
Constructing Coverability Graphs for Time
Basic Petri Nets

Matteo Camilli

Dept. of Computer Science
Università degli Studi di Milano, Italy

camilli@di.unimi.it

Abstract. Time-Basic Petri nets, is a powerful formalism for model-
ing real-time systems where time constraints are expressed through time
functions of marking’s time description associated with transition, rep-
resenting possible firing times. We introduce a technique for coverability
analysis based on the building of a finite graph. This technique further
exploits the time anonymous concept [5,6], in order to deal with topolog-
ically unbounded nets, exploits the concept of a coverage of TA tokens,
i.e., a sort of ω anonymous timestamp. Such a coverability analysis tech-
nique is able to construct coverability trees/graphs for unbounded Time-
Basic Petri net models. The termination of the algorithm is guaranteed
as long as, within the input model, tokens growing without limit, can be
anonymized. This means that we are able to manage models that do not
exhibit Zeno behavior and do not express actions depending on infinite
past events. This is actually a reasonable limitation because, generally,
real-world examples do not exhibit such a behavior.

Keywords: real-time systems, Time Basic Petri nets, infinite-states sys-
tems, reachability problems, coverability analysis

1 Introduction

When analyzing a Petri net, a very common question is whether or not the
net is bounded. If it is bounded, the net is theoretically analyzable, and its
state space is finite. However the net may be unbounded and classic state space
methods generates an infinite number of reachable states from these kind of
models. Time Basic (TB) Petri nets [11], as classic Place/Transition nets, may
be topologically unbounded. The unboundedness happens whenever there exists
a place in the net, where it is possible to accumulate an infinite number of tokens
during its execution. Coverability graph algorithms are able to deal with such
a models and allow us to decide several important problems: the boundedness
problem (BP), the place-boundedness problem (PBP), the semi-liveness problem
(SLP) and the regularity problem (RP) [13, 15]. Anyway, for TB nets, this task
is complicated by the time domain. In fact, tokens come along with temporal
information and, in general, it is not possible to cluster them into an ω symbol
without loosing important information about the system’s behavior. However, a

ar
X

iv
:1

40
9.

62
53

v1
 [

cs
.L

O
]

 1
9

Se
p

20
14

technique able to construct a finite symbolic reachability graph (TRG) relying on
a sort of time coverage, was recently introduced [5,6] This technique overcomes
the limitations of the existing available analyzers for TB nets, based in turn
on a time-bounded inspection of a (possibly infinite) reachability-tree. The time
anonymous concept [5,6], introduced by such a technique, allow us to overcome
the issue of clustering tokens. In fact, time anonymous timestamps do not carry,
for definition, any temporal information. Therefore, an infinite number of TA
tokens can be clustered together into a TAω symbol without loss of information.
The technique, introduced in the current report, gives us a means to deal with
topologically unbounded TB net models, where the unboundedness refers to
places having an infinite number of TA tokens. Such a limitation is actually
reasonable, in practice. In fact, this restricts the analyzable models to systems
which do not exhibit Zeno behavior and do not express actions depending on
“infinite” past events.

P0
T0

P1

P2t0t1

Initial marking P0{T0}
Initial constraint T0 ≥ 0

t0 [enab + 1.0, enab + 2.0]
t1 [enab + 1.0, enab + 2.0]

Fig. 1: Simple example showing an unbounded TB net model.

As a simple example, consider the model described in Figure 1. The behavior
of the system is very simple: from the initial state, the transition t0 must fire in
the time interval [T0, T0 + 2.0]. Its firing consumes T0 and produces two new
tokens in places P1 and P2, respectively. In this new state, t1 is the only enabled
transition, and its firing brings the system in the initial topological marking. It
is worth noting that every time T0 fires, a new token is placed into P2 which
cannot be consumed by any firing transition. Therefore, the abstraction tech-
nique introduced in [5, 6] applied to this example, generates an infinite number
of reachable symbolic states because the number of tokens in place P2 grows
without limit. Figure 2 shows a portion of the infinite reachability tree.

P0{T0}
T0 ≥ 0

S0

P1{T0} P2{TA}
T0 = TL

S1

P0{T0} P2{TA}
T0 = TL

S2

P1{T0} P2{TA;TA}
T0 = TL

S3t0
1.0 - 2.0

t1
1.0 - 2.0

t0
1.0 - 2.0

...

Fig. 2: Portion of the infinite reachability tree associated to the TB net model
presented in Figure 1.

As we can see, the number of TA tokens in place P2 grows indefinitely, thus
the execution of the software tool Graphgen [5, 6], on such a input, does not
terminate. The current report, introduces an extension of the previous analysis
technique able to build the coverability graph of unbounded TB nets, exploiting
the concept of TA coverage tokens. Our proposal takes inspiration from the
Monotone-Pruning (MP) algorithm introduced in [14], for P/T nets, and extends
it to deal with TB net models, thus supplying a means, also for real-time systems,
to solve the above mentioned problems.

1.1 Preliminaries

A quasi order ≥ on a set S is a reflexive and transitive relation on S. Given a
quasi order ≥ on S, a state s ∈ S and a subset X of S, we write s ≥ X iff there
exists an element s′ ∈ X such that s ≥ s′.

Given a finite set of places P , the marking M ([5, 6]) on P is a func-
tion P → Bag(TS ∪ {TA}) which supplies foreach place, timestamps asso-
ciated with tokens. The symbolic ω-marking Mω on P is a function P →
Bag(TS ∪ {TA, TAω}). The TAω symbol represents, in this case, any number
of TA symbols (∞ included). Given the set U(P) = N|P |, an u-marking ū, is an
element of U(P) which associates foreach place, the number of non-TA tokens.
Given the set V (P) = (N∪{ω})|P |, an v-marking v̄, is an element of V (P) which
associates foreach place, the number of TA tokens. Given a symbolic state S, we
denote with ū(S), and v̄(S) the u-marking and the v-marking associated with
S, respectively.

Given an element ū ∈ U(P), v̄ ∈ V (P), and a place p, we denote with ūp
the number of non-TA tokens in place p, and with v̄p the number of TA tokens
in place p. Since the ω symbol represents an infinite number of TA tokens, the
component v̄p = ω if and only if TAω ∈Mω(p).

For instance, if P = {p1, p2, p3, p4} and the symbolic ω-marking is {p1{T0, TA},
p3{T0, T1, TAω}}, the corresponding u-marking, and v-marking are {1, 0, 2, 0},
and {1, 0, ω, 0}, respectively.

The set V (P) is equipped with a partial order ≥ naturally extended by letting
n < ω, ∀n ∈ N and ω ≥ ω.

In the current report, when referring to symbolic states, we consider an ex-
tended version of the definition proposed in [5, 6], where the marking is repre-
sented by the function Mω rather than M .

Definition 1 (TA erasure). Given a symbolic state S = 〈Mω, C〉, S[¬TA] is
a symbolic state composed of 〈Mω ′, C〉, where Mω ′ is a symbolic ω-marking
obtained from the erasure of all TA symbols from Mω.

Definition 2 (state coverage). Given two symbolic states S = 〈Mω, C〉 and
S′ = 〈Mω ′, C ′〉, the u- and v- markings of S ū, v̄, and the u- and v- markings
of S′ ū′, v̄′, S covers S′ (S ≥ S′) iff ū = ū′ ∧ v̄ ≥ v̄′ ∧ C ≡ C ′.

That means that S differs from S′ only in the number of TA tokens in places.
In particular, the number of TA tokens foreach place in S is greater or equal to
those ones foreach place in S′. Formally, ∀p ∈ P, v̄p ≥ v̄′p. Whenever S ≥ S′ and
v̄ 6= v̄′ we say that S properly covers S′, and we denote it with S > S′.

Definition 3 (Coverability Tree). Given a TB net R = 〈P, T, F 〉, a cover-
ability tree is a tuple T = 〈N,n0, E〉, where N is a set of symbolic states, n0 ∈ N
is the toot state, E ⊆ N×T ×N is the set of edges labeled with firing transitions.
Where:

1. foreach reachable symbolic state S in TRG(R), there exists S′ ∈ N s.t. either
S ⊆ S′ or S ≥ S′.

2. foreach symbolic state S = 〈Mω, C〉 ∈ N , having u-marking ū and v-marking
v̄, there exists either a reachable state s of R s.t. s ∈ S, or a an infinite
sequence of reachable symbolic states in TRG(R), (Sn)n∈N s.t. ∀n,Cn ≡
C and ∀n, ū(Sn) = ū and the sequence (v̄(Sn))n∈N is strictly increasing
converging to v̄.

Given a symbolic state S ∈ N , we denote by AncestorT (S) the set of ancestors
of S in T (S included). If S is not the root of T , we denote by parentT (S) its
first ancestor in T . Finally, given two symbolic states S and S′ such that S ∈
AncestorT (S′), we denote by pathT (S, S′) ∈ E∗ the sequence of edges leading
from S to S′ in T .

1.2 Coverability Tree Algorithm

This section presents the algorithm able to construct coverability trees of TB
nets. We call it TBCT (Algorithm 1) and it is inspired by the Monotonic prun-
ing (MP) algorithm introduced in [14], able to build minimal coverability sets
for classic P/T nets. Our proposal involves the acceleration function Acc, first
introduced in the Karp and Miller algorithm [13]. However, it is defined and also
applied in a slightly different manner, in order to deal with a different model-
ing formalism. In the current context, the Acc function, actually modifies the
symbolic ω-marking Mω of a symbolic state by inserting proper TAω symbols,
accordingly to the following:

Acc : 2N ×N → N,Acc(W,S)(p) = S′ s.t.

∀p ∈ P, v̄(S′)p =

{
ω if ∃S′′ ∈W : S′′ < S ∧ v̄(S′′)p < v̄(S)p ∧ S′′ B S
mS(p)2 otherwise

(1)

Where S′′ B S iff there exists σ =pathT (S′′, S), such that σ is feasible from
S. Such a condition holds whenever, either:

1. CS′′ =⇒ CS , meaning that, S′′[¬TA] ⊆ S[¬TA]. In this case, all the paths
starting from S′′ are feasible from S.

2. CS =⇒ CS′′ and the first component of σ is of type A* [4]. In this case
S[¬TA] ⊆ S′′[¬TA], therefore not all paths starting from S′′ are feasible from
S, but since σ starts from all ordinary states of S′′, σ is feasible also from S.

For instance, considering the example in Figure 2, the evaluation of the Acc
function on S2 and its ancestors: Acc({S0, S1}, S2), causes the insertion of the
TAω symbol into P2 because S2 > S0, v̄(S2)P2

> v̄(S0)P2
and the path from

S0 to S2 is feasible from S2. This way, we recognize that TA tokens into place
P2 can grow without limit.

Algorithm 1 TBCT Algorithm.

Require: A TB net R = 〈P, T, F 〉
Ensure: A coverability tree T = 〈N,n0, E, L〉, N = Act ∪ Inact
1: function TBCT(R)
2: r = BuildRoot(R)
3: N = {r}; Act = N ; Wait = N ; E = ∅; L = ∅;
4: while Wait 6= ∅ do
5: s = Pop(Wait);
6: if s ∈ Act then
7: for t ∈ EnabledTransitions(s,R) do
8: m = Successor(s, t);
9: n = Acc(AncestorsT (m) ∩Act,m);

10: N+ = {n}; E+ = {〈s, t, n〉};
11: if 6 ∃a ∈ Act : a ⊇ n then
12: if ∃a ∈ Act : a ⊂ n then
13: Act− = {x : a ∈ AncestorsT (x)};
14: end if
15: if 6 ∃a ∈ Act : a ≥ n then
16: Act− = {x : ∃y ∈ AncestorsT (x) s.t y ≤ x
17: ∧ (y ∈ Act ∨ y ∈ AncestorsT (n))};
18: Act+ = {n}; Wait+ = {n}
19: end if
20: end if
21: end for
22: end if
23: end while
24: end function

Likewise both the Karp and Miller and the MP Algorithms, the TBCT algo-
rithm builds a coverability tree, but nodes, in the current context, are symbolic
states containing symbolic ω-markings and edges are labeled by transitions of
the analyzed TB net. Therefore it proceeds by exploring the reachability tree

of the net [5, 6], and accelerating along branches to reach “limit” symbolic ω-
markings (containing proper TAω symbols). In addition, during the exploration,
it can prune branches that are covered by nodes on other branches. Therefore,
nodes of the tree are partitioned in two subsets: active nodes, and inactive ones.
Intuitively, active nodes will form the coverability set of the TB net, while inac-
tive ones are not part of the final coverability set, because they are dominated
by other active nodes.

The Algorithm 1 proceeds in the following steps to decide how to change the
structure T according to new computed reachable symbolic states:

1. The symbolic state s, popped from Wait should be active (test of Line 6).
2. The algorithm iterates through all the enabled transitions and computes one

by one all the successor symbolic states: m = Successor(s, t); (Line 8).
3. The state m is accelerated w.r.t. its active ancestors. A new symbolic state
n is created by this operation: n = Acc(AncestorsT (m) ∩Act,m); (Line 9).

4. If the new symbolic state n is not included or equal to one of the existing
active nodes, then it is candidate to be active (test of Line 11).

5. If the new symbolic state n includes an existing active node a, then the
sub-tree with root a is deactivated (Lines 12-13).

6. The new symbolic state n is declared as active iff it is not covered by any
existing active nodes (test of Line 15 and Line 18).

7. If n is not covered, some symbolic states are deactivated (Line 17).

The update of the set Act, complies with the following rules. Intuitively,
nodes (and their descendants) are deactivated if they are included or covered by
other nodes. This would lead to deactivate a node x iff it owns an ancestor y
dominated by n, i.e. such that either y ⊂ n (Lines 12- 13) or y ≤ n (15-17).
Concerning the latter case, whenever a new node n (obtained from Wait) covers
a node y (y ≤ n), then y can be used to deactivate nodes in two ways:

– if y /∈ AncestorsT (n), then no matter whether y is active or not, all its
descendants are deactivated (Figure 3a).

– if y ∈ AncestorsT (n), then y must be active (y ∈ Act), and in that case all its
descendants are deactivated, except node n itself as it is added to Act (Line
18). We require y ∈ Act to avoid useless operations. In fact, descendants of
n dominates descendants of y (Figure 3b).

For example, con sidering the example in Figure 2, the insertion of S2 accel-
erated causes the deactivation of both S0 and S1 because of the execution of line
17. In particular, such a situation corresponds to Figure 3b, because S2 ≥ S0
and S0 (active node) belongs to AncestorsT (S2).

Figure 4 depicts the coverability tree constructed from the TB net example
presented in Figure 1. Elliptic symbolic states form the final coverability set
(active nodes), while the squared ones are symbolic states deactivated during
the analysis. As we can see, the TBCT algorithm builds a finite tree structure
from an unbounded TB net model. In particular, as shown before, the algorithm
is able to identify that the number of TA tokens in place P2 can grow without
limit.

ys

n

root

x
(a) y /∈ AncestorsT (n)

y ∈ Act

s

n

root

x

(b) y ∈ AncestorsT (n)

Fig. 3: Deactivations of symbolic states in the TBCT Algorithm

P1{T0} P2{TA}
TL = T0

P0{T0} P2{TAω}
TL = T0

P1{T0} P2{TAω}
TL = T0

P0{T0} P2{TAω}
TL = T0

t0
0.0 - 2.0

t1
0.0 - 1.0

t0
0.0 - 2.0

t1
0.0 - 1.0

S0 S1 S2 S3 S4

P0{T0}
TL = T0

Fig. 4: Coverability tree constructed from the TB net example presented in Fig-
ure 1.

As we can see in Figure 4, edges carry information about their type (either
AA, EE, AE or EA [4]), and about the local minimum-maximum firing time. In
the following, given an edge e, we refer to these information with type(e) and
time(e), respectively. In particular we refer to the source type with type(e)src
and to the target type with type(e)trgt.

It is also possible to construct a coverability graph G rather than a tree. This
task, starting from the tree structure T = 〈N,n0, E〉, executes the following
steps:

1. All inactive nodes are erased from N .
2. ∀a ∈ Act,∀〈a, t, b〉 ∈ E, if b is inactive, we search for a′ ∈ Act so that a′ ⊇ b

or a′ ≥ b, thus we remove 〈a, t, b〉 from E and we insert 〈a, t, a′〉.
3. All covered edges (Definition 4) are removed from E.

Definition 4 (edge coverage). Given a coverability tree T = 〈N,n0, E〉 and
two edges e = 〈a, t, b〉, e′ = 〈a′, t′, b′〉 ∈ E, e covers (≥) e′ iff:

i a = a′ ∧ t = t′ ∧ b = b′

ii time(e) ⊇ time(e′)

iii type(e)src ≥ type(e’)src∧ type(e)trgt ≥ type(e’)trgt, being A > E

P1{T0} P2{TAω}
TL = T0

P0{T0} P2{TAω}
TL = T0

S2

S3

t1
0.0 - 1.0

t0
0.0 - 2.0

Fig. 5: Coverability graph constructed from the coverability tree presented in
Figure 4.

Figure 5 shows the coverability graph resulting from the coverbility tree pre-
sented in figure 4. Such a structure contains only active symbolic states and gives
us a more intuitive overview on the system’s behavior. For instance, by observing
Figure 5, it’s easy to figure out that the system alternates two symbolic states
where P0 and P1 are marked with a single token, while place P2 can accumulate
TA tokens without limit.

The rest of this section reports some simple examples of unbounded TB net
models analyzed by the software tool implementing the TBCT algorithm. All the
coverability trees/graphs have been automatically obtained by using GraphViz
visualization software [12] on the output generated from the tool-set. The TW
notation used into symbolic ω-markings, stands for TAω.

Example A Figure 6 depicts an unbounded TB net model with two places (P0,
P1) and two transitions (T0, T1). It represents a simple synchronous system,
where an operation occurs at each time unit (e.g. production/consumption).
Produced units are stored into a infinite buffer. After the first consumption the
system stops.

Figure 7a shows the coverability tree of A. As we can see, the introduction
of S1 causes the deactivation of S0 (S1 ≥ S0). From S1 the system can evolve
either into S2 which is inactive (S2 = S1), or S3 which is a final state. Such a
behavior is also shown by the coverability graph (Figure 7b): the system loops
into S1, by the firing of T0 transition, until the firing of T1 which leads into the
final state S3.

Example B This model (Figure 8) is analogue to model A, except for an addi-
tional arc and a different initial marking. It represents two synchronous tasks,
where each task can either produce or consume. An infinite buffer stores pro-
duced units. Figure 9a and 9b show its coverability tree and coverability graph,
respectively. It is worth noting that the firing of T0 from S1 produces an ad-
ditional token into place P1 and because of the recognition of both tokens of

P0

P1

T0

T1

Initial marking P0{T0}
Initial constraint T0 ≥ 0

T0 [enab + 1.0, enab + 1.0]
T1 [enab + 1.0, enab + 1.0]

Fig. 6: Unbounded TB net model A.

��������������
��������

��

��������������
��������

��

��
�������

�������
����

��

��
�������

�������
��������

��

��
�������

(a) Coverability tree of A

�������
��	

��

�
��
���������
����
��

��
�

��
���

��
��
���

(b) Coverability graph of A

Fig. 7: Coverability tree/graph of example A.

P1 as TA, the acceleration of S2 recognizes the TAω into P1. Therefore, S2
deactivates both S0 and S1. Successors of both S3 and S4 are identified equal
to S2.

Example C This model (Figure 10) represents an unbounded TB net with four
places (P0, P1, P2, P3), two strong transitions (T0, T2) and a weak transition
(T3). Transition T0 acts as a sort of timer, in fact, whenever enabled, it must
fire in 10 time units from its previous firing time. Figure 11a and 11b show its
coverability tree and coverability graph, respectively.

Concerning the current example, it is worth noting that before the intro-
duction of S4, all the symbolic states were active. The acceleration of S4 leads
to the recognition of a TAω into place P3, and thus the identification of the
coverage S4 ≥ S1. This causes the deactivation of both S1 and its descendants
S2 and S3. The successors of S4 are S5 and S6. In this case, since S5 ⊂ S6, S5
is deactivated. Finally, S7 is recognized to be equal to S4.

P0

P1

T0

T1

Initial marking P0{T0, T0}
Initial constraint T0 ≥ 0

T0 [enab + 1.0, enab + 1.0]
T1 [enab + 1.0, enab + 1.0]

Fig. 8: Unbounded TB net model B.

��������������������
������������������������

��

�����������������
��������

��

��
�������

�����������������
��������

��

��
�������

�����������������
��������

��

��
�������

�����������������
������������������������

��

��
�������

�����������������
��������

��

��
�������

�����������������
��������

��

��
�������

����������
��������

��

�����������������
������������������������

��

��
�������

��
�������

(a) Coverability tree of B

�����������������
�	
������

���
��
������

��

�����������������
�	
�����

��

��
���
���

��
���
���

��������������������
�	
������

���
��
������

��

��
���
���

��
���
���

��
���
���

��
���
���

(b) Coverability graph of B

Fig. 9: Coverability tree/graph of example B.

1.3 Related Work

Concerning the reachability analysis of classic P/T nets, Karp and Miller (K&M)
introduced an algorithm for computing the minimal coverability set (MCS) [13].
This algorithm builds a finite tree representation of the (potentially infinite)
reachability graph of the given P/T net. It uses acceleration techniques to col-
lapse branches of the tree and ensure termination. The K&M Algorithm has
been also extended to other classes of well-structured transition systems [8, 9].
Anyway, the K&M Algorithm is not efficient in analyzing real-world examples
and it often does not terminate in reasonable time. One reason is that in many
cases it will compute several times a same subtree. The MCT algorithm [7] in-
troduces clever optimizations: a new node is added to the tree only if its marking
is not smaller than the marking of an existing node. Then, the tree is pruned:
each node labelled with a marking that is smaller than the marking of the new

W

P0

P1

P2

P3T0 T1 T2

Initial marking P0{T0}P1{T0}
Initial constraint T0 ≥ 0

T0 [enab, P0 + 10.0]
T1 [enab + 2.0, enab + 3.0]
T2 [enab + 1.0, enab + 4.0]

Fig. 10: Unbounded TB net model C.

node is removed together with all its successors. The idea is that a node that is
not added or that is removed from the tree should be covered by the new node
or one of its successors. However, the MCT algorithm is flawed [10]: it computes
an incomplete forward reachability set (i.e. all the markings reachable from the
initial markings). In [10], the CoverProc algorithm, is proposed for the com-
putation of the MCS of a Petri net. This algorithm follows a different approach
and is not based on the K&M Algorithm. In [14], the MP algorithm is proposed.
This algorithm can be viewed as the MCT algorithm with a slightly more ag-
gressive pruning strategy. Experimental results show that the MP algorithm is a
strong improvement over both the K&M and the CoverProc algorithms. The
TBCT algorithm, introduced in the current report, is somehow inspired by the
MP algorithm, and is able to construct coverability graphs of real-time systems
modeled with TB nets.

For timed Petri nets (TPNs), although the set of backward reachable states
(i.e. all the markings from which a final marking is reachable) is computable [2],
the set of forward reachable states is in general not computable. Therefore any
procedure for performing forward reachability analysis on TPNs is incomplete.
In [1], an abstraction of the set of reachable markings of TPNs is proposed. It
introduces a symbolic representation for downward closed sets, so called region
generators (i.e. the union of an infinite number of regions [3]). Anyway, the ter-
mination of the forward analysis by means of this abstraction is not guaranteed.

In the current report, we addressed unbounded TB nets, which represent
a much more expressive formalism for real-time systems than TPNs (interval
bounds in TB nets are linear functions of timestamps in the enabling marking,
rather than simple numerical constants). Other coverability analysis techniques
for such a formalism, have not been proposed yet, as far as we know.

���������������������
����������������������������

��

���������������������
��������

��

��
�������

��������������
��������

��

��������������
��������

��

��
��������

���������������������
����������������������������

��

��
�������

���������������������
����������������������������

��

��
�������

���������������������
����������������������������

��

��
�������

��
�������

���������������������
��������

��

��
�������

(a) Coverability tree of C

������������������	��
�
������

�

������������������	��
�
���������������
����������

�

��
�������

��
�������

��
�������

��������������
�
������

�

��
��������

(b) Coverability graph of C

Fig. 11: Coverability tree/graph of example C.

1.4 Conclusion

The current report introduces a coverability analysis technique able to construct
a coverability tree/graph for unbounded TB net models. The termination of the
TBCT algorithm is guaranteed as long as, within the input model, tokens grow-
ing without limit, can be anonymized. This means that we are able to manage
models that do not exhibit Zeno behavior and do not express temporal func-
tions depending on “infinite” past events. This is actually a reasonable limitation
because, in general, real-world examples do not exhibit such a behavior.

References

1. Parosh Aziz Abdulla, Johann Deneux, Pritha Mahata, and Aletta Nylén. Using
forward reachability analysis for verification of timed petri nets. Nordic J. of
Computing, 14(1):1–42, January 2007.

2. Parosh Aziz Abdulla and Aletta Nylén. Timed petri nets and bqos. In Proceedings
of the 22Nd International Conference on Application and Theory of Petri Nets,
ICATPN ’01, pages 53–70, London, UK, UK, 2001. Springer-Verlag.

3. Rajeev Alur and D. L. Dill. Automata for modeling real-time systems. In Proceed-
ings of the Seventeenth International Colloquium on Automata, Languages and
Programming, pages 322–335, New York, NY, USA, 1990. Springer-Verlag New
York, Inc.

4. Carlo Bellettini, Matteo Camilli, Lorenzo Capra, and Mattia Monga. Mardigras:
Simplified building of reachability graphs on large clusters. In ParoshAziz Abdulla
and Igor Potapov, editors, Reachability Problems, volume 8169 of LNCS, pages
83–95. Springer Berlin Heidelberg, 2013.

5. Carlo Bellettini and Lorenzo Capra. Reachability analysis of time basic petri nets:
A time coverage approach. In Proceedings of the 2011 13th International Sym-
posium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC
’11, pages 110–117, Washington, DC, USA, 2011. IEEE Computer Society.

6. M. Camilli. Verification of Reachability Problems for Time Basic Petri Nets. ArXiv
e-prints, September 2014.

7. Alain Finkel. The minimal coverability graph for petri nets. In Papers from the
12th International Conference on Applications and Theory of Petri Nets: Advances
in Petri Nets 1993, pages 210–243, London, UK, UK, 1993. Springer-Verlag.

8. Alain Finkel and Jean Goubault-Larrecq. Forward analysis for wsts, part i: Com-
pletions. In Susanne Albers and Jean-Yves Marion, editors, 26th International
Symposium on Theoretical Aspects of Computer Science, STACS 2009, February
26-28, 2009, Freiburg, Germany, Proceedings, volume 09001 of Dagstuhl Seminar
Proceedings, pages 433–444. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
Germany, 2009.

9. Alain Finkel and Jean Goubault-Larrecq. Forward analysis for wsts, part ii: Com-
plete wsts. In Proceedings of the 36th Internatilonal Collogquium on Automata,
Languages and Programming: Part II, ICALP ’09, pages 188–199, Berlin, Heidel-
berg, 2009. Springer-Verlag.

10. Gilles Geeraerts, Jean-François Raskin, and Laurent Van Begin. On the efficient
computation of the minimal coverability set for petri nets. In Proceedings of the 5th
International Conference on Automated Technology for Verification and Analysis,
ATVA’07, pages 98–113, Berlin, Heidelberg, 2007. Springer-Verlag.

11. Carlo Ghezzi, Dino Mandrioli, Sandro Morasca, and Mauro Pezzè. A unified
high-level petri net formalism for time-critical systems. IEEE Trans. Softw. Eng.,
17:160–172, February 1991.

12. http://www.graphviz.org/. Graphviz - graph visualization software.
13. Richard M. Karp and Raymond E. Miller. Parallel program schemata. J. Comput.

Syst. Sci., 3(2):147–195, May 1969.
14. Pierre-Alain Reynier and Frédéric Servais. Minimal coverability set for petri nets:

Karp and miller algorithm with pruning. In Proceedings of the 32Nd International
Conference on Applications and Theory of Petri Nets, PETRI NETS’11, pages
69–88, Berlin, Heidelberg, 2011. Springer-Verlag.

15. Rdiger Valk and Guy Vidal-Naquet. Petri nets and regular languages. Journal of
Computer and System Sciences, 23(3):299 – 325, 1981.

	Constructing Coverability Graphs for Time Basic Petri Nets

