
Interactive Data Exploration for High-Performance
Fluid Flow Computations Through Porous Media

Nevena Perović, Jérôme Frisch, Ralf-Peter Mundani, and Ernst Rank
Chair for Computation in Engineering

Technische Universität München, Germany
Email: nevena.perovic@tum.de

Abstract—Huge data advent in high-performance computing
(HPC) applications such as fluid flow simulations usually hinders
the interactive processing and exploration of simulation results.
Such an interactive data exploration not only allows scientiest to
‘play’ with their data but also to visualise huge (distributed) data
sets in both an efficient and easy way. Therefore, we propose an
HPC data exploration service based on a sliding window concept,
that enables researches to access remote data (available on a
supercomputer or cluster) during simulation runtime without
exceeding any bandwidth limitations between the HPC back-end
and the user front-end.

Keywords-high-performance computing, interactive data explo-
ration, adaptive data structure, multi-grid-like solver concept,
flow through porous media

I. INTRODUCTION AND MOTIVATION

In its 1987 report [1], the U.S. National Science Foundation
stated computational steering as valuable scientific discov-
ery. Computational steering is the interaction from a visual
front-end with a running simulation (back-end) in order to
modify properties such as geometry or boundary conditions
for immediate feedback, i. e. allowing users to intervene with
an application during runtime and explore any effect caused
by their changes [2]. According to [3], "steering enhances
productivity by greatly reducing the time between changes to
model parameters and the viewing of the results". Even there
has been a lot of research on steering within the last two
decades, the combination of interaction and high-performance
computing (HPC) is still a challenging endeavour.

Typically, massive parallel simulation codes lead to huge
data advent that cannot be interactively processed as necessary
for a steering approach – in our case the computed results
of a fluid flow simulation through porous media. Here, one
major problem is the link between front- and back-end, i. e.
the network with its bandwidth and latency restrictions. A
proper paraphrase, to be found in [4], states that arithmetic
is cheap, latency is physics, and bandwidth is money. Hence,
to overcome this bottleneck special services are necessary in
order to leverage steering for demand-driven interactive HPC
data exploration.

Therefore, we have designed a so-called sliding window
concept [5] that allows users to ‘navigate’ through data and
retrieve computation results with respect to varying regions of
interest and resolutions. Key feature of that concept is to keep
the total amount of data to be transferred between back- and

front-end constant, hence any bandwidth limitations are not
exceeded at all times. Based on the sliding window, we have
developed an HPC service for interactive data exploration, that
was tested for parallel CFD applications. We will demonstrate
the applicability of this service for micro-scale simulations
of flows through porous media and highlight the benefits for
researchers in order to gain insight.

The remainder of this paper is as follows. First we will
present the underlying physical fluid flow phenomena and their
modelling in order to perform a high performance computa-
tion. We will then introduce the proposed concept in order to
integrate services into the previously described parallel fluid
flow computations and present a complex engineering example
of flows through porous media. Finally, the paper will close
with a short summary and outlook.

II. HIGH PERFORMANCE COMPUTING CONCEPT FOR
COMPUTATIONAL FLUID DYNAMICS SIMULATIONS

The computational fluid dynamics (CFD) simulations are
based on an incompressible, isothermal, single-phase Newto-
nian fluid flow described by the conservation of mass equation
written in vector form as

∇ · ~u = 0 (1)

and three conservation of momentum equations

∂ui
∂t

+∇ · (ui~u) = ∇ · (ν∇ui)−
1

ρ
∇ · (p~ei) + bi (2)

for i ∈ {x, y, z}, where ~u = (ux uy uz)T denotes the velocity
field in [m/s] in the three spatial dimensions x, y, z, t the
current time of the simulation in [s], ν the kinematic viscosity
in [m2/s], ρ the density in [kg/m3], p the pressure in [Pa], ~ei
the unity vector in the direction i, and bi sums up external
volume forces such as acceleration due to gravity in [m/s2].

For the complete historical derivation of the full Navier-
Stokes equations (1) and (2) the interested reader is referred
to standard literature such as [6, 7, 8].

In order to solve the Navier-Stokes equations, a fractional
step approach (also called projection method) proposed by
Chorin [9] is applied. An intermediate velocity field is com-
puted while the pressure field is neglected at first. Using
this intermediate velocity field, a pressure Poisson equation is
established and has to be solved in order to correct and update

c©2015 IEEE
2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, 2014, pp.
463-470. doi: 10.1109/SYNASC.2014.68

ar
X

iv
:1

80
7.

00
14

9v
1 

 [
cs

.C
E

] 
 3

0 
Ju

n 
20

18



the intermediate velocity field and guarantee a convergence
free velocity field at the next time step.

The numerical discretisation is based on a finite volume
discretisation in space and a second order explicit Adams-
Bashforth method in time [10]. While applying Chorin’s
projection method, the velocity terms are treated explicitly and
the pressure terms are treated implicitly.

The backbone of the numerical discretisation and the basis
for a parallel computation is formed by a highly adaptive
data structure described in detail in [11]. As a matter of
completeness however, the principal points will introduced
briefly.

link to data grid of size bxby surrounded by 

halo 

Figure 1. Top part: non-overlapping adaptive grid structure. Bottom part:
hierarchical construction of the data structure out of logical grids and data
grids.

The data structure is constructed out of non-overlapping
hierarchical block-structured orthogonal Cartesian grids and
is depicted in figure 1. In the top part, the total agglomerated
computational grid can be seen, which will be distributed
across different processes for performing a parallel compu-
tation in a distributed memory sense. In the bottom part, the
hierarchical construction is shown. In general, the data struc-
ture comprises two main parts: on the one hand, logical grids
manage all hierarchical topological information such as links
to parents and children as well as geometrical information such
as bounding boxes. On the other hand, data grids containing
actual variables in order to perform numerical computations
such as velocities, pressures, temperatures etc. are linked to

the previously mentioned logical management grids.
The hierarchical grid construction starts with a logical root

grid at depth 0 which can be refined rtx×rty×rtz times. In case
of the example shown in figure 1, four logical grids are refined
again rsx × rsy × rsz times which can be repeated recursively
until the desired depth has been reached. The refinement on the
root level and on all subsequent lower levels can be selected
arbitrarily in order to account for a non-cubic initial domain
geometry.

Every logical grid is linked to one data grid containing
all the variables which are necessary during the numerical
simulation. A data grid is oblivious to topological and geo-
metrical information and relies on the link to the logical grid
management structure. A data grid can also be called block and
is an orthogonal Cartesian grid with the size of sx × sy × sz .
Every data grid is identical and si must be divisible without
remainder by rsi and by rti in order to avoid non-conforming
setups.

The data grids are padded by one layer of ghost cells in
all directions in order to perform a domain decomposition
following a Schwarz approach [12]. Hence, the data grids
do not overlap, but the ghost cells of the respective grids
are overlapping. The solution process is repeated in an iter-
ative manner containing two different phases: an update (or
communication) phase and a computation phase. During the
update phase, boundary values are exchanged and updated in
the corresponding neighbouring data grid’s ghost cells. This
process is repeated until the solution has converged.

In case of a serial computation, the order between the update
phase and the computation phase is given implicitly by the
ordering of the lines of code in the program. In a parallel
case using a distributed memory approach no global time is
present, and the synchronisation has to be implemented using
explicit message exchanges. The order of the synchronisation
calls is crucial, as a wrong synchronisation procedure would
result in undefined data states. The communication is handled
by explicitly exchanging messages using the message passing
interface (MPI). The communication structure is divided into
three phases (bottom-up, horizontal, and top-down) where a
mixture of blocking and non-blocking communication calls
ensures a correct predefined ordering. Details about the com-
munication structures can be found in [13].

The implicit pressure Poisson equation is solved imme-
diately on the grid itself rather than assembling one huge
system matrix. As solution procedure a multi-grid-like solver
integrated into the data structure itself is applied. It uses the
previously mentioned communication structures for its solving
process and is able to treat large data amounts. Details about
performance results are published in [11].

In addition to the computation processes containing the dis-
tributed grids, special dedicated processes are running concur-
rently containing a topological and geometrical repository of
all data grids over all processes without containing any actual
data values such as pressures or velocities. These processes
are called neighbourhood servers (NBH) as their primary task
is to answer queries such as ‘who is my neighbour on the



Figure 2. Service Based Concept – User posts requests to collector (1) which are forwarded to the neighbourhood server (2). NBH identifies the simulation
processes holding data grids and orders a visualisation (3). The data is then sent to the collector (4), which compresses them and forwards them to the user
(5).

east side?’. Therefore, the NBH servers have a global view
over the complete domain. A unique grid identification (UID)
consisting of a 64 bit integer ensures a specific addressing
over different domains and different grids containing the
encoded rank of the process as well as the grid ID on that
specific process. If only one neighbourhood server is used,
every computing process has to communicate with the NBH
server for querying information about neighbouring grids.
This will lead at some point to a bottleneck. The paper [14]
describes remedies using multiple NBH servers and special
synchronisation techniques in order to overcome the bottleneck
problem.

In order to get a good parallel performance, a load distri-
bution has to be performed in order to distribute the amount
of grids and, thus, the workload fairly over all available pro-
cesses. To this extent, space filling curves as introduced in [15]
can be used. The presented concept applies a Lebesgue curve
[16] (also called z-curve due to its shape) as its linearisation
can be described and implemented easily by a Morton ordering
[17].

Finally, Frisch2014SCPE shows performance measurements
for the parallel computation of uniform as well as adaptive grid
setups using all of the aforementioned concepts on the Blue
Gene/P installed at Universitatea de Vest din Timişoara (UVT)
in Romania.

III. SERVICE-BASED INTERACTION CONCEPT

Service-based interaction concepts get more and more im-
portant in nowadays computation environments. For the visu-
alisation, the paper [5] introduces a so called sliding window
concept in order to overcome typical bandwidth problems
while visualising large domains. Typically, CFD simulations
generate giga bytes of data per time step which has to be
treated and visualised somehow. The typical state of the
art procedure is to dump data for each time step to the
supercomputer’s network file system (or hard disk), transfer it

completely to a front-end visualisation machine, store it there,
and explore and evaluate it in a visualisation environment in
order to gain valuable scientific information, as ‘the purpose
of computing is insight, not numbers1’. Unfortunately, this
procedure puts a lot of strain on the memory resources
as well as the network bandwidth. A sample computation
which was done with the above mentioned program using
80 billion cells on SuperMUC (one of Germany’s national
supercomputers) had a memory footprint of over 28 tera byte
per time step. Even if this information can be stored on disk,
no visualisation program will be able to open and treat the
contents interactively.

Thus, a different approach was chosen. The user selects a
window (i. e. region) of interest and together with a given net-
work bandwidth this request is sent to the simulation program.
The program then selects the relevant parts by intersecting
the window with the computational domain and checks how
many information it can put inside the stream until the given
bandwidth is exceeded and sends the results back to the user
who can visualise it on-the-fly. Using this approach, a user
can either have a look at the complete domain in a coarse
resolution or zoom into a particular part and see it with all
its details. The numerical computation is not influenced by
the selection of the view itself; it is always performed on the
finest possible resolution given by the data structure and the
previous problem definition.

Figure 2 illustrates this request and selection service. A user
is requesting to view a certain area with a certain resolution
which his network connection can support without problem
and sends this request to a dedicated collector server (arrow
1). The collector contacts the neighbourhood server (arrow 2)
and transmits the required information.

Once the NBH server has identified the processes which

1written by Richard Wesley Hamming in the 1962 preface to Numerical
Methods for Scientists and Engineers.



contain parts of the domain the user requested, it contacts them
(arrow 3) and orders these processes to send the required in-
formation to the collector (arrow 4). The collector receives the
information, compresses them in a serialised stream and sends
them to the user (arrow 5). In case of a slow communication
between collector and user, the simulation processes are not
blocked as they continue computing as soon as they have sent
their information package to the collector.

Thus, the collector server represents an intermediate step
separating the user from the computation processes in order
not to disturb the simulation itself. Furthermore, it technically
decouples the computation processes’ MPI communication
from the user’s socket based communication and acts as
a collector and gateway to the outside world. Hence, the
complete simulation back-end can run on a supercomputer
and the user connects at an arbitrary time to the collector.
It is not necessary to be connected at the starting time of the
simulation. Furthermore, a user can connect or disconnect to
or from the same simulation more than once. Thus, a user can
check the progress of the simulation at multiple points in times
while it is still running without the necessity of interrupting
the simulation or predefining the visualisation steps a-priori.
This visualisation based service showed very promising results
so far and will be used for porous media flows next.

Instead of ordering now visualisation tasks for interactive
data explorations, different kinds of requests can be send to
the collector and interpreted accordingly, such as changing
of boundary conditions, or refinement of grids. The complete
simulation process can be driven by user requests submitted to
a back-end simulation framework running on a supercomputer
and acting as a service handler.

IV. APPLICATION EXAMPLE: GROUND WATER FLOW
THROUGH POROUS MEDIA

The following section of the paper will describe a complex
engineering application example treating a flow through a
porous media using the above mentioned program concepts
and services.

In order to describe a fluid flow through an arbitrary porous
media, scientists rely on mathematically established and ex-
perimentally proven concepts established by Henry Darcy, a
French hydraulic engineer of the 19th century. According to
his formulation, the ground water flow is directly proportional
to the hydraulic gradient over a measured domain i = ∆p

∆L and
a hydraulic permeability k of earth layers through which the
flow circulates.

The hydraulic permeability k carries within itself a vast
amount of information about the physical properties of an
investigated medium such as the consistency and distribution
of soil particles, the order of soil layers assuming an existence
of non-homogeneous scenarios, and the type of soil (in a
comparison to already experimentally determined values for
several hundred types of soil). Due to a high impact of k on
the accuracy of other hydraulic parameters in a wide range of
engineering applications, a lot of effort is put into a precise
definition, measurement, and interpretation of the permeability.

The detailed description of experimental apparatuses which
can be used to measure hydraulic conductivity K and, thus,
indirectly a permeability k will not be presented here, as
the relation between k [m2] and K [m/s] is already well
established and consists only of known properties of a fluid,
namely, viscosity, density, and acceleration due to gravitational
forces. Furthermore, the settings of physical experiments are
highly dependable on the specific goal of examiners such as
global values of permeability in one phase flow or particular
values for every single flow-phase and for every given soil
layer. Due to the complexity of the measurement, we will not
attempt to incorporate the complete procedure here, but the
interested reader is referred to already existing literature such
as [18].

In recent years, the ever increasing performance of com-
puters provided scientists many possibilities to conduct very
fine calculations on rather small domains. Hence, current
researches often address the coupling of the Navier-Stokes
equations (micro scale) with the Darcy equations (macro scale)
in order to bridge scales and to use micro scale results within
macro scale computations. Any call to the micro scale (as
small part of the macro scale domain) requires a full 3D run
of the simulation code, which is costly in terms of time and,
thus, should be executed only when necessary, i. e. demand-
driven due to user requests.

Rather than making general conclusions about advantages
and disadvantages that arise from the common concept of these
two models, we have intentionally chosen the permeability
variable as an obvious link between them and based our
research on how this value can be evaluated in one model and
then without restriction used in another one. The complete
study is conducted with respect to the following assumptions:

a) the granular pore geometry is highly irregular, without a
specific pattern that repeats itself throughout the domain,

b) the irregularity of the domain is defined by a realistic
granulometric sand curve,

c) a laminar flow regime is used for both models by fixing
the Reynolds number to a low value,

d) the fluid is treated as incompressible,
e) the dominant flow direction is horizontal, i. e. parallel to

the x-direction of the Cartesian coordinate system,
f) the influence of the gravity force as a body force is

negligible compared to the viscous and pressure terms,
but will be taken into consideration, in order to be
consistent in the formulation.

A. Governing Equations: Darcy Law

In his experimental work Henry Darcy established a very
important relationship among several hydraulic parameters
which became the basis for vast amount of subsequent the-
oretical studies. Hence, the water seepage through naturally
settled ground layers Q [m3/s] is directly proportional to
the hydrostatic pressure difference and the permeability, and
inversely proportional to the length of the sample and to the
kinematic viscosity of the fluid. The Darcy equation has the
following form:



Q

A
= −k

µ
· ∆Hp

L
, (3)

K =
kρg

µ
, and (4)

Udarcy = −K∆P

L
, (5)

where the ratio Q/A is often referred to as Darcy flux,
which should not be confused with the fluid velocity ~u [m/s]. k
denotes the permeability of the chosen medium, µ the dynamic
viscosity of the fluid [kg/(m·s)], K the hydraulic conductivity
[m/s], and ∆Hp [Pa] the pressure drop on the length L [m]
of the sand bed.

As the calculation and the visualisation of results are
essentially conducted in all three directions, the corresponding
vector components of the velocity are linked to the respective
values of the pressure drop, permeability values [kx, ky, kz],
and length differences ∆x,∆y, and ∆z.

B. Governing Equations: Navier-Stokes Equations

The Darcy Law is derived from physical Navier-Stokes
equations introduced in section II which describe the fluid
flow on a micro scale.

C. Simulation Setup

In order to be able to evaluate the obtained results, the
same pore geometry is used in a set of different scenarios, in
which the value of porosity is defined as constant for a single
scenario. Such restrictions led to unambiguous calculation
settings, defined in figure 3, which are then suitable for
subsequent analyses.

Furthermore, in this chapter two cases based on different
geometries will be presented, with calculated values of per-
meability, challenges that we meet, description of ongoing
studies as well as how the previously introduced service-based
exploration concept can be used throughout the process, in
order to analyse our data sets.

D. Generation of the Domain

The generated testing domains can be split into two groups:
1. with random, irregular geometry, that can be seen in

figures 4 and 6 and
2. with regular geometry setup, which is thoughtfully tested,

but not presented here, as the first irregular case offers a
far better basis for exploration of the introduced sliding
window concept.

Whereas all regular domains are generated analytically, taking
into consideration only geometrical parameters of inserted
spheres, irregular domains are far more complicated and
generated as a rectangular shape with predefined dimensions,
in which all spheres with different diameters representing
soil grains according to the granulometric distribution (cf.
figure 3) are placed using random distribution functions.
Geometric intersection tests are performed in order to prevent

Figure 3. Granulometric curve along with calculated number of spheres,
extracted from the regular domain in order to form a fluid flow domain

Figure 4. Complex geometry generated using random distribution function
(stage 1). Inversion of this geometry forms a fluid flow domain (stage 2)

the overlapping of spheres, such that the generated sample has
a physical validity.

Once the sample geometry is generated and described using
a boundary representation method, a block-mesh generator
based on an octree generation as described in [19] is creating
a 3D volume discretisation of the domain by setting the
corresponding boundary conditions on the data grids.

Due to agglomerations of ‘artificial’ sand grains near the
walls, the results for the relevant parameters such as velocity,
pressure, and permeability values were very disperse. In order
to reduce local boundary influences, subsequent analyses are
conducted on sub-domain samples closer to the centre of the
main domain.

The amount of solid particles goes from only 35% up to
densily packed 65% of the total volume. As the inflow velocity



can have a significant influence on the velocity distribution
throughout the domain – leading to possible numerical in-
stabilities – a larger simulation domain was intentionally set
in x-direction, where a fixed boundary condition value was
applied.

The implemented boundary conditions are defined as fol-
lows:

• at the left-most boundary – Dirichlet boundary conditions
for the inflow velocity with a fixed value of uin,x =
1 m/s, uin,y = uin,z = 0 and homogeneous Neumann
boundary conditions for the pressure,

• at the right-most boundary – free outflow boundary con-
ditions with homogeneous Neumann boundary conditions
for the velocity and Dirichlet conditions with a pressure
value set to zero,

• at all other walls of the domain – No slip boundary
conditions with Dirichlet boundary conditions fixed at
zero for the velocities (i. e. the velocity of the fluid is at
rest in the vicinity of the wall) and Neumann boundary
conditions for the pressure, and

• at the surface of sand grains – No slip boundary con-
dition, as all spheres are treated as solid (similar to
the walls), with fixed position over the space and non-
deformable over the time particles.

Figure 5 highlights the benefits of on interactive data explo-
ration using the sliding window concept for a complex flow
through a porous media. The simulation is always executed
on the deepest level of refinement (in this case three levels)
using around 6 million cells. On the top level (top part of
figure 5) only a few cells are visualised, but they can give a
good impression of the overall flow behaviour using a very
limited amount of the available, i. e. computed information.

Moreover, the smallest details would not be distinguishable
any more as the differences in scales are too big. If more
details should be visualised, only one small part of the
geometry is visualised in more details (middle part of figure
5). Here, more details can be analysed around a zoomed area
visualising more or less the same amount of cells and, thus,
keeping the transmitted bandwidth the same as for the top level
visualisation. The initial geometry was overlaid in all of the
examples in order to get an idea of the zoomed region. Even
more details can be seen on a smaller region in the lower part
of figure 5.

E. Further analyses

Taking into account the previously described concept and
all benefits that arise from its implementation, different pa-
rameters’ analyses can be carried out already after first steps
of the simulation process, giving us an overall trend of the
physical validity of the conducted experiments. One of these
examples is depicted in the figures 6, 7, and 8, where the
fluid flow simulation through the generated porous medium
is presented with depicted sensitivity analyses of permeability
value, previously denoted in subsection IV-A.
Having on mind the complexity of the generated geometry

Figure 5. Interactive multi-level domain exploration using the sliding window
concept. Displayed are velocity magnitudes on a selected region of interest.
In the top picture a ‘global’ view is selected giving a global impression. In
the middle and the lower picture, more and more details can be seen while
zooming in.

and the complexity of the data structure that supports such
cases, analysing the complete data set in real time would
be demanding task, if at all possible to transmit such huge
amounts of data over the underlying network, without having
side effects. Furthermore, for the most such analyses, the
whole data set is not really necessary for studying a specific
parameter in a specific part of the domain under particular
circumstances. This concept allow us to conduct memory and
time consumption saving tests without any loss of data that
could influence the results itself.



Figure 6. Calculation domain randomly filled up with spheres of different
size, with predefined volumetric contribution of all fractions to the total
volume of solid phase

Figure 7. Calculated permeability value for 12 arbitrarily chosen points
throughout irregularly (randomly) set domain. Two first points are taken from
the part of the domain, where no spheres are positioned

Figure 8. Calculated and mean value of permeability for 10 points solely
from part of the domain filled with spheres – irregular sphere packing

In figure 6 randomly generated highly irregular geometry,
which was investigated in this particular study is shown. On
the deepest level of our data structure (resulting to the reso-
lution of 320× 160× 160 cells) more than 8 million cells are
taken into calculation. Analysing parameters at this level could
be cumbersome in the means of transferring calculated data for

a particular desired time step. For that reason, the visualisation
of the whole domain is done on the coarsest level, in order
to check all set boundary conditions and possible conflicts
that could be already there effectively spotted. On the next
finer level, also depicted in figure 5 (middle plot), the general
trend of permeabilty value is visualised and consequently
shown in figure 7, whereas on the deepest, in this case third
level of refinement the detailed analyses are conducted, where
necessary plots of spatial distribution of explored values are
produced. One similar plot is shown in figure 8.
Closely observing enclosed diagrams, it is obvious that some
irregularities in behavior of examined parameter are not to
be detected on the coarser level, show in figure 7. If there
were no possibility to explore mentioned parameter on a finer
level, the shown behavior would lead to the wrong conclusion
that our permeability value is constant throughout domain and
representative for every spatial distribution of inserted spheres.
Nevertheless, enclosed finer representation, depicted in figure
8 highlights the spatial fluctuation of permeability (drawn
with blue line) comparing to calculated mean value (drawn
with red dot line). Such aberration can be explained with fact
that the domain was highly irregular with no patterns to be
repeated throughout it and therefore the values of permeability
are expected to be highly diverse. Ongoing research goes
into direction of defining such relationship between aforemen-
tioned value and sieve curve (cf. figure 3) on which basis the
complex geometry was generated. Such defined permeability
value should be completely independent of spatial distribution
of solid bodies over the domain. Already gathered results are
promising.

Shortly explained setting of conducted analyses is just an
example of application of our concept in diverse engineering
problems. Nevertheless, it shows clearly, that such analyses are
highly feasible for wide range of physical phenomena and their
fundamental parameters, providing a powerful tool for experts
to either establish further new relationships among variables
of interests or explore new behavior by interactively changing
the set of input values on-the-fly, having immediate response
and logically comprehensible feedback.

Along with the detailed explanation of the implemented
high performance computing routines, some first obtained
results are presented in this section, with intention to validate
(in future) our finite volume concept for porous media flow
in comparative analyses to published results based on finite
elements solvers as well as to data obtained from – specifically
for this purpose – conducted experiments.

V. CONCLUSION

In order to tackle the huge data advent arising from massive
parallel computations, a sliding window concept based on
services was introduced in this paper, enabling a user to select
the computational domain as a whole or highlight a specific
detail and visualise it interactively.

This paper presented the basic concepts and data structures
of the underlying computational domain as well as the neces-
sary data exchange and load balancing strategies in order to



execute a simulation on a massive parallel computing systems.
Hence, this paper combined the concepts of the sliding window
visualisation with HPC computing in order to simulate and
interactively explore a complex engineering scenario such as
a flow through porous media. The HPC service based approach
shall be investigated further in future in order to obtain benefits
from on-demand computing and adaptive mesh refinement for
instance.

VI. ACKNOWLEDGEMENT

This publication is partially based on work supported by
Award No. UK-c0020, made by King Abdullah University of
Science and Technology (KAUST). Furthermore, the authors
would like to cordially thank for the support and usage of the
Blue Gene/P at Universitatea de Vest din Timişoara (UVT) in
Romania.

REFERENCES

[1] B.H. McCormick, T.A. DeFanti, and M.D. Brown, “Vi-
sualization in scientific computing,” Computer Graphics,
vol. 21, no. 6, 1987.

[2] J.D. Mulder, J.J. van Wijk, and R. van Liere, “A
survey of computational steering environments,” Future
Generation Computer Systems, vol. 15, no. 1, pp. 119–
129, 1999.

[3] R. Marshall, J. Kempf, S. Dyer, and C.C. Yen, “Vi-
sualization methods and simulation steering for a 3D
turbulence model of Lake Erie,” ACM SIGGRAPH
Computer Graphics, vol. 24, no. 2, pp. 89–97, 1990.

[4] M. Hoemmen, Communication-avoiding Krylov Sub-
space Methods, Ph.D. thesis, University of California
at Berkeley, 2010.

[5] R.-P. Mundani, J. Frisch, and E. Rank, “Towards interac-
tive HPC: Sliding window data transfer,” in Proc. of the
3rd Int. Conference on Parallel, Distributed, Grid and
Cloud Computing for Engineering. 2013, Civil-Comp
Press.

[6] G.K. Batchelor, An Introduction to Fluid Dynamics,
Cambridge University Press, 2000.

[7] J.H. Ferziger and M. Perić, Computational Methods for
Fluid Dynamics, Springer, 3rd rev. edition, 2002.

[8] C. Hirsch, Numerical Computation of Internal and
External Flows, Volume 1, Butterworth–Heinemann, 2nd
edition, 2007.

[9] A.J. Chorin, “Numerical solution of the Navier-Stokes
equations,” Mathematics of Computation, vol. 22, no.
104, pp. 745–762, 1968.

[10] H. R. Schwarz and N. Köckler, Numerische Mathematik,
Vieweg + Teubner, 8th rev. edition, 2011.

[11] J. Frisch, R.-P. Mundani, and E. Rank, “Adaptive multi-
grid methods for parallel CFD applications,” Scalable
Computing: Practice and Experience, vol. 15, no. 1, pp.
33–48, 2014.

[12] H. A. Schwarz, “Ueber einen Grenzübergang durch
alternirendes Verfahren,” Vierteljahrsschrift der Natur-

forschenden Gesellschaft in Zürich, vol. 15, pp. 272–286,
1870.

[13] J. Frisch, R.-P. Mundani, and E. Rank, “Communi-
cation schemes of a parallel fluid solver for multi-
scale environmental simulations,” in Proc. of the 13th
Int. Symposium on Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC). 2011, pp. 391–397,
IEEE Computer Society.

[14] J. Frisch, R.-P. Mundani, and E. Rank, “Resolving neigh-
bourhood relations in a parallel fluid dynamic solver,” in
Proc. of the 11th Int. Symposium on Parallel and Dis-
tributed Computing. 2012, pp. 267–273, IEEE Computer
Society.

[15] M. Bader, Space-Filling Curves – An Introduction with
Applications in Scientific Computing, Springer-Verlag,
2013.

[16] H.L. Lebesgue, Leçons sur l’intégration et la recherche
des fonctions primitives, Gauthier-Villars, 1904.

[17] G.M. Morton, “A computer oriented geodetic data base
and a new technique in file sequencing,” Tech. Rep.,
IBM Ltd., Ottawa, Ontario, Canada, 1966.

[18] “Method 9100 – Saturated hydraulic conductivity, sat-
urated leachate conductivity, and intrinsic permeabil-
ity,” Tech. Rep., United States Environmental Protection
Agency EPA, 1986.

[19] R.-P. Mundani, Hierarchische Geometriemodelle zur
Einbettung verteilter Simulationsaufgaben, Ph.D. thesis,
Universität Stuttgart, 2006.


	I Introduction and Motivation
	II High Performance Computing Concept for Computational Fluid Dynamics Simulations
	III Service-Based Interaction Concept
	IV Application Example: Ground Water Flow through Porous Media
	IV-A Governing Equations: Darcy Law
	IV-B Governing Equations: Navier-Stokes Equations
	IV-C Simulation Setup
	IV-D Generation of the Domain
	IV-E Further analyses

	V Conclusion
	VI Acknowledgement

