1, 2] are the initial interval
assignment. A possible ICP run is:

x ∈ [1.5, 2], y ∈ [1, 2] ‖ c
br
=⇒ x ∈ [1.5, 2], y ∈ [1, 2], (x ∈ [1.7, 2])d ‖ c
bt
=⇒ x ∈ [1.5, 2], y ∈ [1, 2], x ∈ [1.5, 1.7] ‖ c

(backtracking, since∀~a ∈ [1.7, 2]× [1, 2], c(~a) is false,

and [1.5, 2] ⊆ [1.5, 1.7]∪ [1.5, 2] for x)
p

=⇒ x ∈ [1.5, 2], y ∈ [1, 2], x ∈ [1.5, 1.7], x ∈ [1.5, 1.6] ‖ c
(pruning, since∀~a ∈ [1.6, 1.7]× [1, 2], c(~a) is false)

p
=⇒ x ∈ [1.5, 2], y ∈ [1, 2], x ∈ [1.5, 1.7],

x ∈ [1.5, 1.6], x ∈ ∅ ‖ c
(pruning, since∀~a ∈ [1.5, 1.6]× [1, 2], c(~a) is false)

f
=⇒ ∅||c (since∀~a ∈ ∅ × [1, 2], c(~a) is false.)

III. E XTRACTING PROOFS FROMICP RUNS

A. First-Order Proofs of Unsatisfiability

We focus on the proof the unsatisfiability of conjunctions
of theory atoms in the DPLL(T) framework, i.e., formulas of
the form

∃I1x1 · · · ∃Inxn.
m
∧

i=1

fi(x1, ..., xn) ∼ 0

where∼∈ {=, 6=, >,≥, <,≤}. It is clear that once such proofs
are obtained, the proof of unsatisfiability of Boolean combina-
tions of the theory atoms can be obtained, by simply plugging
them in the high level resolution proof. Also, it is important
to note that the ICP algorithm solvessystemsof constraints,
and it regards the conjunction

∧m
i=1

fi(x1, ..., xn) ∼ 0 as
one constraintc(x1, ..., xn). Consequently, our task is now
reduced to obtaining proofs for the validity of formulas of
the form ∀x1 · · · ∀xn.(x1 ∈ I1 ∧ · · · ∧ xn ∈ In) → ¬c(~x),
from the failure of ICP search for a solution to the original
SMT formula∃~x.~x ∈ ~I ∧ c(~x).

We will construct a simple first-order proof calculus, and
show how to transform ICP runs into proofs in the system.

Again, we consider formulas in a signatureLF = 〈<,F〉,
where constants are considered as 0-ary functions inF . When
we write x ∈ I, whereI denotes an interval, it is regarded
as an abbreviation for their equivalentLF -formula. Note that
this means thatI only usesLF -terms as end-points. Also, as
mentioned above,c(~x) abbreviates a conjunction of atomic
formulas. We also allow the use of vectors in the formulas,
writing ~x ∈ ~I to denote

∧

i xi ∈ Ii.
Definition 8 (SystemDA). We defineDA to be the first-order
proof system consisting of only the following two rules:

∀~x(ψ → ϕ) ∀~x(ψ′ → ϕ)

∀~x(ψ ∨ ψ′ → ϕ)
∨I

∀~x(ψ → ϕ) ∀~x(ψ′ → ψ)

∀~x(ψ′ → ϕ)
∀MP

and a setA of axioms of the following two types:

Interval Axioms:

∀~x(~x ∈ ~I → ~x ∈ ~I1 ∨ ~x ∈ ~I2)
IA

Constraint Axioms:

∀~x(~x ∈ ~I → c(~x))
CA

Derivations in DA are as standardly defined, as natural
deductions following these rules. Clearly, the two first-order
rules are valid. Thus, if all the axioms inA are valid, then the
system only produces valid formulas overR.

Proposition 9 (Soundness). If DA ⊢ ϕ and R |= ∧

A, then
R |= ϕ.

Remark 10. Clearly, the constraint axioms are the most
nontrivial part. They are the basic facts of real functions that
a numerical procedure relies on, usually concerning the range
of functions within a small interval. The interval axioms are
sometimes not trivial either (for instance, compare intervals
ending witheπ and πe respectively). Proof-checking involves
validation of these axioms, which we discuss in SectionIV.

We now describe the construction of proof trees from ICP
runs, which will be represented as labeled binary trees. A
labeled binary tree is defined as a tupleT = 〈V, VL,Σ, δ, σ〉.
Here,V = {v0, ..., vk}, is a finite set of nodes, wherev0 ∈ V
always denotes the root node.VL is the set of leaf nodes in
V . Σ is a set of labels, which in our case is the set ofLF -
formulas.δ :⊆ V × {l, r} → V is a partial mapping from a
node to its descendant nodes, whereδ(v, l) andδ(v, r) denote
the left and right descendant nodes, respectively.σ :⊆ V → Σ
is a labeling function that maps each nodev ∈ V to a formula
σ(v) ∈ Σ. In addition, the edges in the tree can be labeled as
well, through a functionτ : V × V → Ω whereΩ is a set of
edge-labels.

1) Tree Generation:Let an ICP run be

S0 ‖ c t1=⇒ · · · tm=⇒ Sm ‖ c,
such that the ending transitiontm is a failure step, i.e.,Sm =
∅. We now define the procedure by defining the functionsδ
and VL through induction onsi. The edges can be labeled
naturally withΩ = {∨I, ∀M, IA, CA}.

Casei = 0.: We label the root nodev0 by

σ(v0) := ∀~x(~x ∈ β(S0)→ ¬c).
Let V 0

L = {v0} denote the current collection of leaf nodes.
Note that this formula is the negation of the input SMT
formula.

Casei = k+ 1 (1 < k ≤ m). : SupposeV k
L andσ have

been defined fors1, ..., sk. Write sk = Sk ‖ c and sk+1 =
Sk+1 ‖ c. Now we split the cases on the type of the step
t from sk to sk+1 as follows. Again, we use the convention
that β(S)i = Ii denotes the current interval assignment on a
variablexi.

(Pruning Case):Supposesk =⇒ sk+1 is a pruning step.
That is,

Sk ‖ c p
=⇒ Sk, (xi ∈ I2i) ‖ c,

4

whereIi ⊆ I1i ∪ I2i and∀~a ∈ β(Sk, xi ∈ I1i), c(~a) is false. If
we write

~I1 = β(Sk, (xi ∈ I1i)), ~I2 = β(Sk, (xi ∈ I2i)), and ~I = β(Sk),

then this step corresponds to the sub-tree as shown in Fig. 1,
Case A.

Formally, the sub-tree is added as follows. Letv ∈ V k
L be an

existing leaf node that is labeled by the formula corresponding
to Sk ‖ c; namely,

σ(v) = ∀~x(~x ∈ ~I → ¬c).
(We will inductively prove that such a node exists.) We then
define

δ(v, l) = v1k+1, σ(v
1
k+1) = ∀~x((~x ∈ ~I1 ∨ ~x ∈ ~I2)→ ¬c);

δ(v, r) = v2k+1, σ(v
2
k+1) = ∀~x(~x ∈ ~I → (~x ∈ ~I1 ∨ ~x ∈ ~I2));

δ(v1k+1, l) = v3k+1, σ(v
3
k+1) = ∀~x(~x ∈ ~I2 → ¬c)

δ(v1k+1, r) = v4k+1, σ(v
4
k+1) = ∀~x(~x ∈ ~I1 → ¬c)

and setV k+1

L = (V k
L \ {v}) ∪ {v3k+1}.

(Branching Case):Supposesk =⇒ sk+1 is a branching
step. That is,

Sk ‖ c br
=⇒ Sk, (xi ∈ I1i)d ‖ c,

under the condition thatI1i ⊆ Ii. If we write

~I1 = β(S, (xi ∈ I1i)), ~I2 = β(S, (xi ∈ I2i)), and ~I = β(S),

whereI ⊆ I1i ∪ I2, then this step corresponds to the sub-tree
as shown in Fig. 1, Case B. Formally it is defined as follows.
Again, let v ∈ V k

L be a leaf node such thatσ(v) = ∀~x(~x ∈
~I → ¬c). We then define

δ(v, l) = v1k+1, σ(v
1
k+1) = ∀~x(~x ∈ ~I1 ∨ ~x ∈ ~I2 → ¬c);

δ(v, r) = v2k+1, σ(v
2
k+1) = ∀~x(~x ∈ ~I → (~x ∈ ~I1 ∨ ~x ∈ ~I2));

δ(v1k+1, l) = v3k+1, σ(v
3
k+1) = ∀~x(~x ∈ ~I1 → ¬c)

δ(v1k+1, r) = v4k+1, σ(v
4
k+1) = ∀~x(~x ∈ ~I2 → ¬c)

and setV k+1

L = (V k
L \ {v}) ∪ {v3k+1, v

4
k+1}.

(Backtracking Case):Supposesk =⇒ sk+1 is a branch-
ing step. That is,

Sk′ , (xi ∈ I1i)d, S′ ‖ c bt
=⇒ Sk′ , (xi ∈ I2i) ‖ c,

when∀a ∈ β(S, (xi ∈ I1i)d, S′), c(~a) is false, andIi ⊆ I2i ∪
I1i , whereIi = β(Sk′)i. Sk′ is a previous interval assignment
sequence, withk′ < k. If we write

~I1 = β(S, (xi ∈ I1i)), ~I2 = β(S, (xi ∈ I2i), and ~I = β(Sk′),

then this step corresponds to the sub-tree as shown in Fig.
1, Case C. Formally, we simply setV k+1

L = V k
L , and do not

update the labeling.

(Fail Case): Suppose it is a failure step. That is,

S ‖ c f
=⇒ ∅ ‖ c

when∀~a ∈ β(S), c(~a) is false andS has nod-assignments.
Let ~I = β(S). This step corresponds to

∀~x(~x ∈ ~I) → ¬c
FA

We setV k+1

L = V k
L \ {v} and do not updateσ.

Complete tree.:In all, after all the steps in the ICP run are
followed, the tree that we construct isT = 〈V, V m

L ,Σ, δ, σ〉.
The axiom set is given by

A = {σ(v) : v ∈ V m
L }.

It is easy to see thatT is a valid proof tree inDA:

Proposition 11. For every ICP run ending with∅ ‖ c, the
tree construction procedure above produces a valid natural
deduction tree inDA. The size of the proofs is linear in the
computation steps.

Proof: It is clear that each proof step, as represented by
the subtree created in each case, is a valid natural deduction
step in DA. We only need to show that the tree can be
constructed. For this, we need to show that for each step
Sk ‖ c t

=⇒ Sk+1 ‖ c, whereSk+1 is not ∅, it is always
the case thatSk ‖ c labels a leaf node in the tree constructed
so far. Whenk = 0, this is the case sinceV 0

L = {v0}. Now
supposeSk ‖ c labels a leaf node. Ift is a pruning step, then
∀~x(~x ∈ ~I2 → ¬c) labelsv3k+1, which is added inV k+1

L . The
same applies to the other branching and backtracking. Finally,
the stepSm−1||c =⇒ ∅||c corresponds to closing the last leaf
labelled by∀~x(~x ∈ ~I → ¬c).

Again, once the proof tree is constructed, the details of the
ICP algorithm no longer matters. The only rules involved are
the two first-order rules inDA. Following relative soundness
of the system, to establish validity of the formula, now we
only need to validate the axiom setA.

IV. VALIDATING THE PROOFS

A. Validating the Axioms

There are two types of axioms that we allow in the proofs
constructed from ICP runs: interval axioms and constraint
axioms. To validate such axioms, we still need numerical
computations. The difference is that the proof checker only
needs to implement simple interval computation that can be
validated through stand-alone arbitrary-precision or symbolic
computation. Note that the validation of the axioms can fail
when the solver correctly returnsunsat, if the solver uses
complex numerical heuristics that can not be verified by
reliable numerical computation. In practice, we ensure the
correctness of the proof checker first, and use an abstraction
refinement loop that allows the proof checker to ask for more
detailed proofs from the solver.

The interval axioms do not contain any real functions, and
are of the form∀~x(x ∈ I1 ∨ x ∈ I2 → x ∈ I). We only need
to check thatI is a subset ofI1 ∪ I2 by comparing the end
points of the intervals, which is an easy numerical task.

The constraint axioms are of the form∀x(~x ∈ ~I → c(~x)),
and can only be verified by considering the functions that
occur inc. Although they are of the same form as the formulas

5

A. Pruning Case:

...

∀~x(~x ∈ ~I2 → ¬c) ∀~x(~x ∈ ~I1 → ¬c)
CA

∀x((~x ∈ ~I1 ∨ ~x ∈ ~I2) → ¬c)
∨I

∀x(x ∈ Ii → (x ∈ I
1

i ∨ x ∈ I
2

i))
IA

∀~x(~x ∈ ~I → ¬c)
∀MP

B. Branching Case:

...

∀~x(~x ∈ ~I1 → ¬c)

...

∀~x(~x ∈ ~I2 → ¬c)

∀x(~x ∈ ~I1 ∨ ~x ∈ ~I2 → ¬c)
∨I

∀x(x ∈ Ii → (x ∈ I
1

i ∨ x ∈ I
2

i))
IA

∀~x(~x ∈ ~I → ¬c)
∀MP

C. Backtracking Case:

∀~x(~x ∈ β(Sk′ , (x ∈ I
1

i)
d
, S

′) → ¬c)
CA

·
·
·

∀~x(~x ∈ ~I1 → ¬c)

...

∀~x(~x ∈ ~I2 → ¬c)

∀x(~x ∈ ~I1 ∨ ~x ∈ ~I2 → ¬c)
∨I

...

∀~x(~x ∈ ~I → ¬c)
∀MP

Fig. 1: Proof Trees

we solve, these axioms should contain evident properties ofthe
functions involved, usually on small intervals. Such factscan
be verified using reliable interval computations, for instance
as follows.

Definition 12 (Interval Extensions). Let f : Rn → R be a real
function. An interval functionF : IRn → IR is a function that
satisfies:

∀I ∈ dom(F), {f(x) : x ∈ I} ⊆ F (I).

A simple example of interval extensions is thenatural inter-
val extensionfor arithmetic operations, based on computations
of functions on the end points of intervals. It is obvious that:

Proposition 13. Let F be an interval extension off , and
I ⊆ dom(f). If F (I) ⊆ A, then∀x(x ∈ I → f(x) ∈ A).

Thus, the axioms are validated if we can verify that they
are consistent with all the interval extensions.

Example 14. The second pruning step in Example7 generates
an axiom

∀x∀y(x ∈ [1.7, 2] ∧ y ∈ [1, 2]→ ¬(y = x2) ∨ ¬(y = x))

This can be easily validated through the natural interval
extension of(y−x2), which is[1, 2]− [1.7, 2]2 = [−3,−0.89]
and does not contain0.

B. Taylor Proofs

Suppose we want to verify the inequalityf(x1, ..., xn) > 0
on a domain~x ∈ D = I1 × · · · × In. Using the multivariate

mean value theorem, we have that for any~a,~b ∈ D

f(~b)− f(~a) = ∇f(ξ) · (~b− ~a) =
∑

i

∂f

∂xi
(ξ) · (bi − ai)

for someξ ∈ D. Thus, we can boundf(x) onD by computing
the interval bound on the function

f(~a) +
∑

i

(

♯

(

∂f

∂xi

)

(D)

)

·D|xi

where ♯(·) denotes interval extension, andf(~a) is on the
boundary ofD.

Example 15. f(x1, x2) = x21 + x22 on domain(x1, x2) ∈
[0, 1]× [0, 1]. We have∂f/∂x1 = 2x1 ∈ [0, 2] and∂f/∂x2 ∈
[0, 2]. Thus

f(~x) ∈
∑

i=1,2

[0, 2] · (1− 0) + 0 = [0, 4].

C. The Branch and Prove Loop

In practice, ICP usually implements complicated heuristics
that are more powerful than what can be verified through
direct interval arithmetic. A practical approach first is touse
an abstraction refinement loop that allows the proof checkerto
ask the solver for proof traces of the right amount of details.
We sketch the procedures in Algorithm2 and Algorithm3.

When we fail to prove an axiom through simple interval
arithmetic, the proof checker generates new subproblems that
are returned to the solver. At this stage, the axioms become the
new theorems to be proved. This is an abstraction refinement
procedure. Algorithm3 illustrates the procedure. By executing
the loop, we may obtain proof trees that contain more and

6

Algorithm 2 ProofCheck

1: procedure PROOFCHECK(p, δ)
2: if MATCH(p,Axiom(∀x(~x ∈ ~I → c(~x)))) then
3: if ♯c(~I) then ⊲ use interval arithmetic, taylor

extension..
4: return ∅
5: else
6: (~I1, ~I2)← Split(~I)
7: (δ1, δ2)← (min(δ, 1

4
||I1||),min(δ, 1

4
||I2||))

8: return {(∀x(~x ∈ ~I1 → c(~x)), δ1), (∀x(~x ∈
~I2 → c(~x)), δ2)}

9: end if
10: else if MATCH(p,Branch(p1, p2, ~I)) then
11: U1 ← PROOFCHECK(p1, δ)
12: U2 ← PROOFCHECK(p2, δ)
13: if ~I 6⊆ (dom(p1) ∪ dom(p2)) then
14: return Error
15: else
16: return U1 ∪ U2

17: end if
18: end if
19: end procedure

Algorithm 3 Branch-and-Prove

1: procedure BRANCH-AND-PROVE(p, δ)
2: U ← PROOFCHECK(p, δ)
3: if U 6= ∅ then
4: for all (a, δ′) ∈ U do
5: p′ ← SOLVE(a, δ′)
6: BRANCH-AND-PROVE(p′, δ′)
7: end for
8: end if
9: end procedure

more detailed steps. There are two ways that the prover can
generate the subproblems, branching on a variable in the
formula or using a smallerδ. Note that under the condition
that the pruning operators in the solver is well-defined, both
procedures never change theunsat result. The branching may
give exponentially many new problems; while theδ-change
does not give new problems, but may exponentially slow down
the solver in each round. In practice we observe that such
a refinement loop is very useful, as we will show in the
experiments.

V. EXPERIMENTS

We implemented the proof generation capacity into our
open-source solverdReal1. All the experiments below are
performed on a machine of with a 32-core 2.0GHz Intel Xeon
E5-2600 Processor and 64GB of RAM. The benchmarks and
full tables of experiment statistics are also available on the
tool page.

A main set of benchmarks that we studied is from the Fly-
speck project [6], [17], which aims at a fully formalized proof

1http://dreal.cs.cmu.edu

of the Kepler conjecture. As lemmas for the proof, hundreds
of nonlinear real inequalities need to be verified. Although
the formulas usually contain only around ten variables, they
contain a huge number of nonlinear arithmetic operations and
trigonometric functions, and are mathematically challenging.
In the original proof, Hales implemented procedures that com-
bine linear programming and interval arithmetic to establish
all these formulas, but the algorithms are formally verify.In
fact, the formal verification of these nonlinear inequalities
is the last main piece of work needed to complete the full
project. Without any particular optimization on ICP, we have
observed promising results. Out of 916 nonlinear formulas in
the Flyspeck project repository, the solver returnsunsat for
107 of them with a timeout of 5 minute each, and a precision
δ = 10−3. Out of these formulas, we automatically generated
and validated the proofs for 72 instances. The proof traces
of these formulas can be very large; for instance, we proved
one with more than 2M lines in the proof (54MB file). In
Table II , we list some of the representative benchmarks to
show scalability. Many of these formulas are highly nonlinear,
for instance the formula encoded in 760.smt2 is following one

∀~x ∈ [4.0, 6.3504]5
(

2arctan(
∆2(~x)

√

∆1(~x) + ∆2(~x)2 +
√

∆1(~x)
)

−0.458(√x2+
√
x3+
√
x4+
√
x5)+0.342

√
x1+3.319204

)

< 0.0

where

∆1(~x) = 4x1(8x1(−x1 + x2 + x3 + x4 + x5 − 8)

+x2x5(x1 − x2 + x3 + x4 − x5 + 8

+x3x4(x1 + x2 − x3 − x4 + x5 + 8) + 8x2x3

−x1x3x5 − x1x2x4 − 8x4x5))

∆2(~x) = x2x5 − x2x3 + x3x4 − x4x5 + x21 − x1x2
−x1x3 − x1x4 − x1x5

On the other hand, as mentioned above, we fail to establish
about the proofs of unsatisfiability of about 30 instances. Table
2 shows some of these instances. They typically generate
proofs that are large in size, or that the branch-and-prove loop
has to generate too many sub-instances such that the proof
checking can not terminate.

VI. CONCLUSION

We presented our approach for extracting formal proofs
from a numerically-driven decision procedure in the
DPLL〈ICP〉 framework. We formalized the ICP algorithm, and
showed how to validate proof trees from the unsat answers.
A main focus for our tool is to prove nonlinear lemmas in
the Flyspeck project, and we have observed promising ex-
perimental results. We believe the approach can be combined
with existing symbolic methods, and is a first step towards
a framework that bridges the gap between symbolic and nu-
merical approaches. Further work would involve formalization
of numerical algorithms, proof abstractions, local heuristics,
and an implementation of our proof checker in standard proof
assistants.

http://dreal.cs.cmu.edu

7

ID #Var #Arith Nonlinear TimeS Proof Size #Sub #Axiom TimePC

461 6 36 poly 1.740 2145155 2 17442 203.886
789 6 86 atan2,sqrt 1.640 350329 2 2464 128.077
792 6 828 atan2,sqrt 0.400 19837 2 118 113.004
745 6 36 poly 0.750 677580 2 5222 59.865
785 6 80 atan2,sqrt 0.470 63388 2 526 26.450
760 6 2767 atan2,sqrt 0.140 711 2 5 21.089
820 6 95 atan2,sqrt 0.080 9134 2 54 14.703
815 6 95 atan2,sqrt 0.330 41954 2 279 14.703
814 6 95 atan2,sqrt 0.350 42102 2 278 14.703
816 6 96 atan2,sqrt 0.110 12195 2 92 4.994
817 6 96 atan2,sqrt 0.090 11792 2 93 4.993
784 6 80 atan2,sqrt 0.060 7203 2 56 3.595
781 6 86 atan2,sqrt 0.060 7481 2 45 2.657
793 6 834 atan2,sqrt 0.020 18 1 1 1.855
796 6 834 atan2,sqrt 0.010 18 1 1 1.710
752 6 17 poly 0.080 46360 2 277 1.709
783 6 825 atan2,sqrt 0.020 93 1 1 1.549
779 6 201 atan2,sqrt 0.010 10 1 1 0.705
867 6 17 poly 0.040 25820 2 147 0.683
742 6 55 acos,atan2,sqrt 0.001 7 1 1 0.299
508 6 53 acos,sqrt 0.001 8 1 1 0.286
507 6 29 acos,sqrt 0.001 8 1 1 0.278
744 6 24 asin,cos,sin 0.001 8 1 1 0.275

TABLE I: Experimental results (Proved instances): ID = Problem ID, #Var = Number of variables, #Arith = Number of
arithmetic operators, Nonlinear = Nonlinear operators occurred in problem, Proof Size = Number of lines of the proof,TIMES

= Solving time in seconds, #Sub = Number of subproblems generated by proof checking, #Axiom = Number of proved axioms,
TIMEPC = Proof-checking time in seconds.

ID #Var #Arith Nonlinear TimeS Proof Size #Sub

260.smt2 6 90 poly 5.030 6281203 1
866.smt2 6 38 sqrt 0.390 543061 21476
775.smt2 6 2765 atan2,sqrt 4.040 130253 2
764.smt2 6 2767 atan2,sqrt 1.700 49657 2
762.smt2 6 2767 atan2,sqrt 2.040 42238 2
484.smt2 6 1835 acos,atan2,sqrt 0.060 16 1
485.smt2 6 1961 acos,atan2,sqrt 0.070 16 1
498.smt2 6 573 acos,matan,sqrt 0.010 11 8191

TABLE II: Experimental results (Unproved instances, Timeout = 300 sec): ID = Problem ID, #Var = Number of variables,
#Arith = Number of arithmetic operators, Nonlinear = Nonlinear operators occurred in problem, Proof Size = Number of lines
of the proof,TIMES = Solving time in seconds, #Sub = Number of subproblems generated by proof checking,

REFERENCES

[1] B. Akbarpour and L. C. Paulson. MetiTarski: An automatictheo-
rem prover for real-valued special functions.J. Autom. Reasoning,
44(3):175–205, 2010.

[2] F. Benhamou and L. Granvilliers. Continuous and interval constraints.
In F. Rossi, P. van Beek, and T. Walsh, editors,Handbook of Constraint
Programming, chapter 16. Elsevier, 2006.

[3] M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert. Efficient
solving of large non-linear arithmetic constraint systemswith complex
boolean structure.JSAT, 1(3-4):209–236, 2007.

[4] S. Gao, J. Avigad, and E. M. Clarke. Delta-complete decision procedures
for satisfiability over the reals. In Gramlich et al. [5], pages 286–300.

[5] B. Gramlich, D. Miller, and U. Sattler, editors.Automated Reasoning -
6th International Joint Conference, IJCAR 2012, Manchester, UK, June

26-29, 2012. Proceedings, volume 7364 ofLecture Notes in Computer
Science. Springer, 2012.

[6] T. C. Hales. Introduction to the flyspeck project. In T. Coquand, H. Lom-
bardi, and M.-F. Roy, editors,Mathematics, Algorithms, Proofs, volume
05021 ofDagstuhl Seminar Proceedings. Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Ger-
many, 2005.

[7] T. C. Hales, J. Harrison, S. McLaughlin, T. Nipkow, S. Obua, and
R. Zumkeller. A revision of the proof of the kepler conjecture. Discrete
& Computational Geometry, 44(1):1–34, 2010.

[8] D. Jovanovic and L. M. de Moura. Solving non-linear arithmetic. In
Gramlich et al. [5], pages 339–354.

[9] S. Kong, S. Gao, and E. Clarke. Floating-point bugs in theembedded
gnu c library, 2013. CMU SCS Technical Report CMU-CS-13-130.

[10] S. Kupferschmid, B. Becker, T. Teige, and M. Fränzle. Proof certificates

8

and non-linear arithmetic constraints. In R. Kraemer, A. Pawlak,
A. Steininger, M. Schölzel, J. Raik, and H. T. Vierhaus, editors,DDECS,
pages 429–434. IEEE, 2011.

[11] S. McLaughlin and J. Harrison. A proof-producing decision procedure
for real arithmetic. InCADE, pages 295–314, 2005.

[12] C. Muñoz and A. Narkawicz. Formalization of a representation of
Bernstein polynomials and applications to global optimization. Journal
of Automated Reasoning, 2012. Accepted for publication.

[13] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving sat and sat modulo
theories: From an abstract davis–putnam–logemann–loveland procedure
to dpll(t). J. ACM, 53(6):937–977, 2006.

[14] G. O. Passmore and P. B. Jackson. Combined decision techniques for the
existential theory of the reals. In J. Carette, L. Dixon, C. S. Coen, and
S. M. Watt, editors,Calculemus/MKM, volume 5625 ofLecture Notes
in Computer Science, pages 122–137. Springer, 2009.

[15] G. O. Passmore, L. C. Paulson, and L. M. de Moura. Real algebraic
strategies for metiTarski proofs. In J. Jeuring, J. A. Campbell, J. Carette,
G. D. Reis, P. Sojka, M. Wenzel, and V. Sorge, editors,AISC/MKM/-
Calculemus, volume 7362 ofLecture Notes in Computer Science, pages
358–370. Springer, 2012.

[16] L. C. Paulson. MetiTarski: Past and future. In L. Beringer and A. P.
Felty, editors,ITP, volume 7406 ofLecture Notes in Computer Science,
pages 1–10. Springer, 2012.

[17] A. Solovyev and T. C. Hales. Formal verification of nonlinear inequal-
ities with taylor interval approximations. In G. Brat, N. Rungta, and
A. Venet, editors,NASA Formal Methods, volume 7871 ofLecture Notes
in Computer Science, pages 383–397. Springer, 2013.

[18] A. Stump, D. Oe, A. Reynolds, L. Hadarean, and C. Tinelli. Smt proof
checking using a logical framework.Formal Methods in System Design,
42(1):91–118, 2013.

	I Introduction
	II A Formalization of Interval Constraint Propagation
	III Extracting Proofs from ICP Runs
	III-A First-Order Proofs of Unsatisfiability

	IV Validating the Proofs
	IV-A Validating the Axioms
	IV-B Taylor Proofs
	IV-C The Branch and Prove Loop

	V Experiments
	VI Conclusion
	References

