
Measuring and Comparing the Scaling Behaviour of a High-Performance CFD Code
on Different Supercomputing Infrastructures

Jérôme Frisch
Institute of Energy Efficiency

and Sustainable Building E3D
RWTH Aachen University
52074 Aachen, Germany

Email: frisch@e3d.rwth-aachen.de

Ralf-Peter Mundani
Chair for Computation in Engineering

Technische Universität München
80333 München, Germany
Email: mundani@tum.de

Abstract—Parallel code design is a challenging task espe-
cially when addressing petascale systems for massive paral-
lel processing (MPP), i. e. parallel computations on several
hundreds of thousands of cores. An in-house computational
fluid dynamics code, developed by our group, was designed
for such high-fidelity runs in order to exhibit excellent scal-
ability values. Basis for this code is an adaptive hierarchical
data structure together with an efficient communication and
(numerical) computation scheme that supports MPP. For a
detailled scalability analysis, we performed several experiments
on two of Germany’s national supercomputers up to 140,000
processes. In this paper, we will show the results of those
experiments and discuss any bottlenecks that could be observed
while solving engineering-based problems such as porous media
flows or thermal comfort assessments for problem sizes up to
several hundred billion degrees of freedom.

Keywords-high-performance computing, adaptive data struc-
ture, multi-grid-like solver concept, speed-up measurements

I. INTRODUCTION AND MOTIVATION

Modern supercomputers tend to be massive parallel, i. e.
they consist of several hundreds of thousands of cores, thus
making efficient code design inevitable in order to exploit
the underlying performance and to keep up with the so-
called exascale challenge. While lot of research is currently
happening into this direction, still plenty of codes are not
prepared yet for scalability runs on more than 32,000 cores.
In many cases, communication, i. e. data exchange between
single processes, and load balancing – considering adaptive
mesh refinement, e. g. – are the major problems, preventing
such codes from high-fidelity computations on petascale
systems such as SuperMUC, installed at the Leibniz Super-
computing Centre in Garching, with its more than 241,000
cores and a combined peak performance of 6.8 Petaflops or
JuQueen, installed at Jülich Supercomputing Centre, with its
more than 458,000 cores and an overall peak performance
of 5.9 Petaflops.

On the other hand, the so-called emerging sciences such as
medicine, sociology, biology, virology, chemistry, climate or
geo-sciences demand for more and more computing power
in order to solve multi-scale, multi-physics, and frequently

also multi-domain problems. Those problems are not only
complex by their nature, they often address further aspects
such as big data or real time (in-situ) computing – the latter
one enabling decision makers to decide quickly where late
results would be useless – thus putting a lot of pressure
on the parallel code design. What all these codes have
in common is the necessity for efficient data structures,
fast communication schemes, state-of-the-art numerical al-
gorithms, and advanced load balancing techniques – all in
all key factors for the successful deployment of scalable
massive parallel applications on modern petascale systems.

In this paper, we present a computational fluid dynamics
(CFD) code for various applications such as thermal comfort
assessment or porous media flows. Basic principle of this
code is a hierarchical data structure in combination with an
efficient multi-grid-like solver that perfectly scales both in
the spatial (geometry) and computational (cores) domain.
This structure allows to adaptively refine the computational
mesh during runtime as well as to migrate blocks of the grid
between processes in order to achieve an optimal load situ-
ation concerning data locality and minimal communication.
A special process – called neighbourhood server – keeps
track of all other (worker) processes, the data assigned to
them, and the communication pattern among all nodes. Due
to this neighbourhood server an efficient orchestration of
the nodes becomes possible, thus we are able to obtain very
good scalability and speed-up values when running the code
on up to 140,000 processes on different supercomputers.

Main focus of this paper is a detailed scalability study
of our CFD code on the two aforementioned petascale
systems, i. e. SuperMUC and JuQueen, based on an in-
door thermal comfort simulation. Therefore, we will profile
typical communication properties along with special code
characteristics, compare those results obtained on the two
systems, and finally discuss identified bottlenecks and weak
aspects of our parallelisation concept. These results do not
only allow us to get a valuable insight into the code, but also
to reveal those points which need further tuning in order to
be ready for the next step towards the exascale challenge.

c©2016 IEEE
2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC),
Timisoara, 2015, pp. 371-378. doi: 10.1109/SYNASC.2015.63

ar
X

iv
:1

80
7.

00
14

6v
1

 [
cs

.P
F]

 3
0

Ju
n

20
18

The remainder of this paper is structured as follows: In the
next section we will present the mathematical model used in
our code, followed by a brief description of the data structure
and the communication concept. Section 3 will highlight a
scalability study performed on two different petascale sys-
tems together with a sound analysis of the measured results,
while Section 4 addresses sample scenarios computed on
several thousand cores using our CFD code. Section 5 will
then close the paper with a short summary and outlook.

II. MPFLUID – MASSIVE PARALLEL CFD CODE

A. Mathematical Modelling

The mathematical background of the code is described
in detail in Frisch et al. [1]. This section aims at giving a
concise introduction into the mathematical modelling and
into the data structure in order to bring the reader up to
speed and to motivate the usage of HPC methods.

The mathematical modelling of the implementation is
based on the Navier–Stokes equations derived from the
conservation of mass, momentum, and energy principles. A
complete and extensive derivation of the equations can be
found in standard literature [2, 3, 4]. The governing equa-
tions for an incompressible Newtonian fluid flow comprise
three sets of equations. The first equation set – given in
differential form – is called the continuity equation

∇ · ~u = 0 , (1)

where ~u describes the velocity of the fluid field using
u1, u2, u3 as velocity components in the three spatial di-
rections x1, x2, x3, respectively. This equation has to be
satisfied at every time step in the complete domain.

The second set, called the momentum equations, can be
written for every direction i ∈ {1, 2, 3} as

∂ρ∞ui
∂t

+∇· (ρ∞ui~u) = ∇· (µ∇ui)−∇· (p~ei) + bi , (2)

where t represents the time, ρ∞ the density of the fluid
assumed constant over the complete domain and µ the
dynamic viscosity. p represents the pressure, and bi interior
body forces in direction i. ~ei represents the unit vector in
direction i.

A temperature convection-diffusion equation can be ap-
plied additionally if thermal effects such as buoyancy should
be modelled and describes the energy conservation and
models the heat transport. The Boussinesq approximation
couples the convection-diffusion equation to the momentum
equations as described in Lienhard and Lienhard [5] if some
assumptions hold.

There is no independent equation for the pressure p in
Equations (1) and (2). The momentum equations include the
pressure gradient ∇p, whereas the incompressible continuity
equation does not contain p at all. By applying pressure
correction methods as proposed by Harlow and Welch [6]
in 1965 or the fractional step method (or projection method)

introduced by Chorin [7] in 1967, incompressible flows
can be solved nevertheless. The methods are based on an
iteration between velocity and pressure fields, where the
pressure field acts in every step as a correction in order
to fulfil the continuity equation for the velocity field. The
pressure term p in the incompressible equations is often
referred to as ‘working pressure’ as Equation (2) only
contains the pressure gradient and not the absolute value
itself.

By applying the fractional step method and choosing
an explicit Euler time discretisation for the temporal deriva-
tive ∂/∂t, the momentum conservation equations in the
direction i for an intermediate time step ? can be written

ρ∞ ·
u?i − uni

∆t
= −∇· (ρ∞uni ~un)+∇· (µ∇uni)+bni (3)

by neglecting the pressure gradient. ∆t denotes the time step
size, the superscript n denotes the current time step n, and
the superscript ? an intermediate time step between n and
n+ 1. The pressure term is now treated in a second step

ρ∞ ·
un+1
i − u?i

∆t
= −∇ ·

(
pn+1~ei

)
. (4)

The summation of the two Equations (3) and (4) results
in the original Equation (2) with an explicit treatment of the
velocity term (i. e. at time step n) and an implicit treatment
of the pressure term (i. e. at time step n+ 1).

Using the divergence operator on Equation (4) leads to

ρ∞ ·
∇ · ~un+1 −∇ · ~u ?

∆t
= −∆pn+1 . (5)

As the pressure term must lead to a divergence-free
velocity field at time step n+ 1 (fulfilment of the continuity
Equation (1)), the equation for determining the pressure at
time step n+ 1 can be written as

∆pn+1 =
ρ∞
∆t
∇ · ~u ? , (6)

representing a Poisson equation for the pressure, which has
to be solved in every time step.

The temporal discretisation can be enhanced using a
second order explicit multi-level Adams–Bashforth method,
introduced in detail by Schwarz [8], for example. A very
detailed analysis of other approaches for time derivatives
can be found in Ferziger [9]. Kim and Moin [10] introduced
in 1985 a mixture of semi-implicit and explicit methods,
where the convective terms in Equation (3) are discretised
using a second order explicit Adams–Bashforth method.
The viscous terms, however, are discretised using a semi-
implicit Crank–Nicolson method, which eliminates some
numerical stability problems. Choi and Moin [11] used in

1994 a similar approach, but integrate a predictor-corrector
method.

Similar to the temporal discretisation, a spatial discretisa-
tion has to be introduced in order to describe and prepare the
domain for a numerical simulation. Popular, well-established
methods, such as the finite difference method (FDM), the
finite volume method (FVM) or the finite element method
(FEM), could be used. This work focuses on the FVM
and FDM approach for discretising the spatial domain and
a good description of these methods can be found in Ferziger
and Perić [3] or Hirsch [4], for instance.

Numerical stability issues have to be taken into account
as an explicit time discretisation method was chosen here.
Courant and Friedrichs [12] analysed this problem in 1928
and proposed using an upwind-difference for the convective
term and central differences for the diffusive term, and
Peyret and Taylor [13] give a good overview on a detailed
stability analysis for explicit FDM.

B. Data Structure

The data structure is based on block-structured, non-
overlapping, orthogonal, regular, hierarchical grids. A topo-
logical grid management (called ‘l-grids’) is responsible
for all hierarchic information, such as parents and children
relations, while data grids (called ‘d-grids’) contain the
actual data arrays, such as velocity and pressure fields, for
example.

Figure 1 gives an overview of both data structure parts. In
the top part, the nested construction of the non-overlapping
grids can be seen. A root l-grid, located per definition
at depth zero, is refined by rtx, r

t
y, r

t
z in the respective

directions. The new resulting child l-grids can be refined
again by rsx, r

s
y, r

s
z until the desired depth dmax is reached.

Furthermore, while creating the newly refined child l-grids,
the coarse l-grid will be defined as their parent l-grid. Hence,
each l-grid can only have one parent l-grid.

The second major part of the data structure consists of
d-grids (i. e. the data grids). Every d-grid stores only the
necessary variables, such as velocities, pressure, or temper-
ature values in a matrix of cells. Thus, a cell is comparable
to one control volume. The d-grid is surrounded by a halo
of ghost cells necessary for the proper functioning of the
structure. One of these d-grids can be seen in the middle part
of Figure 1 directly above the text line and consists of the
size of sx, sy, sz , not counting the halo cells. Furthermore,
each l-grid contains exactly one link to one d-grid.

Thus, complex, adaptive domain scenarios can be gen-
erated by combining regular blocks due to the flexible
structure of the logical grid management. Each d-grid has an
equidistant orthogonal spacing, and it can be shown that the
finite volume approach using the mid-point rule and linear
interpolation degenerates into a finite difference approach.
Thus, on one d-grid, a simple finite difference scheme, such
as a six-point stencil in 3D, can be used. This allows a

link to data grid of size sxsysz surrounded

by halo

Figure 1. Schematic representation of the construction of the hierarchic
grid data structure (based on Frisch [14]): Top part: logical hierarchy of non-
overlapping adaptive grids. Bottom part: complete grid structure containing
data grids.

strict separation into two phases: a computation phase and a
communication phase. In the computation phase, the finite
difference approach in the form of a stencil is evaluated on
every d-grid. In the communication phase, a halo update is
performed filling the ghost cells with neighbouring values
in order to apply a Schwarz decomposition method [15]. In
this phase the flux continuity has to be guaranteed on grid
boundaries by the communication routines.

C. Data Exchange and Neighbourhood Server

As the data grids iterate solely over their local data,
all other information, such as neighbouring and parental
relations, must be provided by the logical grid management
structure. Hence, the logical grid management takes care of
flux conservation across d-grid boundaries, especially in the
case of adaptive refinements, as depicted in Figure 1. There-
fore, complex data exchange mechanisms introduced in [16]
are provided by the logical grid management framework to
guarantee data integrity and consistency.

The distribution of grids to different processes is man-
aged by a special dedicated process called ‘neighbourhood
server’. It is described in detail in Frisch [14]. A ded-
icated server keeps track of the logical structure of all
grids without knowing values of the data content itself
and organises the distribution to different processes accord-
ing to a Lebesgue space-filling curve (also called Z-order

curve, see Bader [17]) in order to preserve neighbouring
relations. Performance measurements for exchange times
of halo values show very good results in terms of grid-
to-grid communication for the given distribution on high-
performance computers and are presented in Section III.

D. Multi-Grid-Like Pressure Poisson Solver

As indicated in Equation (6), the fractional step method
leads to a Poisson equation for the pressure term which
has to be solved at every time step. Frisch [14] shows that
more than 90 % of the time is spend in the solution of
the Poisson equation. Hence, the efficient solution of the
pressure Poisson equation is of utmost importance.

In the 1970s Brandt [18] introduced geometric multi-grid
solvers as multi-level methods which represent an adequate
technique for solving partial differential equations of elliptic
type, such as the Poisson equation or the Laplacian equation.
By comparing the data flows of restriction and prolongation
operators to the already implemented data exchanges, many
similarities can be seen and a cell-centred, multi-grid-like
solver was applied on the already implemented communica-
tion structures.

In the following section, scaling results for different
machines are compared for a Laplacian equation, as this
resembles the pressure Poisson equation. The Laplacian
problem

∂2p(x, y, z)

∂x2
+
∂2p(x, y, z)

∂y2
+
∂2p(x, y, z)

∂z2
= 0 (7)

is defined on a 1× 1× 1 m cubic domain, where fixed
Dirichlet boundary conditions are applied on the east and
west side according to

p(0, y, z) = p(1, y, z) = 1 ∀ y, z , (8)

whereas all other sides are set to p = 0. This equation
describes a diffusion process and can be used as well
for modelling a stationary temperature diffusion problem
without any convective influences or internal loads.

III. SCALING RESULTS

In the following section, performance measurements are
shown for tests on different machines for several depths
of the hierarchical data structure. The measurements were
performed on three supercomputing systems: Shaheen, a 16-
rack, 65,536 cores IBM Blue Gene/P supercomputer in-
stalled at King Abdullah University of Science and Technol-
ogy (KAUST) in the Kingdom of Saudi Arabia, JuQueen,
a 28-rack, 458,752 cores IBM Blue Gene/Q supercomputer
installed at Jülich Supercomputing Centre (JSC) in Jülich,
Germany, and SuperMUC, a 155,656 core (before the hard-
ware upgrade in 2015) large IBM System iDataPlex super-
computer installed at the Leibniz Supercomputing Centre
(LRZ) in Garching near Munich, Germany.

All following measurements were done solely for the
pressure Poisson Equation (6) which represents the most
computational complex part of the CFD code. This can be
done without restriction of any kind, as the overhead for a
full time step is according to [14] only slightly larger than
for just solving the pressure Poisson equation.

First of all, we measured the time for one total ghost
layer exchange based on a fully refined 3D domain using
a refinement level of (2,2,2) for the l-grids and a d-grid
size of (16,16,16), thus resulting in computational blocks
of 4,096 d-grid cells each. This ensemble of l-grid and d-
grid sizes has proven to be optimal for SuperMUC, hence
we were using this setup throughout all experiments on
all systems. The measurements were then performed for
different depths of the logical grids, ranging from 5 to 8,
leading to approximately 78.5 billion d-grid cells with 9
independent variables per cell, i. e. more than 707 billion
variables to be exchanged across all processes on depth 8.

In Figure 2 (a), the total exchange times in [s] are depicted
for the three different systems. All curves show a clear ten-
dency to decrease for an increasing number of processes. On
SuperMUC, for instance, the total exchange time between
more than 140,000 processes on depth 8 with over 707
billion variables is approximately 0.1 s and, thus, practically
negligible during the computation. Interestingly, the curves
on SuperMUC and the two IBM Blue Gene systems not
only look very similar, but also exhibit the same slope –
except the fact that the exchange times on SuperMUC are
faster than on the Blue Gene systems due to SuperMUC’s
higher clock frequency – which is already a first indication
of the data structure’s well scalability characteristics and its
suitability for massive parallel computations.

In order to relativise the influence of the different clock
frequencies, in Figure 2 (b) the total exchange times in [s]
are plotted against the number of l-grids per process for the
three different systems. It is also observable that a hardware
upgrade from Blue Gene/P to Blue Gene/Q had an impact
on the communication times. The slopes are still similar
but show an offset between both machines. One can clearly
observe now the perfect accordance of all measurements
for corresponding depth (where available) which further
emphasises the sound scalability of our CFD code for
different problem sizes, different amount of processes, and
different architectures.

Next experiments addressed a full time step update, i. e.
an iterative solution of the pressure Poisson equation until
convergence was reached. The setup was exactly the same
as in the previous experiment, namely a fully refined 3D
domain using l-grid refinement levels of (2,2,2) and d-grid
sizes of (16,16,16) for different depths (5–8), leading to
around 20 million l-grids with more than 78.5 billion d-grid
cells and over 707 billion variables on depth 8. It is worth
notifying that this setup also requires 28 TByte of combined
main memory for storing all relevant data. In order to face

 0.01

 0.1

 1

 10

 32 128 512 2048 8192 32768 131072

g
h
o
st

 l
ay

er
 e

x
ch

an
g
e

ti
m

e
[s

]

number of processes [-]

SuperMUC depth 8
SuperMUC depth 7
SuperMUC depth 6

Shaheen depth 6
Shaheen depth 5
JuQueen depth 8
JuQueen depth 7

(a) time plotted versus the number of processes used for computing

 0.01

 0.1

 1

 10

 10 100 1000

g
h
o
st

 l
ay

er
 e

x
ch

an
g
e

ti
m

e
[s

]

number of grids per process [-]

SuperMUC depth 8
SuperMUC depth 7
SuperMUC depth 6

Shaheen depth 6
Shaheen depth 5
JuQueen depth 8
JuQueen depth 7

(b) time plotted versus the number of l-grids per process

Figure 2. Communication times for a total ghost layer exchange of 9
independent variables per cell in seconds on three different computing
platforms (SuperMUC, JuQueen, Shaheen) for a 3D domain of fully refined
l-grids with a refinement level (2,2,2) up to depth 8 and a d-grid size of
(16,16,16). (Figure (b) is plotted in reverse order in order to indicate the
increasing number of processes with decreasing number of grids per process
for a given constant problem size.)

this problem on SuperMUC, for instance, a total of at least
20,000 processes is necessary due to SuperMUC’s memory
availability of 1.5 GByte per core. On JuQueen, however,
at least 32,000 processes were necessary to accommodate
all relevant data due to a smaller memory per core ratio.
In Figure 3, the times to solution (i. e. a full time step)
in [s] are plotted against the total number of processes
(a) and the total number of l-grids per process (b) for the
three different systems. Again, a clear decreasing tendency
of all curves for an increasing number of processes is to
be observed. Furthermore, the curves of SuperMUC and
JuQueen still show the same slope (upper plot of Figure 3)
and are more or less shifted in vertical direction only due
to the two systems’ different clock frequencies. The lower
plot of Figure 3 reveals a similar good accordance of all
corresponding experiments on the different systems as in

 1

 10

 100

 1000

 8 32 128 512 2048 8192 32768 131072

ti
m

e
to

 s
o
lu

ti
o
n
 [

s]

number of processes [-]

SuperMUC depth 8
SuperMUC depth 7
SuperMUC depth 6

Shaheen depth 6
Shaheen depth 5
JuQueen depth 8
JuQueen depth 7

(a) time plotted versus the number of processes used for computing

 1

 10

 100

 1000

 10 100 1000

ti
m

e
to

 s
o
lu

ti
o
n
 [

s]

number of grids per process [-]

SuperMUC depth 8
SuperMUC depth 7
SuperMUC depth 6

Shaheen depth 6
Shaheen depth 5
JuQueen depth 8
JuQueen depth 7

(b) time plotted versus the number of l-grids per process

Figure 3. Time to solution on three different computing platforms
(SuperMUC, JuQueen, Shaheen) for a 3D domain of fully refined l-grids
with a refinement level (2,2,2) up to depth 5, 6, 7, or 8 and a d-grid size
of (16,16,16). (Figure (b) is plotted in reverse order in order to indicate
the increasing number of processes with decreasing number of grids per
process for a given constant problem size.)

the previous case of a pure ghost layer exchange, negelecting
hardware specific influences such as processor speed. Hence,
the supposed scalability of the code could be approved by
the second measurements, too.

Another interesting aspect is the maximum throughput
for a given (fixed) problem size and different amounts of
processes – also known as strong speed-up. Figures 4 and 5
highlight those strong speed-up measurements for the three
different systems with up to a total of 8,192, 16,384, 32,768,
65,536, and 139,008 processes. The experimental setup is
the same as in the previous cases. For better visibility, all of
the above five cases are plotted separately against the ideal
speed-up with a slope of 1.

In Figure 4, one general observation is that all curves
start to level-off as soon as the underlying problem becomes
too small and communication time (between cores and
nodes) dominates computation time. In a direct comparison

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1000 2000 3000 4000 5000 6000 7000 8000

st
ro

n
g
 s

p
ee

d
u
p
 [

-]

number of processes [-]

ideal
SuperMUC depth 7
SuperMUC depth 6

Shaheen depth 6
Shaheen depth 5
JuQueen depth 7

(a) strong speedup from 1 to 8,192 processes

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 2000 4000 6000 8000 10000 12000 14000 16000

st
ro

n
g
 s

p
ee

d
u
p
 [

-]

number of processes [-]

ideal
SuperMUC depth 7
SuperMUC depth 6

Shaheen depth 6
Shaheen depth 5
JuQueen depth 7

(b) strong speedup from 1 to 16,384 processes

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 5000 10000 15000 20000 25000 30000

st
ro

n
g
 s

p
ee

d
u
p
 [

-]

number of processes [-]

ideal
SuperMUC depth 8
SuperMUC depth 7
SuperMUC depth 6

Shaheen depth 6
Shaheen depth 5
JuQueen depth 7

(c) strong speedup from 1 to 32,768 processes

Figure 4. Strong speedup results on three supercomputing platforms
(SuperMUC, JuQueen, Shaheen) for a 3D domain of fully refined l-grids
with a refinement level (2,2,2) up to depth 5, 6, 7, or 8 and a d-grid size
of (16,16,16). The different speedup results are zoomed snapshots around
the area of interest.

between SuperMUC and Shaheen, i. e. Intel’s Sandy-Bridge
architecture vs. IBM’s PowerPC 450 generation, both CPUs
have similar last-level (L3) cache sizes while the Sandy-
Bridge architecture has twice as much cores. Here, we can
observe better (up to a factor of 1.5) performance values
for the Intel architecture based on the same problem size,
indicating that currently the code is not memory-bound,
i. e. limited by the memory interface. In comparison to the
Blue Gene/Q system (JuQueen) with its four times larger,
16 way set-associative last-level (L2) cache and its four-
times more cores the obtained results look very identical
to those of SuperMUC. Even one would expect much
better results for JuQueen, the two systems achieve a very
similar performance which – again – underlines that the
code does not suffer from a memory-bound limitation at the
moment. Hence, any performance loss must come from the
computational kernel that does not exploit intrinsic features
such as SMT, SIMD, or vectorisation (pipelining) yet. A
detailed analysis according to the roofline model [19] is
inevitable in order to perform code optimisations for a higher
node-level performance.

Finally, Figure 4 shows the obtained strong speed-up
values for SuperMUC and JuQueen on 65,536 and 139,008
processes. The different curves of the two systems for differ-
ent problem sizes once more perfectly coincide and lead to
a parallel efficiency of 64 % on depth 8. While the levelling-
off of both systems was to be expected (being a well-known
feature of such analyses), the identical performance of both
systems gives rise to further considerations. On the one hand,
we observed a good scalability of our code w. r. t. to the
communication, i. e. to the ghost layer exchange, on the other
hand, any performance benefit of the Blue Gene/Q cannot be
utilised by the computational kernel in order to outperform
the Sandy-Bridge architecture. In consequence the data
structure has proven to suffice very well for massive parallel
computations, whereas the computational kernel turns out to
be currently a bottleneck hindering the exploitation of the
underlying performance. Further experiments with adaptive
grids – that do not follow a uniform refinement of the
computational domain – revealed very similar results and,
thus, led to the same conclusions. More information on those
measurements can be found in [14].

IV. APPLICATION EXAMPLES

In order to show the versatility of the proposed approach,
a few application examples are listed below.

Figure 6 shows a typical benchmark scenario for val-
idating CFD codes. The DFG priority research program
‘Flow Simulation on High-Performance Computers’ [20]
introduces a collection of benchmarks. The basic setup
consists of a regular rectangular channel in 2D or 3D with
a cylindrical or rectangular obstacle in the inflow region
of the channel. Here, the channel was computed using an
adaptive grid setup. This example, based on the 2D-2 setup

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 10000 20000 30000 40000 50000 60000

st
ro

n
g
 s

p
ee

d
u
p
 [

-]

number of processes [-]

ideal
SuperMUC depth 8
SuperMUC depth 7
SuperMUC depth 6

Shaheen depth 6
Shaheen depth 5
JuQueen depth 8
JuQueen depth 7

(a) strong speedup from 1 to 65,536 processes

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 20000 40000 60000 80000 100000 120000 140000

st
ro

n
g
 s

p
ee

d
u
p
 [

-]

number of processes [-]

ideal
SuperMUC depth 8
SuperMUC depth 7
SuperMUC depth 6

Shaheen depth 6
Shaheen depth 5
JuQueen depth 8
JuQueen depth 7

(b) strong speedup from 1 to 139,008 processes

Figure 5. Strong speedup results on three supercomputing platforms
(SuperMUC, JuQueen, Shaheen) for a 3D domain of fully refined l-grids
with a refinement level (2,2,2) up to depth 5, 6, 7, or 8 and a d-grid size
of (16,16,16). The different speedup results are zoomed snapshots around
the area of interest.

Figure 6. Simulation of a von Kármán vortex street according to the
Schäfer-Turek [20] benchmark 2D-2 with Re = 100 showing the well-
known vortex shedding.

with Re = 100, shows vortex shedding and was used in
Frisch [14] as one of the validation test cases.

Figure 7 shows a flow through porous media. In Perović
et al. [21], the presented code was used for computing
the micro-scale of fluid flow through porous media while
coupling it on a macro-scale to a Darcy-based flow solver.
Hence, this shows that the code can work with complex
geometries without a time consuming manual meshing pro-

Figure 7. Simulation of fluid flow through porous media (from [21]).

cess, as the geometry generation is done fully-automatically
by a voxel-based approach, thus generating a representation
directly usable by the code’s data structure.

Figure 8. Simulation of thermally coupled fluid flow behaviour under
natural convection boundary conditions in a classroom setup (from [1]).

Last but not least, the code is also able to compute
thermally coupled scenarios by applying the Boussinesq ap-
proximation as mentioned in Section II. In this case, the flow
is subjected to pure natural convection boundary conditions,
meaning that no inflow or outflow conditions are set in
the room and the flow is only driven by thermal buoyancy
effects. Figure 8 shows a classroom setup, where the human
occupants are coupled to a thermoregulation model imposing
thermal boundary conditions onto the surfaces, and acting as
driving forces for the natural convection scenario. Further
information and result evaluation can be found in Frisch et
al. [1].

Thus, the code is able to handle quite different physical
scenarios on different scales while running on more than
100,000 cores.

V. CONCLUSION

In this paper, we have presented a massive parallel
CFD code based on hierarchical data structures for the
usage on modern petascale supercomputing systems. As this
code should serve for various complex engineering-based
application scenarios demanding for extensive computing
power, scalability was an important design issue from the
very beginning. Within several measurements performend

on two of Germany’s national supercomputers (both among
the first 20 places in the current top 500 list1) very good
scalability characteristics up to 140,000 processes could be
observed. Moreover, within those experiments it could be
shown that any performance limitation of the computational
kernel is not memory-bound and, thus, further performance
improvement due to node-level optimisation is possible.
Such optimisations comprise simultaneous multithreading
(SMT) or streaming computations as well as the exploitation
of intrinsic characteristics like the Advanced Vector Exten-
sions (AVX) of Intel’s Sandy-Bridge architecture in order to
increase throughput capabilities.

VI. ACKNOWLEDGEMENT

The authors gratefully acknowledge the computing time
granted by the JARA-HPC Vergabegremium and provided
on the JARA-HPC Partition part of the supercomputer
JUQUEEN [22] at Forschungszentrum Jülich.

Furthermore, the authors would like to cordially thank
Leibniz Supercomputing Centre (LRZ) in Garching for
the computing time granted during the ‘Extreme Scaling
Workshop’ in June 2014.

REFERENCES

[1] J. Frisch, R.-P. Mundani, E. Rank, and C. van Treeck,
“Engineering-Based Thermal CFD Simulations on
Massive Parallel Systems,” Computation, vol. 3, no.
2, pp. 235–261, 2015.

[2] G. K. Batchelor, An Introduction to Fluid Dynamics,
Cambridge University Press, 2000.

[3] J. H. Ferziger and M. Perić, Computational Methods
for Fluid Dynamics, Springer, 3rd rev. edition, 2002.

[4] C. Hirsch, Numerical Computation of Internal and
External Flows, Volume 1, Butterworth–Heinemann,
2nd edition, 2007.

[5] J. H. Lienhard IV and J. H. Lienhard V, A Heat Trans-
fer Textbook, Dover Civil and Mechanical Engineering
Series. Dover Publications, 4th edition, 2011.

[6] F. H. Harlow and J. E. Welch, “Numerical calculation
of time-dependent viscous incompressible flow of fluid
with free surface,” Physics of Fluids, vol. 8, no. 12,
pp. 2182–2189, 1965.

[7] A. J. Chorin, “Numerical solution of the Navier-Stokes
equations,” Mathematics of Computation, vol. 22, no.
104, pp. 745–762, 1968.

[8] H. R. Schwarz and N. Köckler, Numerische Mathe-
matik, Vieweg + Teubner, 8th rev. edition, 2011.

[9] J. H. Ferziger, Numerical Methods for Engineering
Applications, Wiley-Interscience Publication. Wiley,
1998.

[10] J. Kim and P. Moin, “Application of a fractional-step
method to incompressible Navier-Stokes equations,”

1http://www.top500.org as of June 2015

Journal of Computational Physics, vol. 59, no. 2, pp.
308–323, 1985.

[11] H. Choi and P. Moin, “Effects of the computational
time step on numerical solutions of turbulent flow,”
Journal of Computational Physics, vol. 113, no. 1, pp.
1–4, July 1994.

[12] R. Courant, K. Friedrichs, and H. Lewy, “Über die
partiellen Differenzengleichungen der mathematischen
Physik,” Mathematische Annalen, vol. 100, no. 1, pp.
32–74, 1928.

[13] R. Peyret and T. D. Taylor, Computational Methods for
Fluid Flow, Springer Series in Computational Physics.
Springer-Verlag, 1983.

[14] J. Frisch, Towards Massive Parallel Fluid Flow Sim-
ulations in Computational Engineering, Ph.D. thesis,
Technische Universität München, Oct. 2014.

[15] H. A. Schwarz, “Ueber einen Grenzübergang durch
alternirendes Verfahren,” Vierteljahrsschrift der Natur-
forschenden Gesellschaft in Zürich, vol. 15, pp. 272–
286, 1870.

[16] J. Frisch, R.-P. Mundani, and E. Rank, “Communica-
tion schemes of a parallel fluid solver for multi-scale
environmental simulations,” in Proc. of the 13th Int.
Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC). 2011, pp. 391–397,
IEEE Computer Society.

[17] M. Bader, Space-Filling Curves – An Introduction with
Applications in Scientific Computing, Texts in Com-
putational Science and Engineering. Springer-Verlag,
2013.

[18] A. Brandt, “Multi-Level Adaptive Solutions to Boun-
dary-Value Problems,” Mathematics of Computation,
vol. 31, no. 138, pp. 333–390, Apr. 1977.

[19] S. Williams, A. Waterman, and D. Patterson, “Roofline:
an insightful visual performance model for multicore
architectures,” Communications of the ACM, vol. 52,
no. 4, pp. 65–76, 2009.

[20] M. Schäfer and S. Turek, “Benchmark computations
of laminar flow around a cylinder,” in Flow Simula-
tion with High-Performance Computers II. Jan. 1996,
vol. 52 of Notes on Numerical Fluid Mechanics, pp.
547–566, Vieweg.

[21] N. Perović, J. Frisch, R.-P. Mundani, and E. Rank,
“Interactive Data Exploration for High-Performance
Fluid Flow Computations Through Porous Media,” in
Proc. of the 16th International Symposium on Sym-
bolic and Numeric Algorithms for Scientific Computing
(SYNASC), Timişoara, Romania, Sept. 22-25, 2014, pp.
463–470.

[22] M. Stephan and J. Docter, “JUQUEEN: IBM Blue
Gene/Q c© Supercomputer System at the Jülich Su-
percomputing Centre,” Journal of large-scale research
facilities JLSRF, vol. 1, 2015.

	I Introduction and Motivation
	II MPFluid – Massive Parallel CFD Code
	II-A Mathematical Modelling
	II-B Data Structure
	II-C Data Exchange and Neighbourhood Server
	II-D Multi-Grid-Like Pressure Poisson Solver

	III Scaling Results
	IV Application Examples
	V Conclusion
	VI Acknowledgement

