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Abstract—Transportation processes, which play a prominent
role in the life and social sciences, are typically descrilk
by discrete models on lattices. For studying their dynamicsa
continuous formulation of the problem via partial differential
equations (PDE) is employed. In this paper we propose a symbo
computation approach to derive mean-field PDEs from a lattie-
based model. We start with the microscopic equations, which
state the probability to find a particle at a given lattice site.
Then the PDEs are formally derived by Taylor expansions of tie
probability densities and by passing to an appropriate limt as
the time steps and the distances between lattice sites tenal zero.
We present an implementation in a computer algebra system it
performs this transition for a general class of models. In oder
to rewrite the mean-field PDEs in a conservative formulation
we adapt and implement symbolic integration methods that ca
handle unspecified functions in several variables. To illusate our
approach, we consider an application in crowd motion analyis
where the dynamics of bidirectional flows are studied. Howesr,
the presented approach can be applied to various transportion
processes of multiple species with variable size in any dimsion,
for example, to confirm several proposed mean-field models ffo
cell motility.

I. INTRODUCTION

level the dynamics of each individual are modelled takirtg in
account its interactions with all others as well as intecast
with the physical surrounding. This approach results irhhig
dimensional and very complex systems of equations. On the
macroscopic level the crowd is treated as a density which
evolves according to a partial differential equation (PRIE)
systems thereof. The transition from the microscopic to the
corresponding macroscopic description is an active area of
research with a lot of open analytic questions.

On the microscopic level a distinction is made between
two different modelsforce-basedr lattice-basedmodels. In
the former the dynamics of each individual is determined by
the forces acting upon it, i.e. exerted from the others aed th
surrounding; the latter states the probability to find aiplert
at a discrete position in space (the lattice point) given the
transition rates of the particle to move from one discretticka
point to another.

Lattice-based models, also known as cellular automata, are
a very prominent tool to describe cell motility, cf. [8], aglv
as pedestrian dynamics (cf. [9], [10]), since exclusion-pro
cesses can be included naturally. In exclusion-based gsese
each lattice site can be occupied by at most one individual,

Mean-field models play an important role in applied math-giving a simple way to account for the finite particle size.
ematics and have become a popular tool to describe tramsportn the last years there has been an increasing interest in the

tion dynamics in the life and social sciences. In the deidvat

derivation of the corresponding continuum equations irhbot

of such models the effect of a large number of individuals on &ields, see for example [1], [2] in case of cell dynamics ot [6]

single individual is approximated by a single averaging@eéff
the so called mean-field. Applications include cell migrati
at high densities, cf. [1], [2], transport across cell meantas

[7] describing pedestrian dynamics. The general struotdire
the resulting mean-field equations depends on the transitio
rates, but common features include

as occurring in ion channels, cf. [3], [4], traffic flow [5] as

well as the motion of large pedestrian crowds, see e.g. [6], 1)
[7]. Understanding the complex dynamics of large interagti
groups of particles is of high practical relevance andatgti a 2)
lot of research in the field of physics, transportation resea

and applied mathematics.

their conservative nature; i.e. they are based on the
assumption that the total mass is conserved;

an underlying gradient flow or perturbed gradient
flow structure with respect to a certain metric; so-
lutions of the first one correspond to minimizers of

. . an energy functional with respect to a certain metric.
Mathematical models on the micro- as well as the macro-

scopic level have been used successfully to describe warioohese structural features allow to write the mean-field PDEs
aspects of these transportation processes. On the mi@ioscoin terms of the diffusivity and energy functionals; quaett
which are of interest for analysists. Therefore it is ddd@a

to derive the mean-field equations in this conservative form
although the general formulation is not unique.
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Different strategies have been used to pass to the macro-
scopic limit, i.e. to derive the corresponding continuunuaq
tions as the number of particles tends to infinity, in either
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approach. In force-based models the macroscopic limit ean bcohesion and aversion — this means they try to follow and
derived using the so called BBGKY hierarchies, see for examstay close to individuals moving in the same direction and to
ple [11], initially developed in the field of statistical pbigs.  step aside when being approached by an individual moving in
In the case of stochastic underlying dynamics the derimatio the opposite direction. We expect that these minimal dynami
of the mean-field description has been studied rigoroudly fowill lead to the formation of directional lanes, a phenomeno
simpler models by considering the hydrodynamic limit, seethat has been observed in crowded corridors, pedestrideswal
[12]. Simpler models, such as the Patlak-Keller-Segel modeor experiments.

for chemotaxis or reaction-diffusion equations, were migsly

derived for a stochastic many-particle system, see [13]&4d A. The microscopic model

respectively. , . We start with the underlying microscopic model, i.e. a
We would like to mention a_related Wor_k by Penington and COtattice-based approach in which we consider, for the sake of
workers [15] on a systematic construction method to deteemi

; o ; . - _simplicity, a rectanglg2 C R? such as a corridor, partitioned
the continuum limit of nonlinear PDEs from discrete lattice 0 a square lattice of grid sizk. This can be generalized

: . , t
based models. Their approach is based on representing tI(L[)é higher dimensions. Each lattice site;,y;) — (ih, jh)
transition rates using appropriate rotation operators e w . 0 N and j. -0 M canhgje occupived ’by

. . . 7, =
as symmetry <_:ond|t|on§ o depve general expressions .fogm individual. We consider two groups moving in opposite
the transportation coefficients in the corresponding menli direction — one to the right (called the reds) and one to the

ear PDEs. This technique can be used for a large class e , g
problems (including multi-species dynamics in variouscgpa ?tﬂtigr(izllegt ﬁgiat;:gﬁs)'. The igro?/aet;]llléy _to find a red induved
dimension), but assumes that the transition rate of a specig (i,95) s @ y:

depends only on the average occupancy of a site by any of ther; ;(¢) = P(red individual is at positior{z;,y;) at time 9,
different species and not if the site is occupied by a pdeicu
subpopulation or not. This approach cannot be applied to th
pedestrian model presented later on, since the transiitas r
depend on the affiliation to either group.

\é/hereP denotes the probability. The probability for the blue

individuals is defined analogously. We denotebﬁf’j}_’{k’l}
the rate at which an individual of colermoves from(z;, y;)

_ to (zx, y:). The transition rates for the red and blue individuals
In the case of a lattice-based model we respectively are given by:

1) replace the probability to find a particle at a lattice T =LY — (1 — iy (1 + ariga),

site by a formal Taylor expansion (up to a certain (i ={id—1} _ (1 _ . o

order) of the corresponding density, 7; e (1= pij=1)(%0 + 71 biv1,5), (1a)
2) pass to an appropriate limit as the lattice size and 7,0 7T = (1 — p; 1) (70 + 72 biy1,g),

time tends to zero (dropping higher-order terms).

{ig}—={i-1.4} _
In this paper we present an algorithmic approach to Ty T (1= pic1 ) (1 + abizyj),

derive the corresponding continuum equations from a T, T — (1= b ) (e +va 1), (1b)
lattice-based model using tools from symbolic computation {i,j}—>{i,j—1} . o
While it is relatively straightforward to perform the forina Ty == pij-1)(0 +727im15),
Taylor expansions and the corresponding limit, it is a morewhere we writep; ; = r; ; + b; ;, and with0 < v, 71,72 < 1,
challenging task to rewrite the PDEs obtained this way in0 < a < % The prefactor(1 — p) in all terms of (1) corre-
a conservative form. For this purpose, we employ symbolicsponds to the so-called size exclusion, i.e. an individaahot
integration methods that can deal with unspecified funstionjump into the neighboring cell if it is occupied. We assume
in several variables. Our approach allows us to deduce thénat the transition rates only depend on lattice sites iaation
mean-field equations for a general class of transportationf movement, a reasonable assumption when modeling the
processes in multiple space dimension, including themovement of pedestrians. The second factors in (1) cornespo
dynamics of multiple species that may have different size oto cohesion and aversion. Cohesion is modelled in the firet li
shape. We illustrate our approach for a minimal model ofin each case, by introducing a facter> 0 which increases the
pedestrian dynamics, which includes cohesion and aversioprobability to move in the walking direction if the individlin
in bidirectional pedestrian flows. front, i.e. in (1a) at positiotiz; 12, y;), is moving in the same
direction. The second and third line in each case account for
aversion via sidestepping. If an individual, i.e. in (1a)laeb
particle located afz;11,y;), iS approaching, the red particle

mps up or down (with rates; resp.vz). If 41 > 2, the
preference is to jump to the right with respect to the dicecti
of movement, ify; < 9, to the left. The parametey, > 0
corresponds to diffusion in thg-direction.

We have produced a prototype implementation in Math
ematica of the methods described in this paper, which i
available at http://www.koutschan.de/data/meanfieldétber
with a demo notebook.

I[I. FORMAL DERIVATION OF A MEAN-FIELD PDEMODEL _ ) o
FOR BIDIRECTIONAL PEDESTRIAN DYNAMICS Then the evolution of the red particles is given by the so-

. . . .. called master equation
We start with a specific example to illustrate the derivation

of a mean-field model from a discrete lattice-based approachy,; (te1) = 7i;(te) + T,U 700y,
in the case of bidirectional pedestrian flows. We consider W 7{i.j+1}={ig}y, . 4 7lid-=tidd,, (2a)
groups of individuals — one moving to the right, the other to b " '

7 i+1,j ] i,7—1 ] 4,5+1
the left. The dynamics of each individual are determined by — (7;{ Anaian +7;~{ S +7;‘{ ot })

Tij-



Hence the probability to find a red particle at locationto the right or left (depending on the differengge — 75).

(x;,y;) corresponds to the probability that a particle located affhe second line corresponds to the second-order terms in x-

(xi—1,y;) jumps forwards (first term), particles located abovedirection, the last three lines to the second-order ternestdu

or below, i.e. at(z;,y;+1) jump up or down (second line), side-stepping. Note that Equations (5a) and (5b) can beewnrit

minus the probability that a particle located(at,y;) moves in a conservative form, i.€r = —V - F,. ando:b = -V - I},

forward or steps aside (third line). The evolution of theeblu for some matricesF;,. and F,. These so-called continuity

particles can be formulated analogously: equations are always useful as they describe the transpart o
1l conserved quantity, in our case mass conservation.

b (thp1) = b (tr) + 7;{1+1,J}%{1,J}bi+17j q y

T I P A A (2b) [Il. A LGORITHMIC DERIVATION OF THE
_ (n{i,j}ﬂ{ifl,j} +7;){i.,j}ﬂ{i,j+1} +7Z{i,j}ﬂ{i,jfl})bi,j. | MEA-N-FIELD F-’DES | |
Symbolic computation, the field of mathematics that is
B. Derivation of the macroscopic model concerned with computer-implemented exact manipulation

of mathematical expressions involving variables/symbus
meanwhile a well-established area of research and has nu-
merous applications. Unfortunately, it is not as widely wno
as it should be. One reason may be that some applications
are not straightforward and require at least some insight or
programming skills. But to those who get moderately familia
P (thn)=7i(tk) = (1= bij — 1) (1 + ari )1 with symbolic computation software, it becomes an indis-
(Yo + Ybitt 1) (1 — bis — i )i pensable tool. There_ are plenty of general-purpose compute
0T ML+ A A algebra systems available, the most well-known being frigba

In the next step we formally derive the limiting mean-field
equations as the grid sizke and the time stepg\t tend to
zero. Hence we consider the formal hyperbolic limitfas-
At = Az = Ay — 0 in Equations (2). We first substitute the
transition rates (1) in Equation (2a) and obtain

+(v0 + Y2bit1,—1)(1 = bij — 7i5)ri i1 Mathematica, Maple, and Sage. For our implementation we

—((1 —bit1,; — Tig1,5) (1 + arigo ;) 3) have chosen Mathematica.

+(v0 +71big1,5)(L = bij—1 —rij-1) In this section we demonstrate how the transition from

(90 +Y2bit1,5) (1 = bij1 = Tijr1)) i, the discrete lattice-based model to a macroscopic PDEdbase
formulation is achieved using techniques from symbolic €om

and a similar equation for the evolution of the blue parscle
Next we employ Taylor expansions up to second order of al
the occurring probabilities. For example, the probabiiityind

a red particle at locatiofr; 11, y;) can be expanded as

Putation.

A. Expansion

4) Recall that the lattice sites are given @, y;) = (ih, jh)

for i,j € Z; in the limit h — 0 one obtains the problem
After expanding all probability densities we keep the teups formulation for the macroscopic model. Let= r(z,y) and
to second order and consider the formal limitas= Ax = b = b(z,y) denote the densities of red and blue particles in
Ay — 0. This leads to the following system of PDEs for the the macroscopic model. In order to perform the transitiomfr
densities of the red and blue particles, which can be eithepartial difference equations fes ; andb; ; to partial differen-
obtained by tedious hand calculations, or by the computettial equations for(z,y) andb(z, y), we employ formal Taylor

Tig1,y = Tij + hOurij + $h*00ri j + O(h®).

algebra methods described in Section llI: expansions of the probabilities appearing in (3), as dsedis
in Section I, for example:
O = =0, (1= P)(1 +ar)r) + (1 = 72)d, (1= p)or) P k
— h
- g [02(r(1 = p)(1 + ar)) = 20.((1 = p)Dur)] Fistg =1+ hOgr + gh200r o=y S0k, (6a)
h k=0
+ < + v2)0y (1 — p)0y(rd) + bro, 5a > Kk
5 (71 +72)0y (1 = p)3y (rb) + brdyp) (5a) bijer = b+ hoyb+ Ah202% 1 .- = Zh—,dffb. (6b)
+ 2700y (1 — p)Oyr + 10y p) k=0 k!
+ 2(m = 72)9y (1 = p)rdsb)], Note that these calculations are done on a completely formal
level.
Ob =0, (1 —p)(1 + ab)b) — —v2)0y, ((1 — p)br
! fg( 2 )0) = (01 =72)9, ({1 = p)br) Although the expansions (6) are not available as a built-
— = [92(b(1 = p)(1 + ab)) — 20, ((1 — p)Osb)] in command in Mathematica, it is a relatively simple task to
}2L implement them. We have made some effort to design our
+ 5 (71 +72)9y ((1 = p)9y(rd) + broyp) (5b)  implementation as general as possible. This means that we do
2 ‘ ‘ ‘ not fix the number of expansion variables (this corresponds
+ 2700y ((1 = p)0yb + b0y p) to the dimension of the domaifl). Moreover, we allow for
+2(v1 — 72)9y (1 — p)bdy7)] . discrete steps of any size, i.e, terms of the form, ;. with

The first terms on the right-hand side of (5a) and (5b) resulf” b€ Z can be handled as well.

from the first-order terms in the Taylor expansion. They For our purposes it suffices to perform the Taylor expan-
correspond to the movement of the reds and blues to the riglsions (6) on the master equation (3) up to second order. While
and left respectively as well as the preference of eithgpsitg  this is a tedious calculation when done by hand, it is a trivia



task for a computer algebra system. Still, when writing thefunctions and several variables with respect to which we
result in expanded form, we obtain a huge expression for thdifferentiate.

fight-hand side of (3): The first algorithmic approach to the problem of inte-
rdpb + ar?0,b — Opr + bOyr + 2rdyr + @) grating expressions with unspecified functions was pragpose
1., 25,.(92 2 52 in [20], and independently for differential polynomials[2d].
+ {167 termg — §7>h°r(9,7)(9;9,b). This was generalized recently to integro-differentialymalmi-
Since h is considered to be very small, all terms involving als [22], [23], to differential fields [24], [25], and to frions
h? or higher powers of: will be omitted (this corresponds of differential polynomials [26], [27].
to the polynomial reduction moduld?). In our example

Mathematica returns the following expression: While current computer algebra systems are very good in

computing the antiderivative of an expression involving un
10pb 4+ ar20,b — Opr + bOyr + 290, + specified functions (provided that it exists), the deconitjs
4 (56 term$ L W02 (8) into an integrable part and rgmamder is a more delicate task
< 272 y" For example, both Mathematica and Maple correctly compute

Analogously, the master equation for the blue individuals

yields a similar expression. These two PDEs !n their expdndg /(f2(aig) —2(0.f)%g — Qf(agf)g) dz =

form cover approximately one page when printed. While this

is still a bit unhandy for a human being, it is not at all a 2(029) — 2f(0:f)g.
challenge for a computer. However, when we turn to more _ ) _ )

involved examples, it is worthwhile to spend a few thoughtsln contrast, if a given expression cannot be written as the
on the implementation. As demonstrated above, expanding tHfierivative of some other expression, then it is not at adlight-
equation after having inserted the Taylor series, resnltié forward to obtain a decomposition of the form (9), using
large expression (7), but most of its terms are deleted b§he standard integration commands prpwded by the computer
the polynomial reduction, giving (8). In the present exaenpl algebra system. As an example, consider the decomposition
this is not a big deal, but in other cases this large interme- _ 12

diate expressiogn turns out to be the bottlenecks.]'| It is then F-ouf +1=0:(31) + 1

advantageous to systematically perform expansion—ramfuct ) ) ) o
steps on subexpressions; more precisely, to follow a bettom We are now going to recall the main algorithmic ideas

up approach, starting at the leaves of the expression tree. hOW to compute a decomposition of the form (9). Let us first
consider a polynomial expressiafl in a single unspecified

function f and its derivatives),. f,92f,...; let n denote the
order of the highest derivative of that appears ine. If £

A common problem in symbolic computation is to bring the has an antiderivative, i.els = 9,1 for some polynomial
output of a computation into a form that is useful for a humareXpression/, then it is easy to see thal f occurs linearly
being. The computing power that nowadays computers ha® E, i.e., E is quasi-linear. Hence, i0;'f does not occur
allows to produce gigantic symbolic expressions withoutmu linearly, then the corresponding monomials are put into the
effort. It can be much more difficult to extract the relevantfeémainder, as they cannot be integrated. Now assumefthat
information from such an output. In this spirit, we want to IS linear ind; f. Let m be the highest power a#;~' f and
process the Taylor-expanded expressions such as (8) furthéenote byu the coefficient off @' f)™ (9; f) in E, which is

and rewrite them in a conservative, more compact form. itse:f a_p%lynomial inf, 0. f,...,0y 2 f. Then integration by
] _ } ~ parts yields
One of the classical problems in symbolic computation

is to determine the antiderivative of a given function. The u- (02 ' f)™(01f) =

first cqmplete al_gorithm for th_e class of elementary funtiio P U gn—1pym1) _ Ozu g1 pym+1
was given by Risch [16], which was later extended to more “\m+ 1( x ) m+ 1( x ) :
general classes of functions, see for example [17]. Most of

these algorithmic ideas found their ways into current cotmpu Hence the first term on the right-hand side of (10) goes into
algebra systems. the integrable part, while the second term is used to replace

u- (0271 f)™(02 f) in E. After performing this step repeatedly
In contrast to the classical integration problem, we shallat mostm times), E involves only derivatives off up to
consider cases that are more general, namely in the folpwinordern — 1. This shows that the algorithm terminates.
three aspects. First, the given functiefx) may not have an ) . .
antiderivative in the prescribed class; in this case, ieisigible We have seen that in the case of a single unspecified

each step of the algorithm. In contrast when several unfipeci

a=0.I+R, (9) functions are involved, the situation is less clear, as the

. o . following example shows:
where the remaindeR is “as small as possible”. Second,

the expressions we are dealing with involve unspecified-func (02 )(029) = 0 (f(029)) — f(829)
tions, so that the input can be interpreted as a differential —9.((8 _ (82

polynomial [18], [19]; for example, we would like to write =((021)9) = (0219
the expressionf - 0,.f as BI(%fQ). Third, our setting is Hence one has to specify an order in which the terms are
multivariate, in the sense that we have several unspecifiegrocessed, and which at the same time doesn'’t lead to infinite

B. Integration

(10)

(11)



loops. The same kinds of problems are faced when the unzo: for i =n,n—1,...,1 do

specified functions depend on several variables. The fallgw 11 for j=1,...,kdo

example demonstrates the ambiguity of the decomposition in,. HichestE t(E. O f:
the case of a single unspecified functipe, y): ' m + HighestExponent (£, 9 f;)

13 while m > 2 do
(02 ) (Oyf) + Ouf + Oy f 14: g + Coefficient (E, (0% f;)™)
zam(f-ayf+f)+ay(f)—f-amayf 15: R<—R+g-(6;fj)m
= 00 (f) + 0y (f-0uf + f) — [ 0u0y f. 16: E«E—g-(9.f;)" }
17: m < HighestExponent (E, B}Efj)
In our application we have to deal with several unspecifiedis: end while
functions f1, ..., fi in several variables, say,y,...,z. SO 19 g + Coefficient (E, 9% f;)
the question is in which order we should treat the terms of,.. while g # 0 do '
the input expression to obtain the desired result. One alatur . i1
choice is to consider the variables in a fixed order as the maif* m « HighestExponent (g, ;" f;)
loop of the algorithm. This means that we first decompose the2: I—1+ m—H(al 'fi)g _
input with respect to the first variable, s@yI + R; then the  23: E— E— 2=5((95f;)g + (05" f;)(029))
remainderR is decomposed with respect to the next variable,24: g+ Coeﬁiment(E, 8;fj)
and so on, yielding a result of the form 25 end while
Oply 4+ 0yI, +--- + 0.1, + R. 26: end for
27: end for

Additionally, one can also decompogdefurther, yielding a
nested decomposition of the following form (we show only 28 R+ R+.E
the case of a single variable): 29: I « Partiallntegrate(, (f1,. .., fx), (z,...,2),d = 1)

30: R« Partiallntegrate(R, (f1,- o fr), (y, ..., 2), d)
02 (0x(- -+ (0x(I) + Ra) + - + R2) + R1) + Ro. 31 return 9,(I) + R
In our description of the algorithm we use the parameter

to specify the desired maximal integration depth of the outp
expression.

When we apply our Mathematica implementation of algo-
rithm Partiallntegrate to the large expression (8) we obtain

For each integration variable, saywe proceed as follows: 0i(r) = Oz (r(b+r —1)(ar + 1))
we determine the highest derivative with respectatdhat — (11 = 72)9y (br(b +r — 1))
occurs in the input, no matter which function is involved. We 1 2
say that the highest-derivative is of ordem if 97 f; occurs + h(iaw (0:(r(abr = b+ ar® —ar +1)) + 2rd,b)

for somel < i < k, but there is no index such thaty? " f; — (m1 = 72)0y (r(b+r — 1)0,b)

for somem > 1 occurs. Then for eaclf;, 1 < i < k, (in L nd (2r8 b—8,((b— 1)T))

the order as specified by the user) the terms involifid; Yo Y

are treated. Note that in this step derivatives with onder1 + (1 4 72)8y (r(2b — r)dyb — 8, ((b — l)br)))

can be produced, as can be seen in (11). In order to avoid that

the algorithm runs into an infinite loop, we keep these termswhich basically agrees with the manually derived Equa-
and continue by considering derivatives of orader 1. This  tion (5a); recall thap = b+r. Comparing the two expressions
algorithm is described in detail in the following pseudateo reveals that in (5a) some remainders are not minimal acegrdi
to algorithm Partiallntegrate, but the overall expression is
a bit more compact as it involves only factored polynomials
inside the derivatives.

Algorithm Partiallntegrate

Input: E: differential polynomial expression IV. NUMERICAL ILLUSTRATION FOR THE MEAN-FIELD
fiyooo fr l_mspecmed functlons MODEL
x,vy,. ..,z integration variables . . . .
d: depth Finally we would like to illustrate the behavior of so-
lutions to (5) with numerical simulations. We consider the
1if E=0or{z,...,z} =0 or d=0 then system (5) o2 x (0, T'), where in our computational examples
> return E Q=[-Ls, L] x [-Ly, L,] C R? with L, < L, corresponds
3 end if to a corridor. As individuals cannot penetrate the walls, we
: set no flux boundary conditions on the top and bottom. At the
4 R0 entrance and exit of the corridor, i.e at= +L,, we assume
5 1«0 periodic boundary conditions. For all numerical simulago
6: n < highestz-derivative that appears &' for some f; we used the COMSOL Multiphysics Package with quadratic
7. if n = 0 then finite elements. We se® = [0,1] x [0,0.1], choose a mesh
8 return Partiallnt te(E B d qf 608 triangular eIemente and a BDF method Wlth maximum
o end if artiallntegrate(£, (fi,... fi). ( 2),d) time step0.1 to solve the discretized system. The first example

models system (5) in the case where we have no cohesion
and no preference for stepping to one side, ie= 0 and



v :=~1 = . In the second example we consider system (5) .
with the special scaling; —y2 = O(h) including cohesion and P
aversion. For this particular scaling the first-order hiyodc
terms iny-direction are of the same order as the diffusion in
this direction while the mixed derivative terms, i.e. thenis
which involve derivatives with respect toandy, are of order o

O(h?) and can be neglected. In both simulations we start " ———————|
with a perturbed configuration of the steady state, i.e. teans

densities forr and b, and study if the densities return to the
constant steady state or to another more complex stationary

configuration.

1) Example 1:Let v = 0.1, ¥ = 0.2 and h = 0.3. As TR s S S v W e b
initial values we choose small perturbations of an equilitor (a) Density of reds at timég" = 5
state, i.e. ive—a S opaminot e ok

. Yy
ro(x,y) = 0.4 + 0.02sin(7x) cos (—)
o (12)
bo(z,y) = 0.4 — 0.02sin(nz) cos (ﬁ) .

The initial valuer, and the solutionr; to the system (5) - =

at time 7" = 5 is visualized in Figure 1. The corresponding
density of blue individuals show the same behavior, i.e. the

densities return to the constant equilibrium solution. His t .
Time=0s Surface: Dependent variable r (m) -
-3 ¥ T ‘ i £ i % 4 5 ] Ao i B o7 (7 5T 77y s e e o8 T oo
:OZZ (b) Density of blues at timg" = 5
°:2§ o1 Fig. 2. Solution to system (5) with cohesion and aversion.

Sincey; > 7. individuals have a tendency to step to the

i ] right. This tendency can also be observed in the formation
e 1 Wos of the directional lanes. The red individuals concentrate o
] the bottom of the corridor, whereas the blue individuals enov
o ] to the top.
(@) Initial distribution of reds V. CONCLUSION AND OUTLOOK TO FURTHER
Time=5s Surface: Dependent variable r (m) W AP P L I CAT I O N S
05 T T T T T T T T T T T A04
oes ] In this paper, we have presented a symbolic approach
03 ] to derive the mean-field PDEs from lattice-based models.
W, We demonstrated the methods in terms of one example in
e ] pedestrian dynamics, but the algorithm may also be apptied t
o ] other examples. In [1] different motility mechanisms onuileg
0 e lattices are introduced, which result in nonlinear diféusi
o ] equations with different diffusivities. The authors catesied
o 1 Mo various motilities based on attraction or repulsion, ilee t
o ] transition rate to move away from a neighbouring individual
o ] increases or decreases respectively. For example, in anadini
o o1 92 03 o4 05 06 07 0a 0s 1 Vou model the transition rate is given by

(b) Distribution of reds at tim&d” = 5 ikl _ (1 - Ci+1)(1 _ ozci,l),

wherec; again denotes the probability that the lattice site

is occupied. Hence the transition to move framto z;

¥ reduced if the neighbouring site;_; is occupied. This

phenomenon is known as adhesion and results in a nonlinear
2) Example 2:Let vo = 0.001, v1 = 0.5, 72 = 0.4, diffusion model for the cell density = c(x, ) of the form

a=0.2andh = 0.1, i.e.y; —y2 = O(h). As initial values we e = 0.(D(e)d

choose again (12), i.e. small perturbations of an equilifri te 2 (D(€)dzc),

state. Figure 2 shows the solutio and by to system (5) with a diffusivity of the formD(c) = 3a(c — %)2 +1- %a,

at timeT" = 5. In this example we observe lane formation. see [28]. Again in [1] several other transition rates were

Fig. 1. Solution to system (5) with no cohesion and aversion.

example we do not observe the formation of directional lane
as the solutions return to the equilibrium state quickly.



proposed, which lead to different nonlinear diffusitivie®e  [15]
Table 1 there. Using our implementation, the entries in that
table can be generated automatically. For example, we have
tried one of their most complicated models [1, Equation }13)
which combines contact-forming or contact-breaking iater
tions with contact-maintaining interactions. Our implertee
tion correctly derives the diffusivity given in [1, Equati¢14)],
where we have chosen the two-dimensional square lattide witj1g)
Moore interacting neighborhoods.
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