
ar
X

iv
:1

80
1.

03
16

1v
1 

 [
cs

.S
C

] 
 9

 J
an

 2
01

8
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Abstract

Algorithms which compute modulo triangular sets must respect the presence of zero-divisors.
We present Hensel lifting as a tool for dealing with them. We give an application: a modular
algorithm for computing GCDs of univariate polynomials with coefficients modulo a radical
triangular set overQ. Our modular algorithm naturally generalizes previous work from algebraic
number theory. We have implemented our algorithm using Maple’s recden package. We
compare our implementation with the procedure RegularGcd in the RegularChains package.

1 Introduction

Suppose that we seek to find the greatest common divisor of two polynomials a, b ∈ Q(α1, . . . , αn)[x]
where αi are algebraic numbers. This problem was first solved using a modular algorithm by
Langemyr and McCallum [13] and improved by Encarnacion [7]. Their solution first found a
primitive element and then applied an algorithm for one extension. Monagan and van Hoeij [10]
improved the multiple extension case by circumventing the primitive element.

The computational model used for an algebraic number field is the quotient ring Q[z1, . . . , zn]/T
where T = 〈t1(z1), t2(z1, z2), . . . , tn(z1, . . . , zn)〉 and each ti is the minimal polynomial of αi, hence
irreducible, over Q(α1, . . . , αi−1). A natural generalization, requested by Daniel Lazard at ISSAC
2002, is to consider the same problem when each ti is possibly reducible in which case Q[z1, . . . , zn]/T
has zero-divisors.

The generators of T form what is known as a triangular set. Let R = Q[z1, . . . , zn]/T . This
paper proposes a new algorithm for computing gcd(a, b) with a, b ∈ R[x]. The backbone of it is the
Euclidean algorithm. However, the EA can’t always be used in this ring. For example, suppose
R = Q[z1, z2]/T and T = 〈z21 + 1, z22 + 1〉. Notice that z21 − z22 = 0 in R hence z1 − z2 and z1 + z2
are zero-divisors in R. Consider computing the gcd of

a = x4 + (z1 + 18 z2)x
3 + (−z2 + 3 z1)x

2 + 324x + 323

b = x3 + (z1 + 18 z2)x
2 + (−19 z2 + 2 z1) x+ 324

using the Euclidean algorithm. The remainder of a÷ b is

r1 = (z1 + 18z2)x
2 + 323.
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Since z1 + 18z2 is a unit, a division can be performed; dividing b by r1 gives

r2 = (z1 − z2)x+ 1.

The next step in the Euclidean algorithm would be to invert z1 − z2, but it’s a zero-divisor, so it
cannot continue. A correct approach would be to factor z22 + 1 = (z2 − z1)(z2 + z1) (mod z21 + 1)
to split the triangular set T into {z21 + 1, z2 − z1} and {z21 + 1, z2 + z1}. After that, finish the EA
modulo each of these new triangular sets. It’s possible to combine the results using the Chinese
remainder theorem, but that is costly so it is common practice to instead return the output of the
EA along with the associated triangular set. For example, see the definition of pseudo-gcd in [12]
and regular-gcd in [14]. We follow this trend with our definition componentwise-gcd in section 4.

Now, consider trying to compute gcd(a, b) above using a modular GCD algorithm. One would
expect to hit the modular image of the same zero-divisor at each prime and hence one could combine
them using Chinese remaindering and rational reconstruction. For instance, the EA modulo 13 will
terminate with the zero-divisor z1 +12z2 (mod 13) as expected. However, running the EA modulo
17 terminates earlier because lc(r1) = z1+18z2 ≡ z1 + z2 (mod 17) is a zero-divisor. This presents
a problem: z1 + z2 (mod 17) and z1 + 12z2 (mod 13) will never combine into a zero-divisor no
matter how many more primes are chosen.

To circumvent, our algorithm finds a monic zero-divisor and lifts it using Hensel lifting to a
zero-divisor over Q. Our technique handles both the expected zero-divisors (such as z1 + 12z2
(mod 13) in the above example) and the unexpected zero-divisors (such as z1 + z2 (mod 17)). A
different approach that we tried is Abbott’s fault tolerant rational reconstruction as described in
[1]; although this is effective, we prefer Hensel lifting as it enables us to split the triangular set
immediately thus saving work.

In section 2, we review important properties of triangular sets, such as being radical. If T is a
radical triangular set over Q, reduction modulo p doesn’t always result in a radical triangular set.
We prove that if T is radical over Q, then T mod p is radical for all but finitely many primes. We
give an algorithm for determining if a prime p enjoys this property, which is based on a corollary
from Hubert [12].

In section 3, we present how to use Hensel lifting to solve the zero-divisor problem. We prove a
variant of Hensel’s lemma that’s applicable to our ring and give explicit pseudo-code for a Hensel
lifting algorithm. The algorithm is chiefly the Hensel construction, but the presence of zero-divisors
demands a careful implementation.

In section 4, we give an application of the Hensel lifting to a modular gcd algorithm. Here,
we define componentwise-gcds and prove they exist when T is a radical triangular set. We handle
bad and unlucky primes, as par for the course with any modular algorithm. Our algorithm is
best seen as a generalization of Monagan and van Hoeij’s modular gcd algorithm over number
fields [10]. We give pseudo-code for the modular gcd algorithm and all necessary sub-procedures.
A second application which we are currently exploring is the inversion problem, that is, given
u ∈ Q[z1, . . . , zn]/T , determine if u is invertible and if so compute u−1.

In section 5, we discuss our implementation of the previously described algorithms in Maple
using Monagan and van Hoeij’s recden package which uses a recursive dense data structure for
polynomials and algebraic extensions. We compare it with the RegularGcd procedure in Maple’s
RegularChains package, which uses the subresultant algorithm of Li, Maza, and Pan as described
in [14]. This comparison includes examples and time tests.

In section 6, we give a complexity analysis of our modular gcd algorithm. This involves a new
result about the number of operations it takes to multiply a, b ∈ R and reduce by T . We conclude
with expected and worse case running time of our modular gcd algorithm. We end with a conclusion
in section 7.
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2 Triangular Sets

2.1 Notation and Definitions

We begin with some notation. All computations will be done in the ring k[z1, . . . , zn] endowed with
the monomial ordering zi < zi+1 and k a field. Let f ∈ k[z1, . . . , zn] be non-constant. The main

variable mvar(f) of f is the largest variable with nonzero degree in f , and the main degree of f is
mdeg(f) = degmvar(f)(f).

As noted in the introduction, triangular sets will be of key interest in this paper. Further, they
are to be viewed as a generalization of an algebraic number field with multiple extensions. For this
reason, we impose extra structure than is standard:

Definition. A triangular set T is a set of non-constant polynomials in k[z1, . . . , zn] satisfying

(i) |T | = n,
(ii) T = {t1, . . . , tn} where mvar(ti) = zi,
(iii) ti is monic with respect to zi, and
(iv) degzj (ti) < mdeg(tj) for j < i.

The degree of T is
∏n

i=1mdeg(ti). Also, T = ∅ is a triangular set.

Condition (i) states there are no unused variables. This is equivalent to T being zero-dimensional.
Condition (ii) gives a standard notation that will be used throughout this paper. Conditions (iii)
and (iv) relates the definition to that of minimal polynomials. Condition (iv) is commonly referred
to as a reduced triangular set as seen in [2]. The degree of T is akin to the degree of an extension.

Example 1. The polynomials {z31 + 4z1, z
2
2 + (z1 + 1)z2 + 4} form a triangular set. However,

{z22 + (z1 + 1)z2 + 4} wouldn’t since there’s no polynomial with z1 as a main variable. Also,
{t1 = z31 + 4z1, t2 = z22 + z41z2 + 3} isn’t because degz1(t2) = 4 > mdeg(t1).

A zero-divisor u ∈ k[z1, . . . , zn] modulo T is a polynomial such that u 6∈ 〈T 〉 and there is a
polynomial v 6∈ 〈T 〉 where uv ∈ 〈T 〉. Since R is a finite-dimensional k-algebra, all nonzero elements
are either zero-divisors or units modulo 〈T 〉.

Given a triangular set T , we define Ti = {t1, . . . , ti} and T0 = ∅. For example, let T =
{z31 + 1, z32 + 2, z33 + 3}. Then, T3 = T , T2 = {z31 + 1, z32 + 2}, T1 = {z31 + 1}. In general, since any
triangular set T forms a Grobner basis with respect to the lex monomial ordering, it follows that
k[z1, . . . , zi]∩ 〈T 〉 = 〈Ti〉 when 〈Ti〉 is viewed as an ideal of k[z1, . . . , zi]; this is a standard result of
elimination theory, see Cox, Little, O’Shea [5].

The presence of zero-divisors presents many unforeseen difficulties that the following examples
illustrate.

Example 2. It’s possible for a monic polynomial to factor as two polynomials with zero-divisors
as leading coefficients. For example, consider the triangular set T = {(z21 + 2)(z21 + 1), z32 − z2}.
Observe that when working modulo (z21 + 2)(z21 + 1),

z32 − z2 =
(

(z21 + 2)z22 − 1
) (

(z21 + 1)z32 + z2
)

.

Of course, a nicer factorization may exist, like z32 − z2 = (z22 − 1)z, but it’s not clear if this always
occurs or how to compute it. This greatly enhances the complexity of handling zero-divisors. The
above equation also shows that the degree formula for the product of two polynomials doesn’t hold
in this setting.
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Example 3. Another difficulty is that denominators in the factors of a polynomial a(x) ∈ R[x] may
not appear in the denominators of a(x). Weinberger and Rothschild give the following example in
[20]. Let t1(z1) = z61 +3z51 +6z41 + z31 − 3z21 +12z1+16 which is irreducible over Q. The polynomial

f = x− 4
3 −

11
12z1 +

7
12z

2
1 −

1
6z

3
1 −

1
12z

4
1 −

1
12z

5
1

is a factor of a(x) = x3 − 3 in R[x]. The denominator of any factor of a(x) (denom(f) = 12 in
this example) must divide the defect d of the field R. It is known that the discriminant ∆ of t1(z1)
is a multiple of d, usually, much larger than d. Thus we could try to recover ∆f with Chinese
remaindering then make this result monic. Although one could try to generalize the discriminant
to the case n > 1, using rational number reconstruction circumvents this difficulty and also allows
us to recover g without using a lot more primes than necessary.

Lastly, since there is no standard definition of gcd(a, b) for a, b ∈ R[x] where R is a commutative
ring unless R is a unique factorization domain, we’d like to make it explicit that g = gcd(a, b) if (i)
g | a and g | b, and (ii) any common divisor of a and b is a divisor of g.

2.2 Radical Triangular Sets

An ideal I ⊂ k[x1, . . . , xn] is radical if f
m ∈ I implies f ∈ I. To start, we give a structure theorem

for radical and zero-dimensional triangular sets. One could prove this more generally by using
the associated primes of T as done in Proposition 4.7 of [12]. The structure theorem gives many
powerful corollaries.

Theorem 1. Let T ⊆ k[z1, . . . , zn] be a triangular set. Then, k[z1, . . . , zn]/T is isomorphic to a
direct product of fields if and only if T is zero-dimensional and radical.

Corollary 1. Let T ⊂ k[z1, . . . , zn] be a radical, zero-dimensional triangular set andR = k[z1, . . . , zn]/T .
Let a, b ∈ R[x]. Then a greatest common divisor of a and b exists.

Proof. This follows straightforwardly using the CRT and Theorem 1.

Corollary 2 (Extended Euclidean Representation). Let T ⊂ k[z1, . . . , zn] be a radical, zero-
dimensional triangular set and R = k[z1, . . . , zn]/T . Let a, b ∈ R[x] with g = gcd(a, b). Then,
there exists polynomial A,B ∈ R[x] such that aA+ bB = g.

Proof. Note that R ∼=
∏

Fi where Fi is a field, and we can extend this to R[x] ∼=
∏

Fi[x]. Let
a 7→ (ai)i and b 7→ (bi)i. Define hi = gcd(ai, bi) in Fi[x]. By the extended Euclidean algorithm,
there exists Ai, Bi ∈ Fi[x] such that aiAi+ biBi = hi. Let h 7→ (hi)i and A 7→ (Ai)i and B 7→ (Bi)i.
Clearly, aA+ bB = h in R[x]. Since h | g, we can multiply through by the quotient to write g as a
linear combination of a and b.

It should be noted that Corollary 2 works even if running the Euclidean algorithm on a and b
encounters a zero-divisor. This shows it’s more powerful than the extended Euclidean algorithm.
Further, it also applies to the case where lc(g) is a zero-divisor.

We next turn our attention to working modulo primes.

Definition. Let T ⊂ Q[z1, . . . , zn] be a radical triangular set. A prime number p is a radical prime if
p doesn’t appear as a denominator of any of the polynomials in T , and if T mod p ⊂ Zp[z1, . . . , zn]
remains radical.

Example 4. The triangular set {z21 − 3} is radical over Q. Since the discriminant of z21 − 3 is 12, it
follows that 2, 3 aren’t radical primes, but all other primes are.
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If there were an infinite family of nonradical primes, it would present a problem for the algo-
rithm. We prove this can’t happen. This has also been proven with quantitative bounds in [6].
The following lemma is a restatement of Corollary 7.3 of [12]. It also serves as the main idea of our
algorithm for testing if a prime is radical; see IsRadicalPrime below.

Lemma 1. Let T ⊂ k[z1, . . . , zn] be a zero-dimensional triangular set. Then T is radical if and
only if gcd(ti, t

′

i) = 1 (mod Ti−1) for all i.

Theorem 2. Let T ⊂ Q[z1, . . . , zn] be a radical, zero-dimensional triangular set. All but finitely
many primes are radical primes.

Proof. By Lemma 1, gcd(ti, t
′

i) = 1. By the extended Euclidean representation (Corollary 2), there
exist polynomials Ai, Bi ∈ (Q[z1, . . . , zi−1]/Ti−1)[zi] where Aiti + Bit

′

i = 1 (mod Ti−1). Take any
prime p that doesn’t divide the denominator of any Ai, Bi, ti, t

′

i. This means one can reduce this
equation modulo p and so Aiti+Bit

′

i (mod Ti−1, p). This implies gcd(ti, t
′

i) = 1 (mod Ti−1, p) and
so T remains radical modulo p by Lemma 1. There are only a finite amount of primes that divide
the denominator of any of these polynomials.

Lastly, we give an algorithm for testing if a prime p is radical. It may not always output True
or False as it relies on Lemma 1 which relies on a gcd computation modulo p, which is computed
by the Euclidean algorithm. If a zero-divisor is encountered, we output the zero-divisor. This case
is caught later in the modular gcd algorithm, of which IsRadicalPrime is a subroutine.

Algorithm 1: IsRadicalPrime

Input : A zero-dimensional, radical triangular set T ⊂ Q[z1, . . . , zn] and a prime number p
that does not divide any denominator of any coefficient of any ti ∈ T .

Output: A boolean indicating if T remains radical modulo p, or a zero-divisor.
1 for i = 1, . . . , n do

2 dt := ∂
∂zi

T [i];

3 g := gcd(T [i], dt) over Zp[z1, . . . , zi]/Ti−1;
4 if g = [“ZERODIVISOR”, u] then return [“ZERODIVISOR”, u];
5 if g 6= 1 then return False;

6 end

7 return True;

3 Handling Zero-Divisors

We turn our attention to lifting a factorization f = ab (mod T, p) for a, b, f ∈ R[x]. A general
factorization will not be liftable; certain conditions are necessary for existence and uniqueness of
each lifting step. For one, we will need gcd(a, b) = 1 (mod p) as is required in the case with no
extensions to satisfy existence. Further, we will need both a and b to be monic to satisfy uniqueness.
The following lemma gives a uniqueness criterion for the extended Euclidean representation. It
generalizes Theorem 26 in Geddes, Czapor, Labahn [9] from F [x] to R[x]. We give a proof, but
note that it is only a slight alteration.

Lemma 2. Let T ⊂ k[z1, . . . , zn] be a zero-dimensional triangular set and R = k[z1, . . . , zn]/T .
Let a, b ∈ R[x] be nonzero and monic with polynomials A,B where 1 = Aa + Bb. Then, for any
polynomial c ∈ R[x], there exist unique polynomials σ, τ ∈ R[x] such that

aσ + bτ = c, deg(σ) < deg(b).

5



Proof. Existence: Multiplying through 1 = Aa+Bb by c gives a(cA) + b(cB) = c. Dividing cA by
b, which we can do since b is monic, gives cA = qb+ r with r = 0 or deg(r) < deg(b). Define σ = r
and τ = cB + qa. Observe that

aσ + bτ = ar + b(cB + qa) = ar + bcB + abq = a(r + bq) + bcB = acA+ bcB = c(aA+ bB) = c

thus σ and τ satisfy the conditions of the Lemma. Uniqueness: Suppose both pairs σ1, τ1 and σ2, τ2
satisfy aσi + bτi = c with the desired degree constraint. This yields

(σ1 − σ2)a = b(τ2 − τ1).

Since gcd(a, b) = 1, it follows that b | σ1−σ2. However, since b is monic and deg(σ1−σ2) < deg(b),
this is only possible if σ1−σ2 = 0. Thus 0 = b(τ2− τ1). Next, since b is not a zero-divisor (because
it’s monic), this can only happen if τ2 − τ1 = 0 as well.

We’re particularly interested in trying to factor tn modulo Tn−1 because encountering a zero-
divisor may lead to such a factorization; that is, if w is a zero-divisor with main variable zn, we
can write u = gcd(tn, w) and then tn = uv mod 〈Tn−1〉 by the division algorithm. As long as T is
radical, the next lemma shows we automatically get gcd(u, v) = 1.

Lemma 3. Let T ⊂ k[z1, . . . , zn] be a radical, zero-dimensional triangular set. Suppose tn ≡ uv
(mod Tn−1). Then, gcd(u, v) = 1 (mod Tn−1).

Proof. Let u = ug (mod Tn−1) and v = vg (mod Tn−1). Note that tn ≡ uvg2 (mod Tn−1). This
would imply (uvg)2 ≡ 0 (mod T ); that is, uvg is a nilpotent element. However, since nilpotent
elements don’t exist modulo a radical ideal, uvg ≡ 0 (mod T ). This would imply uvg ≡ qtn
(mod Tn−1) for some polynomial q. Then,

(gq − 1)tn ≡ gqtn − tn ≡ guvg − tn ≡ 0 (mod Tn−1).

Since tn is monic in zn, it can’t be a zero-divisor modulo Tn−1. Therefore, gq− 1 ≡ 0 (mod Tn−1).
Thus, g is a unit modulo Tn−1 and so indeed gcd(u, v) = 1 (mod Tn−1).

Finally, the next proposition shows that lifting is possible. The proof given is simply the Hensel
construction.

Proposition 1. Let T ⊂ Zp[z1, . . . , zn] be a zero-dimensional triangular set with p a prime number.
Suppose tn ≡ u0v0 (mod Tn−1, p) where u0 and v0 are monic. Assume there are polynomials A,B
where 1 = Au0 + Bv0. Then, there exist unique monic polynomials uk, vk such that tn ≡ ukvk
(mod Tn−1, p

k) and uk ≡ u0 mod (mod Tn−1, p) and vk ≡ v0 mod (mod Tn−1, p) for all k ≥ 1.

Proof. (by induction on k): The base case is clear. For the inductive step, we want to be able to
write uk = uk−1 + pk−1a (mod Tn−1, p

k) and vk = vk−1 + pk−1b (mod Tn−1, p
k) satisfying

tn ≡ ukvk (mod Tn−1, p
k).

Multiplying out uk, vk gives

tn ≡ ukvk ≡ uk−1vk−1 + pk−1(avk−1 + buk−1) (mod Tn−1, p
k).

Subtracting uk−1vk−1 on both sides and dividing through by pk−1 gives

tn − uk−1vk−1

pk−1
≡ av0 + bu0 (mod Tn−1, p).
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Let c =
tn−uk−1vk−1

pk−1 . By Lemma 2, there exists unique polynomials σ, τ such that u0σ + v0τ ≡ c

(mod Tn−1, p) with deg(σ) < deg(v0) and deg(τ) < deg(u0) since certainly deg(c) = deg(tn −
uk−1vk−1) < deg(tn) = deg(u0)+deg(v0). Set a = τ and b = σ. Because of these degree constraints,
uk = uk−1+apk−1 has the same leading coefficient as uk−1 and hence u0; in particular uk is monic.
Similarly, vk is monic as well. By uniqueness of σ and τ , we get uniqueness of uk and vk.

What follows is a formal presentation of the Hensel construction. The algorithm HenselLift
takes input u0, v0, f ∈ R/〈p〉[x] where u0, v0 are monic and f = u0v0 (mod p). It also requires a
bound B that’s used to notify termination of the Hensel construction and output FAIL. A crucial
part of the Hensel construction is solving the diophantine equation σu0+ τv0 = c (mod T, p). This
is done using the extended Euclidean algorithm and Lemma 2. It’s possible that a zero-divisor
is encountered in this process. This has to be accounted for. Therefore, we allow the HenselLift
algorithm to also output [“ZERODIVISOR”, u] if it encounters a zero-divisor u ∈ R/〈p〉.

Algorithm 2: HenselLift

Input : A zero-dimensional radical triangular set T ⊂ Q[z1, . . . , zn], a radical prime p,
polynomials f ∈ R[x] and a0, b0 ∈ R/〈p〉[x] where R = Q[z1, . . . , zn]/T , and a
bound B. Further, assume f ≡ a0b0 (mod p) and gcd(a0, b0) = 1.

Output: Either polynomials a, b ∈ R[x] where f = ab, FAIL if the bound B is reached, or
[“ZERODIVISOR”, w] if a zero-divisor w ∈ R/〈p〉 is encountered.

1 Solve sa0 + tb0 = 1 using the monic extended Euclidean algorithm for s, t ∈ R/〈p〉[x];
2 if a zero-divisor w is encountered then return [“ZERODIVISOR”, w];
3 Initialize u = a0, v = b0 and lift u and v from R/〈p〉 to R;
4 for i = 1, 2, . . . do

5 Set a :=RationalReconstuction(u (mod pi));
6 if a 6= FAIL, and a|f then return a,f/a;
7 if pi > 2B then return FAIL;
8 Compute e := f − uv as polynomials over Q;
9 Set c := (e/pi) mod p ;

10 Solve σa0 + τb0 = c for σ, τ ∈ R/〈p〉[x] using sa0 + tb0 = 1;
11 Lift σ and τ from R/〈p〉 to R and set u := u+ τpi and v := v + σpi;

12 end

In general the input f will have fractions thus the error e in our Hensel lifting algorithm will
also have fractions and hence it can never become 0. Note the size of the rational coefficients of e
grow linearly with i as f is fixed and the magnitude of the integer coefficients in the product uv
are bounded by p2i(1 + deg u).

The standard implementation of Hensel lifting requires a bound on the coefficients of the factors
of the polynomial f ∈ R[x]. For the base case n = 0 where R[x] = Q[x] one can use the Mignotte
bound (see [8]). For the case n = 1 Weinberger and Rothschild [20] give a bound but note that it is
large. We do not know of any bounds for the general case n > 1 and hypothesize that they would
be bad. Therefore a more “engineering”-esque approach is needed. Since we do not know whether
the input zero-divisor a0 is the image of a monic factor of f , we repeat the Hensel lifting each time
a zero-divisor is encountered in our modular GCD algorithm, first using a bound of 260, then 2120,
then 2240 and so on, until the coefficients of any monic factor of f can be recovered using rational
number reconstruction.

The prime application of Hensel lifting will be as a solution to the zero-divisor problem. This is
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the goal of the HandleZeroDivisorHensel algorithm. The algorithm assumes a zero-divisor modulo
a prime p has been encountered by another algorithm (such as our modular gcd algorithm). It
attempts to lift this zero-divisor using HenselLift. If HenselLift encounters a new zero-divisor w, it
recursively calls HandleZeroDivisorHensel(w). If the Hensel lifting fails (i.e., a bound is reached),
it instructs the algorithm using it to pick a new prime. If the Hensel lifting succeeds in finding
a factorization tn = uv (mod Tn−1) over Q, then the algorithm using it works recursively on new
triangular sets T (u) and T (v) where tn is replaced by u and v, respectively.

Algorithm 3: HandleZeroDivisorHensel

Input : A zero-dimensional radical triangular set T ⊂ Zp[z1, . . . , zn] modulo a prime p and
a zero-divisor u0 ∈ R where R = Zp[z1, . . . , zn]/T . Assume mvar(u) = n.

Output: A message indicating the next steps that should be carried out, including any
important parameters;

1 Set v0 :=Quotient(tn, u0) (mod Tn−1, p);
2 if v0 = [“ZERODIVISOR”, w] then return HandleZeroDivisorHensel(w);
3 if the global variable B is unassigned then set B := 260 else set B := B2;
4 Set u, v :=HenselLift(tn, u0, v0, B);
5 if u = [“ZERODIVISOR”, w] then return HandleZeroDivisorHensel(w);
6 else if u = FAIL then return FAIL. This indicates that a new prime or bigger bound is

needed;
7 else return u and v;

We’d like to make it clear that this is not the first case of using p-adic lifting techniques on
triangular sets. In particular, lifting the triangular decomposition of a regular chain has been used
by Dahan, Maza, Schost, Wu, Xie in [6].

4 The Modular Algorithm

The main content of this section is to fully present and show the correctness of our modular
algorithm. First, suppose a zero-divisor w over Q is found while running the modular algorithm.
It will be used to factor tk = uv (mod Tk−1) where u and v are monic with main variable zk. From
here, the algorithm proceeds to split T into T (u) and T (v) where tk is replaced with u in T (u) and
v in T (v). Of course ti is reduced for i > k as well. The algorithm then continues recursively.
Once the recursive calls are finished, we could use the CRT to combine gcds into a single gcd, but
this would be very time consuming. Instead, it’s better to just return both gcds along with their
associated triangular sets. This approach is similar to Hubert’s in [12] which she calls a pseudo-gcd.
Here, we refer to this as a component-wise gcd, or c-gcd for short:

Definition. Let R be a commutative ring with unity such that R ∼=
∏r

i=1 Ri and a, b ∈ R[x]. Let
πi : R → Ri be the natural projections. A component-wise gcd of a and b is a tuple (g1, . . . , gr) ∈
∏r

i=1Ri[x] where each gi = gcd(πi(a), πi(b)) and lc(gi) is a unit.

The modular algorithm’s goal will be to compute c-gcd(a, b) given a, b ∈ R[x] where R =
Q[z1, . . . , zn]/T and T ⊂ Q[z1, . . . , zn] is a radical triangular set. As with all modular algorithms,
it’s possible that some primes are unlucky. We also prove this only happens for a finite number of
cases.

Definition. Let T ⊂ Q[z1, . . . , zn] be a radical triangular set, and R = Q[z1, . . . , zn]/T . Let a, b ∈
R[x] and g = c-gcd(a, b). A prime number p is an unlucky prime if g doesn’t remain a componentwise
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greatest common divisor of a and b modulo p. Additionally, a prime is bad if it divides any
denominator in T , any denominator in a or b, or if lc(a) or lc(b) vanishes modulo p.

Theorem 3. Let T ⊂ Q[z1, . . . , zn] be a radical triangular set, and R = Q[z1, . . . , zn]/T . Let
a, b ∈ R[x] and g = c-gcd(a, b). Only finitely many primes are unlucky.

Proof. Let R[x] ∼=
∏

Ri[x] where g = (gi) and g = gcd(a, b) ∈ Ri[x]. Let a 7→ (ai) and b 7→ (bi). If
gi = 0, then ai = 0 and bi = 0 and no primes are unlucky since, gcd(0, 0) ≡ 0 (mod p). Suppose
gi = gcd(ai, bi) is nonzero and monic. Let ai and bi be the cofactors ai = giai and bi = gibi. I
claim gcd(ai, bi) = 1. To show this, consider a common divisor f of ai and bi. Note that fgi | ai
and fgi | bi. Since gi = gcd(ai, bi), it follows that fgi | gi; so there exists q ∈ Ri[x] where fgiq = gi.
Rewrite this equation as (fq− 1)gi = 0. Well, gi is monic in x, and so can’t be a zero-divisor. This
implies fq − 1 = 0 and so indeed f is a unit. Thus, gcd(ai, bi) = 1. By the extended Euclidean
representation (Corollary 2), there exists Ai, Bi ∈ Ri[x] where aiAi + biBi = 1.

Let p be a prime where p doesn’t divide any of the denominators in ai, ai, Ai, bi, bi, Bi, gi. Then,
we can reduce the equations

aiAi + biBi = 1 (mod p), (1)

ai = giai (mod p), bi = gibi (mod p). (2)

We will now show that gi = gcd(ai, bi) (mod p). By (2), we get gi is a common divisor of ai and bi
modulo p. Consider a common divisor c of ai and bi modulo p. Multiplying equation (1) through
by gi gives aiAi + biBi = gi (mod p). Clearly, c | gi modulo p. Thus, gi is indeed a greatest
common divisor of ai and bi modulo p. As there are finitely many primes that can divide the
denominators of fractions in the polynomials ai, ai, Ai, bi, bi, Bi, gi, there are indeed finitely many
unlucky primes.

Example 5. This example illustrates how the IsRadical function can run into a zero-divisor. Con-
sider T = {z21 − 1, z32 + 9z22 + 3z1+51

2 z2 − 53z1+3
2 }. We will be running the algorithm over Q to

illustrate. First, it would determine that T1 = {z21 − 1} is radical. Now, when it is running the
Euclidean algorithm on t2 = z32 + 9z22 + 3z1+51

2 z2 −
53z1+3

2 and t′2 = 3z22 + 18z2 +
3z1+51

2 , the first
remainder would be (z1−1)z2−28z1−27. However, z1−1 is a zero-divisor, so the algorithm would
output [“ZERODIVISOR”, z1 − 1]. This same zero-divisor will show up for every odd prime (2
appears in the denominator of t2 and so shouldn’t be considered). This explains why we can’t just
simply pick a new prime in ModularC-GCD if IsRadical encounters a zero-divisor.

We would like to give a high level overview of the algorithm since looking at pseudo-code is
not always the best way to understand. Please see Algorithm 5 for pseudo-code. The inputs are
a, b ∈ R[x] where T is a radical triangular set and R = Q[z1, . . . , zn]/T ,

1. Pick a new prime p that is not bad.

2. Test if p is a radical prime.

2.1 If a zero-divisor is encountered, resolve it using HandleZeroDivisorHensel.

2.2 If p is not radical, go back to step 1. Otherwise, continue as p is a radical prime.

3. Use the monic Euclidean algorithm to compute gp = gcd(a, b) (mod p).

3.1 If a zero-divisor is encountered, resolve it using HandleZeroDivisorHensel.
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3.2 Combine all gcds computed modulo primes of lowest degree using Chinese remaindering
and rational reconstruction into a polynomial h over Q.

3.3 Test if h | a and h | b. If the division test succeeds, return h. Otherwise, we need more
primes, so go back to step 1.

The crux of ModularC-GCD is an algorithm to compute gcd(a, b) for the input polynomials a, b
reduced modulo a prime. The algorithm we use for this is MonicEuclideanC-GCD below. It
is a variant of the monic Euclidean algorithm. For computing inverses, the extended Euclidean
algorithm can be used; modifying MonicEuclideanC-GCD to do this is straightforward.

Algorithm 4: MonicEuclideanC-GCD

Input : A ring R as specified in the opening of the section, and two polynomials
a, b ∈ R[x]. Assume degx(a) ≥ degx(b).

Output: Either monic gcd(a, b) or an error if a zero-divisor is encountered.
1 if b = 0 then

2 if lc(a) is a zero-divisor then return [“ZERODIVISOR”, lc(a)];
3 return lc(a)−1a

4 end

5 Set r0 := a and r1 := b;
6 i := 1;
7 while ri 6= 0 do

8 if lc(ri) is a zero-divisor then return [“ZERODIVISOR”, lc(ri)];
9 ri := lc(ri)

−1ri;
10 Set ri+1 as the remainder of ri−1 divided by ri;
11 i := i+ 1;

12 end

13 return ri−1

A short discussion about the zero-divisors that may appear is warranted. To compute an
inverse, the modular algorithm will be using the extended Euclidean algorithm. The first step
would be to invert a leading coefficient u of some polynomial. This requires a recursive call to
ExtendedEuclideanC-GCD(u, tk) (mod Tk−1) where zk = mvar(u). If u isn’t monic, then it would
again attempt to invert lc(u). Because of the recursive nature, it will keep inverting leading coef-
ficients until it succeeds or a monic zero-divisor is found. The main point is that we may assume
that the zero-divisors encountered are monic.

Now that all algorithms have been given, we give a proof of correctness for ModularC-GCD.
First, we show that a finite number of zero-divisors can be encountered. This ensures that the
algorithm terminates. After that, we prove a lemma about the primes that may occur in a monic
factorization modulo the triangular set; note this is nontrivial by example 3. This a key step in
the proof that the returned value of ModularC-GCD is correct. The proof will require the concept
of localization, the formal process of including denominators in a ring; see Bosch [3] for details.
For notation purposes, we let S be a set of prime numbers and define RS as the localization of R
with respect to S. Note that when R = Q[z1, . . . , zn]/T , it’s required that any prime dividing any
den(ti) must be included in S for RS to be a ring. We will also need the concept of the iterated
resultant. Given a triangular set T , the iterated resultant of f with T is

iterres(f, T ) = iterres(res(f, tn), Tn−1), iterres(f, {t1}) = res(f, t1).
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One important property is that if f, T ∈ R′[x] ⊂ R[x] where R′ is a subring, then there exist
A,B1, . . . , Bn ∈ R′[x] where Af + B1t1 + · · · + Bntn = iterres(f, T ). This follows from the same
proof as given in Theorem 7.1 of [9]. Another important property is that iterres(f, T ) = 0 if and
only if f is a zero-divisor, see [2].

Proposition 2. Let R = Q[z1, . . . , zn]/T where T is a radical zero-dimensional triangular set. Put
a, b ∈ R[x]. A finite number of zero-divisors are encountered when running ModularC-GCD(a, b).

Proof. We use induction on the degree of the extension δ = d1 · · · dn where di = mdeg(ti). If δ = 1,
then R = Q so no zero-divisors occur.

First, there are a finite number of non-radical primes. So we may assume that T remains
radical modulo any chosen prime. Second, consider (theoretically) running the monic Euclidean
algorithm over Q where we split the triangular set if a zero-divisor is encountered. In this process,
a finite number of primes divide either denominators or leading coefficients; so we may assume the
algorithm isn’t choosing these primes without loss of generality.

Now, suppose a prime p is chosen by the algorithm and a zero-divisor up is encountered modulo
p at some point of the algorithm. This implies gcd(up, tk) 6≡ 1 (mod Tk−1, p). We may assume that
up = gcd(up, tk) (mod Tk−1, p) and that up is monic; this is because the monic Euclidean algorithm
will only output such zero-divisors. If up lifts to a zero-divisor over Q, the algorithm constructs two
triangular sets, each with degree smaller than δ. So by induction, a finite number of zero-divisors
occur in each recursive call. Now, suppose lifting fails. This implies there is some polynomial u
over Q that reduces to up modulo p and appears in the theoretical run of the Euclidean algorithm
over Q. Note that gcd(u, tk) = 1 (mod Tk−1) over Q since we’re assuming the lifting failed. By
Theorem 3, this happens for only a finite amount of primes. Thus, a finite number of zero-divisors
are encountered.

Lemma 4. Let T be a radical, zero-dimensional triangular set of F = Z[z1, . . . , zn]. Suppose
f, u ∈ R[x] are monic such that u | f . Let

S = {prime numbers p ∈ Z : p is a nonradical prime with respect to T , or p | den(f)}.

Then, u ∈ FS [x]/T . In particular, the primes appearing in denominators of a factorization are
either nonradical primes or divisors of den(f).

Proof. Proceed by induction on n. Consider the base case n = 1. Let t1 = a1a2 · · · as be the
factorization into monic irreducibles. Note that ai, aj are relatively prime since t1 is square-free
and a1, a2 ∈ FS by Gauss’s lemma (since S contains any primes dividing den(t1)). Let ui = u
mod ai and fi = f mod ai. By known results from algebraic number theory (see Theorem 3.2 of
[7] for instance), den(ui) consists of primes dividing ∆(ai) or den(fi). Note that any prime p | ∆(ai)
would force ai, and hence t1, to not be square-free modulo p. This would imply p is nonradical and
so is contained in S; in partiulcar, ui ∈ FS [x].

The last concern is if combining (u1, u2, . . . , us) 7→ u introduces another prime p into the
denominator. We prove this can only happen if p is nonradical. It’s sufficient to show that com-
bining two extensions is enough since we can simply combine two at a time until the list is ex-
hausted. Now, consider the resultant r = resz1(a1, a2). There are polynomials A,B ∈ FS where
Aa1 + Ba2 = r. Note that any prime p | r forces gcd(a1, a2) 6= 1 (mod p) and so t1 wouldn’t
be square-free; in particular, A/r,B/r ∈ FS . Now, let v = (A/r)a1u2 + (B/r)a2u1. Note that v
mod a1 = (B/r)a2u1 = (1 − (A/r)a1)u1 = u1. Similarly, v mod a2 = u2. Since the CRT gives an
isomorphism, u = v and indeed u ∈ FS [x]. This completes the base case.
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Algorithm 5: ModularC-GCD

Input : A zero-dimensional, radical triangular set T ⊂ Q[z1, . . . , zn] and two polynomials
a, b ∈ R[x] where R = Q[z1, . . . , zn]/T . Assume deg(a) ≥ deg(b) ≥ 0.

Output: A tuple consisting of comaximal triangular sets T (i) such that T =
⋂

T (i) and
gi = gcd(a, b) mod 〈T (i)〉 where gi = 0 or lc(gi) is a unit.

1 Initialize dg := deg(b), M = 1;
2 Main Loop: Pick a prime p that is not bad; Test if p is a radical prime, N :=
isRadicalPrime(T, p);

3 if N = [“ZERODIVISOR”, u] then
4 K := HandleZeroDivisorHensel(u);
5 if K = FAIL then Pick a new prime, go to Main Loop;
6 else if K is a factorization tk = wv (mod Tk−1) then

7 Create triangular sets T (w) and T (v) where tk is replaced by w and v, respectively;

8 return ModularC-GCD(a, b) (mod T (w)), ModularC-GCD(a, b) (mod T (v))

9 end

10 else if N = False then

11 Go to Main Loop;
12 end

13 Set g := gcd(a, b) mod 〈T, p〉 using algorithm MonicEuclideanC-GCD;
14 if g = [“ZERODIVISOR”, u] then
15 K := HandleZeroDivisorHensel(u);
16 if K = FAIL then Pick a new prime: Go to Main Loop;
17 else if K is a factorization tk = wv (mod Tk−1) then

18 Create triangular sets T (w) and T (v) where tk is replaced by w and v, respectively;

19 return ModularC-GCD(a, b) (mod T (w)), ModularC-GCD(a, b) (mod T (v))

20 end

21 else

22 if deg(g) = dg then

23 The chosen prime seems to be lucky;
24 Use CRT to combine g with other gcds (if any), store the result in G and set

M := M × p;

25 else if deg(g) > dg then

26 The chosen prime was unlucky, discard g;
27 Pick a new prime: Go to Main Loop;

28 else if deg(g) < dg then

29 All previous primes were unlucky, discard G;
30 Set G := g, M := p, and dg := deg(g);

31 end

32 Set h := RationalReconstruction(G (mod M));
33 if h 6= FAIL and h | a and h | b then return h;
34 Go to Main Loop;

35 end

For the general case, we will generalize each step used in the base case. Instead of just factoring
t1, we decompose T as a product of comaximal triangular sets known as its triangular decompo-
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sition. In place of discriminants of polynomials, we use discriminants of algebraic number fields.
Finally, for the combining, iterated resultants are used instead of resultants.

With that in mind, start by decomposing T into its triangular decomposition, which can be
done in the the following way:

1. Factor t1 = a1a2 · · · as1 into relatively prime monic irreducibles over Q as in the base case.
This gives Q[z1]/T1 is isomorphic to the product of fields

∏

iQ[z1]/ai. By Gauss’s lemma, a
prime dividing the den(ai) must also divide den(f). In particular, ai ∈ FS [x]/T .

2. We can factor the image of t
(i)
2 over each Q[z1]/ai into monic relatively prime irreducibles

t
(i)
2 = b

(i)
1 b

(i)
2 · · · b

(i)
s2 . Note that changing rings from Q[z1]/t1 to Q[z1]/ai only involves division

by ai, and hence the only primes introduced into denominators can come from den(ai).

3. By the induction hypothesis, any prime p dividing den(b
(i)
j ) is either not a radical prime of

the triangular set {ai} or comes from den(t
(i)
2 ). If {ai} isn’t radical modulo p, then neither is

{t1}, clearly.

4. Use this to decompose k[z1, z2]/T2 into fields Q[z1, z2]/〈ai, b
(i)
j 〉 where ai, b

(i)
j ∈ FS [x]/T .

5. Repeat to get Q[z1, . . . , zn]/T ∼=
∏

Q[z1, . . . , zn]/T
(i) where each Q[z1, . . . , zn]/T

(i) is a field
and T (i) ⊂ FS using the induction hypothesis.

Let f (i) = f mod T (i) and similarly u(i) = u mod T (i). Since Q[z1, . . . , zn]/T
(i) is an algebraic

number field, any prime p occuring in den(u(i)) must either divide the discriminant ∆(Q[z1, . . . , zn]/T
(i))

or den(f (i)). This implies p must be nonradical with respect to T (i) or divide den(f (i)). (To be more
explicit, one could write Q[z1, . . . , zn]/T

(i) = Q(α) and note that p | ∆(Q[z1, . . . , zn]/T
(i)) which

divides the discriminant ∆(mα,Q) of the primitive minimal polynomial mα,Q of α. If p | ∆(mα,Q),
then mα,Q(z) isn’t square-free and so Zp[z]/mα,Q would contain a nilpotent element.)

Of course den(u(i)) 6= den(u). It remains to show that going from
∏

Q[z1, . . . , zn]/T
(i) to

Q[z1, . . . , zn]/T only introduces primes in the denominators that are divisors of den(f) or nonradical.
This will follow from using iterated resultants similarly to the resultants in the base case. Suppose

we are trying to combine T (i) and T (j) with all t
(i)
k = t

(j)
k besides t

(i)
n 6= t

(j)
n . Now, perform the

iterated resultant and write

r = iterres(res(t(i)n , t(j)n ), T
(i)
n−1) = At(i)n +Bt(j)n

with A,B ∈ FS [x] since t
(i)
n , t

(j)
n ∈ FS [x] are by construction. Well, any prime p that divides r

would have the property of gcd(t
(i)
n , t

(j)
n ) 6= 1 (mod p). Hence tn wouldn’t be square-free and so T

wouldn’t be radical mod p. Thus, after recovering all splittings into the ring Q[z1, . . . , zn][x]/T , we
indeed get u ∈ FS [x].

Theorem 4. Let R = Q[z1, . . . , zn]/T where T is a radical zero-dimensional triangular set and let
a, b ∈ R[x]. The modular algorithm using Hensel lifting to handle zero-divisors outputs a correct
c-gcd if run on a and b.

Proof. It is enough to prove this for a single component of the decomposition. For ease of notation,
let T ⊂ R be the triangular set associated to this component. In particular, let h be the monic
polynomial returned from the modular algorithm modulo a triangular set T and g = gcd(a, b)
(mod T ) over Q. First, we may assume that b is monic. If lcx(b) is a unit, divide through by it’s
inverse and this doesn’t change gcd(a, b). If lcx(b) is a zero-divisor, the EA mod p would catch
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it and cause a splitting, contradicting that the EA mod p didn’t encounter a zero-divisor in this
component of the c-gcd.

Since h passed the trial division in step 34, it follows that h | g and hence deg(h) ≤ deg(g) since
h is monic. Suppose lc(g) is invertible. If so, make g monic without loss of generality. Let p be a
prime used to compute h. Since g is monic and divides b which is also monic, any prime appearing
in den(g) is either nonradical or a divisor of den(b) by Lemma 4. In particular, since the prime p
was used successfully to compute h, it can’t occur in the denominator of g. So, we may reduce g
modulo p. Let f denote the reduction of a polynomial f ∈ R[x] mod p. Since g | a and g | b, it
follows that g | h and so deg(g) ≤ deg(h). Since h | g, they have the same degree, and both are
monic, it must be that h = g and so indeed h is a greatest common divisor of a and b.

Suppose lc(g) was a zero-divisor and that mvar(lc(g)) = zn without loss. Inspect lczn(lc(g));
if this is a unit, make it monic. If it’s a zero-divisor, inspect lczn−1

(lczn(g))). Continue until
u = lczk+1

(· · · (lczn(lcx(g)) · · · ) is a monic zero-divisor. Further, if gcd(u, tk) 6= u, then u/ gcd(u, tk)
is a unit and so we can divide through by it to ensure gcd(u, tk) = u. Let tk = uv (mod Tk−1)
be a monic factorization. Note that Lemma 4 guarantees that the same factorization uv = tk
(mod Tk−1, p) occurs modulo p. Hence, we can split T into triangular sets T (u) and T (v) where tk
is replaced by u and v, respectively, and this same splitting occurs modulo p.

Let gu = g mod T (u) and gv = g mod T (v) and similarly for other relevant polynomials.
It’s straightforward to show that hu is still a gcd of au and bu and gu for au and bu. Now, we
consider both triangular sets T (u) and T (v). First, in T (v), u is invertible otherwise T wouldn’t
be radical. So, multiply gv by u−1 so that lczk+1

(· · · (lczn(lcx(g)) · · · ) = 1. Reinspect w =
lczk+2

(· · · (lczn(lcx(gv))) · · · ). If w isn’t a zero-divisor, multiply through by it’s inverse and re-
peat until a zero-divisor is encountered as a leading coefficient. Do the same computations to find
another splitting and be in the same situation as that of u in T . Otherwise, in T (u), u = 0 and so
lczk+1

(· · · (lczn(lcx(gu)) · · · ) has changed; if it’s invertible, multiply through by it’s inverse until a
monic zero-divisor is found in the leading coefficient chain. We again wind up in the situation with
a monic factorization of tj that is reducible modulo p.

The process described in the last paragraph must terminate with a splitting in which the image
of g is monic since lcx(g) has finite degree in each variable. We have already shown that the image
of h would be an associate of the image in g in this case. Since being a gcd persists through
isomorphisms, this gives indeed that h is a gcd(a, b) modulo T , as desired.

5 Comparison with RegularGcd

We have implemented algorithm ModularC-GCD as presented above using Maple’s recden package
which uses a recursive dense data structure for polynomials with extensions. Details can be found
in Monagan and van Hoeij’s paper [10]. The reader may find our Maple code for our software there
together with several examples and their output at http://www.cecm.sfu.ca/CAG/code/MODGCD.

The remainder of this section will be used to compare our algorithm with the RegularGcd

algorithm (see [14]) which is in the RegularChains package of Maple. Algorithm RegularGcd

computes a subresultant polynomial remainder sequence and outputs the last non-zero element of
the sequence. We highlight three differences between the output of RegularGcd and ModularC-GCD.

1. The algorithms may compute different triangular decompositions of the input triangular set.

2. RegularGcd returns the last non-zero subresultant but not reduced modulo T ; it often returns
a gcd g with degzi(g) > mdeg(ti). To compute the reduced version, the procedure NormalForm
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is required. ModularC-GCD uses the CRT and rational reconstruction on images of the c-gcd
modulo multiple primes, so it computes the reduced version of the c-gcd automatically.

3. RegularGcd computes gcds up to units, and for some inputs the units can be large. ModularC-GCD
computes the monic gcd which may have large fractions.

Example 6. We’d like to illustrate the differences with an example by an anonymous referee of an
earlier version of this paper. Let

T = {x3 − x, y2 − 3
2yx

2 − 3
2yx+ y + 2x2 − 2},

a = z2 − 8
3zyx

2 + 3zyx− 7
3zy −

1
3zx

2 + 3zx− 5
3z +

25
6 yx

2 − 13
2 yx+ 10

3 y +
16
3 x

2 − 2x− 10
3 ,

b = z2 + 29
12zyx

2 + 7
4zyx− 11

3 zy −
8
3zx

2 + 3zx+ 2
3z +

67
12yx

2 − 11
4 yx− 13

3 y −
13
3 x

2 − 2x+ 19
3 .

When we run our algorithm to compute c-gcd(a, b) (mod T ), it returns

z2 + (3x− 2)z − 2x+ 2 (mod y, x2 − 1),

z + 1
2x− 3

2 (mod y − 3
2x− 1

2 , x
2 − 1),

z + 5 (mod y + 2, x),

1 (mod y − 1, x).

The same example using RegularGcd returns

(−96 y + 168) z − 552 y + 696 (mod y + 2, x),

154368 y3 − 117504 y2 − 559872 y + 585216 (mod y − 1, x),

z2 + (23 −
8
3x

2 + 3x)z (mod y, x− 1),

(366x2 − 90x− 96)yz + (102x2 + 270x − 552)y (mod y − 2, x− 1),

z2 + (23 −
8
3x

2 + 3x)z + 19
13 − 13

3 x
2 − 2x (mod y, x+ 1),

(366x2 − 90x− 96)yz + (102x2 + 270x − 552)y (mod y + 1, x+ 1).

As can be seen, our algorithm only decomposes T into 4 triangular sets while RegularGcd de-
composes T into 6. Further, it’s easy to notice that each component in our output is reduced,
while the output of RegularGcd isn’t. Applying the NormalForm command to reduce the output
of RegularGcd returns

360z + 1800 (mod y + 2, x), 62208 (mod y − 1, x),

z2 + z (mod y, x− 1), 360z − 360 (mod y − 2, x− 1),

z2 − 5z + 4 (mod y, x+ 1), −360z + 720 (mod y + 1, x+ 1).

Notice that it circumvents fractions. In general, the output of our algorithm deals with smaller
numbers. This can certainly be seen as an advantage for a user.

Finally, we’d like to conclude with some timing tests which show the power of using a modular
GCD algorithm that recovers the monic c-gcd from images modulo primes using rational recon-
struction. We first construct random triangular sets where each ti is monic in zi and dense in
z1, . . . , zi−1 with random two digit coefficients. We then generate a, b, g ∈ R[x] with degrees 6, 5,
and 4, respectively. Then, compute c-gcd(A,B) where A = ag and B = bg. Maple code for
generating the test inputs is included on our website.
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extension ModularC-GCD RegularGcd

n degrees time divide #primes time real cpu #terms

1 [4] 0.013 0.006 3 0.064 0.064 170
2 [2, 2] 0.029 0.022 3 0.241 0.346 720
2 [3, 3] 0.184 0.138 17 1.73 4.433 2645
3 [2, 2, 2] 0.218 0.204 9 10.372 29.357 8640
2 [4, 4] 0.512 0.391 33 12.349 40.705 5780
4 [2, 2, 2, 2] 1.403 1.132 33 401.439 758.942 103680
3 [3, 3, 3] 2.755 1.893 65 413.54 1307.46 60835
3 [4, 2, 4] 1.695 1.233 33 39.327 86.088 19860
1 [64] 6.738 5.607 65 43.963 160.021 3470
2 [8, 8] 13.321 11.386 129 1437.76 5251.05 30420
3 [4, 4, 4] 17.065 14.093 129 7185.85 22591.4 196520

Table 1: The first column is the number of algebraic variables, the second is the degree of the extensions,
the third is the CPU time it took to compute c-gcd of the inputs for ModularC-GCD, the fourth is the CPU
time in ModularC-Gcd spent doing trial divisions over Q, the fifth is the number of primes needed to recover
g, the sixth is the real time it took for RegularGcd to do the same computation, the seventh is the total
CPU time it took for RegularGcd and the last is the number of terms in the unnormalized gcd output by
RegularGcd. All times are in seconds.

In the previous dataset, g isn’t created as a monic polynomial in x, but ModularC-GCD com-
putes the monic gcd(A,B). Since lc(g) is a random polynomial, its inverse in R will likely have very
large rational coefficients, and so additional primes have to be used to recover the monic gcd. This
brings us to an important advantage of our algorithm: it is output-sensitive. In Table 2 below g is
a monic degree 4 polynomial with a and b still of degree 6 and 5. You’ll notice that our algorithm
finishes much faster than the earlier computation, while RegularGcd takes about the same amount
of time. This happens because the coefficients of subresultants of A and B are always large no
matter how small the coefficients of gcd(A,B) are.

extension ModularC-GCD RegularGcd

n degrees time divide #primes time real cpu #terms

1 [4] 0.01 0.006 2 0.065 0.065 170
2 [2, 2] 0.02 0.016 2 0.238 0.329 715
2 [3, 3] 0.048 0.041 2 1.771 4.412 2630
3 [2, 2, 2] 0.05 0.041 2 11.293 31.766 8465
2 [4, 4] 0.077 0.068 2 11.521 36.854 5750
4 [2, 2, 2, 2] 0.117 0.097 2 321.859 431.368 99670
3 [3, 3, 3] 0.222 0.201 2 508.465 1615.28 57645
3 [4, 2, 4] 0.05 0.032 2 34.358 71.351 16230
1 [64] 0.304 0.282 2 27.55 98.354 3450
2 [8, 8] 0.482 0.455 2 1628.7 5979.51 29505
3 [4, 4, 4] 0.525 0.477 2 2989.18 4751.04 192825

Table 2: The columns are the same as for Table 1

Let da = degx a, db = degx b with da ≥ db and let dg = degx g. In Table 3 below we increased da
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and db from 6 and 5 in Table 1 to 9 and 8 leaving the degree of g at 4. By increasing db we increase
the number of steps in the Euclidean algorithm which causes an expression swell in RegularGcd in
the size of the integer coefficients and the degree of each z1, . . . , zn, that is, the expression swell is
(n+1) dimensional. The number of multiplications in R that the monic Euclidean algorithm does

is at most (da − db + 2)(dg + db) for the first division and
∑dg+db−1

i=dg
2i = db(db + 2dg − 1) for the

remaining divisions. The trial divisions of A by g and B by g cost dadg and dbdg multiplications
in R respectively. Increasing da, db, dg from 6, 5, 4 in Table 1 to 9, 8, 4 increases the number of
multiplications in R in the monic Euclidean algorithm from 87 to 156 and from 24 + 20 = 44 to
36 + 32 = 68 for the trial divisions but the monic gcd remains unchanged. Comparing Table 1 and
Table 3 the reader can see that the increase in ModularC-GCD is less than a factor of 2.

extension ModularC-GCD RegularGcd

n degrees time divide #primes time real cpu #terms

1 [4] 0.021 0.011 5 0.124 0.13 260
2 [2, 2] 0.043 0.031 5 0.968 1.912 1620
2 [3, 3] 0.214 0.163 17 10.517 34.513 6125
3 [2, 2, 2] 0.287 0.204 9 64.997 173.53 29160
2 [4, 4] 0.638 0.427 33 67.413 245.789 13520
4 [2, 2, 2, 2] 2.05 1.613 33 2725.13 3528.41 524880
3 [3, 3, 3] 3.35 2.731 33 3704.61 11924.0 214375
3 [4, 2, 4] 2.399 1.793 33 334.201 869.116 68940
1 [64] 10.097 8.584 65 171.726 658.518 5360
2 [8, 8] 21.890 18.086 129 10418.4 38554.9 72000
3 [4, 4, 4] 37.007 31.369 129 > 50000 – –

Table 3: The columns are the same as for Table 1

6 Complexity Analysis

We’d like to conclude with a complexity analysis for our algorithm. Let R = k[z1, . . . , zn]/T where
k is a field. To start, we prove a tight bound on the number of field multiplications in k it takes to
multiply two polynomials in R. We assume the inputs are reduced. We will need this later when
doing an asymptotic analysis of the modular algorithms.

Let δ be the degree of a triangular set T with n variables. To multiply two polynomials modulo
a triangular set, the obvious approach is to multiply out the polynomials and then reduce. The
reduction step involves doing divisions by the polynomials in the triangular set. The way these
divisions are done has a large impact on the total number of operations. We illustrate by describing
the classical approach as outlined in [15]. We will assume a and b are reduced and dense in all
variables. Let di = mdeg(ti) for all i. First, view a and b as polynomials in zn with coefficients
modulo Tn−1. Multiplying ab modulo Tn−1 involves recursively multiplying all pairs of coefficients
from a and b and reducing modulo Tn−1. There are d2n such pairs and the result is a polynomial c
with degzn(c) = 2(dn − 1) with coefficients reduced with respect to Tn−1. Next, we have to divide
c by tn. If one uses the high school division algorithm, this involves scaling dn coefficients of tn for
degzn(c)− dn + 1 iterations for a total of dn(dn − 1) recursive multiplications modulo Tn−1.

Let M(n) be the number of field multiplications used during a multiplication of a and b modulo
T . The algorithm described above does d2n + dn(dn − 1) multiplications modulo Tn−1 each costing
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M(n− 1) field multiplications. This gives a recurrence

M(n) ≤ (d2n + dn(dn − 1))M(n − 1)

If there are no extensions, it takes a single field multiplication so thatM(0) = 1. It is straightforward
to solve this to get M(n) = O(2nδ2). This is as stated in [15] for the classical multiplication
algorithm. We show that it can in be done in O(δ2) field multiplications in Proposition 3. It
should be noted that one normally assumes mdeg(ti) ≥ 2 since extensions by linear polynomials
are trivial. With that in mind, the classical multiplication algorithm is O(δ3). We mention this
because it should be clear that Proposition 3 does not turn an exponential-time algorithm into a
quadratic one, but rather a cubic algorithm into a quadratic one.

We would like to note that we have done an actual field multiplication count (in our code)
and we got the exact same result in the dense case as the proposition states. The key idea of
the optimization is to do as few recursive reductions as possible. The idea was originally done by
Monagan in [18] for the ring Zn with n too big for a single machine word.

Proposition 3. Let M(n) be the number of field multiplications required to multiply a, b ∈
k[z1, . . . , zn]/T and reduce by the triangular set T . Let mdeg(ti) = di and define δ1 = d1, δ2 = d1d2,
and so on ending with δn = d1d2 · · · dn = δ. Then

M(n) ≤ δ2n +

n
∑

k=1

δ2k
dk − 1

dk

n
∏

j=k+1

(2dj − 1) (3)

which is exact in the dense case. Further, M(n) ≤ 3δ2.

Proof. Let D(n) be the number of field multiplications it takes to reduce a polynomial of degree
2(dj − 1) in each corresponding variable by Tn. It is assumed that D(n) works by first reducing
by t1, then reducing by t2 modulo T1, etc. Well, multiplying ab will always take δ2n multiplications
before reducing, and this is true whether or not these multiplications are done recursively or at
the on-set; in particular, it follows that M(n) = δ2n +D(n). We proceed by describing a division

algorithm to divide c = ab by tn modulo Tn−1. Let c = c0 + c1zn + · · · + c2(dn−1)z
2(dn−1)
n and

tn = p0 + p1zn + · · ·+ zdndn . We can compute the quotient q = q0 + · · ·+ qdn−2z
dn−2
n and remainder

r = r0 + · · · + rdn−1z
dn−1
n via the linear system generated by r = c− tnq,

qdn−2 = c2dn−2,

qdn−3 = c2dn−3 − qdn−2pdn−1,

qdn−4 = c2dn−4 − qdn−3pdn−1 − qdn−2pdn−2,

...

q0 = cdn − q1pdn−1 − · · · − qdn−2p2,

rdn−1 = cdn−1 − q0pdn−1 − q1pdn−2 − · · · − qdn−2p1,

rdn−2 = cdn−2 − q0pdn−2 − q1pdn−3 − · · · − qdn−3p0,

...

r1 = c1 − q0p1 − q1p0,

r0 = c0 − q0p0.
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We outline a method to solve the equations above. The key idea is to compute the entire right-
hand-side before reducing by Tn−1. This reduces the total number of reductions from quadratic in
dn to linear in dn. First, set qdn−2 = c2dn−2 and reduce by Tn−1. Then, multiply qdn−2pdn−2 over
k and subtract it from c2dn−3, and then reduce by Tn−1 to obtain qdn−3. It should be clear how
to generalize this result and compute all qk. Next, to get rk, simply multiply the corresponding
qipj over k and end by reducing the result of the sum by Tn−1. This reveals we only have to do a
single reduction per equation and each reduction is of a polynomial of degree at most 2(dj − 1) in
the corresponding variable; this takes at most (2dn − 1)D(n− 1) field multiplications. Multiplying
each qipj will take δ2n−1 field multiplications each. This takes

(1 + 2 + · · ·+ (dn − 2))δ2n−1 =

(

dn − 1

2

)

δ2n−1

field multiplications for computing all qi in the top dn − 1 rows, and

(

(1 + 2 + · · ·+ (dn − 1) + (dn − 1)
)

δ2n−1 =

((

dn
2

)

+ dn − 1

)

δ2n−1

field multiplications for computing all ri in the bottom dn rows. Overall,

D(n) = (2dn − 1)D(n − 1) +
( (dn − 1)(dn − 2)

2
+

(dn(dn − 1)

2
+ dn − 1

)

δ2n−1

= (2dn − 1)D(n − 1) + dn(dn − 1)δ2n−1.

If there are no extensions, it takes 0 multiplications to reduce; so we may use D(0) = 0 as our
initial condition. The solution can be found most easily using Maple’s rsolve command and some
algebraic simplification. The command is

> rsolve({M(n) = (2*d[n]-1)*M(n-1) + d[n]*(d[n]-1)*del(n-1)^2,

del(n)=del(n-1)*d[n], M(0)=0, del(1)=d[1]}, {M(n), del(n)});

For the lighter bound, we claim D(n) ≤ 2δ2n. To prove this, proceed by induction on n. The
base case n = 0 follows from D(0) = 0 ≤ 2 = 2δ0. Next,

D(n) = (2dn − 1)D(n− 1) + dn(dn − 1)δ2n−1

≤ (2dn − 1)2δ2n−1 + dn(dn − 1)δ2n−1

= 4dnδ
2
n−1 − 2δ2n−1 + dn(dn − 1)δ2n−1

= 4dnδ
2
n−1 − 2δ2n−1 + d2nδ

2
n−1 − dnδ

2
n−1

= 3dnδ
2
n−1 − 2δ2n−1 + δ2n

= (3dn − 2)δ2n−1 + δ2n.

To finish, note that 3dn − 2 ≤ d2n which follows from d2n − 3dn + 2 = (dn − 2)(dn − 1) ≥ 0 for all
dn ∈ Z. Thus, D(n) ≤ d2nδ

2
n−1 + δ2n = 2δ2n and indeed M(n) ≤ δ2n +D(n) ≤ 3δ2n.

In [15], Li et al prove that multiplication can be done in O(4nδ log(δ) log(log(δ))) field operations.
Their method computes the coefficients by lifting modulo the ideal 〈xn〉 using a Newton-iteration,
and computes the coefficients of x1, . . . , xn−1 recursively. It should be noted that the constant in
their algorithm is much larger than the one in ours, so one would expect ours to perform better
for smaller degrees. Comparing these two quantities is not obvious. To aid the reader we compare
our bound (3) with theirs in the table below. Because they do not give an explicit constant, we
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d n δ = dn

5 29 186264514923095703125
6 14 78364164096
7 10 282475249
8 8 16777216
9 6 531441
10 5 100000
12 4 20736
16 3 4096
28 2 784
115 1 115

Table 4: The first column is the main degree of each ti, the second is smallest number of extensions where
our bound exceeds the bound given in [15], the third is the degree of this extension δ = dn. Values of d
that are omitted have the same value of n as the largest shown predecessor. For d < 5, our bound is always
smaller. For d ≥ 115, their bound is always smaller.

use 3 since their proofs ensure it is smaller. The table considers extensions of degree δ = dn with
mdeg(ti) = d. We give the smallest value of n such that our bound exceeds theirs.

Next, we present a field multiplication count for the other arithmetic operations we need,
namely, division, inversion, and gcd. We will not get an exact count as in Proposition 3, instead
focusing on asymptotics. We will need these when analyzing the modular gcd algorithm. We will be
using the extended Euclidean algorithm for computing inverses here, and will only need this result
when the field is Zp. When using the Euclidean algorithm, we need to assume no zero-divisors are
encountered.

Proposition 4. Let T ⊂ k[z1, . . . , zn] be a triangular set and R = k[z1, . . . , zn]/T . Let a, b ∈ R[x]
with deg(a) ≥ deg(b) and b monic. Then the remainder and quotient of a÷ b can be computed in
O(deg(b)(deg(a)− deg(b) + 1)δ2) field multiplications.

Proof. The standard division works by multiplying the coefficients of b modulo T by an element of
R for at most deg(a) − deg(b) + 1 iterations. There are deg(b) coefficients of b not including the
leading coefficient; note that we ignore lc(b) since we are assuming b is monic. This implies that
we need to do deg(b)(deg(a) − deg(b) + 1) ring multiplications. We can do ring multiplications in
O(δ2) field multiplications by Proposition 3, giving the result.

Proposition 5. Let T ⊂ k[z1, . . . , zn] be a triangular set and R = k[z1, . . . , zn]/T . Assume inverses
in k can be computed in a O(1) field multiplications. Let a ∈ R. Then, assuming no zero-divisors are
encountered, a−1 can be computed in O(δ2) field multiplications. We use the extended Euclidean
algorithm in a and tn modulo Tn−1 to compute a−1.

Proof. Work by induction on n. Note that our assumption on k satisfies the base case n = 0. Next,
let δm =

∏m
i=1 deg(ti) as in Proposition 3. Let I(n) be the number of field multiplications it takes to

compute the inverse of an element with n variables. Then the first step of the Euclidean algorithm
is to invert lc(a). After that, we would have to invert the leading coefficient of the remainder of
tn ÷ a. Since the worst case is the degree of each successive remainder going down by 1, this will
take a total of at most deg(a) = deg(tn) − 1 recursive inversions. By Proposition 4, this will take
O((deg(tn)− 1)δ2n−1) field multiplications, the next remainder will take O((deg(tn)− 2)δn−1) field
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multiplications, and so on. In total,

I(n) = deg(tn)I(n − 1) +

deg(tn)−1
∑

j=1

O(jδn−1) = deg(tn)I(n− 1) +O(deg(tn)
2δn−1).

Note that we also have to multiply through by the inverse of the leading coefficient at each step.
This will take O(deg(tn)

2δn−1) over all steps as well.
Now, the induction hypothesis states I(n− 1) = O(δ2n−1). So,

I(n) = deg(tn)I(n − 1) +O(δ2) = deg(tn)O(δ2n−1) +O(δ2) = O(δ2),

completing the inductive step. We have not counted the extra multiplications in the extended
Euclidean algorithm, but this does not impact the asymptotics; see Theorem 3.11 of [8].

Proposition 6. Let T ⊂ k[z1, . . . , zn] be a triangular set and R = k[z1, . . . , zn]/T . Let a, b ∈ R[x]
with deg(a) ≥ deg(b). Then running the Euclidean algorithm on a and b takes O(dadbδ

2) field
multiplications assuming no zero-divisors are encountered.

Proof. Let da = deg(a) and db = deg(b). We will have to perform at most db remainders to
complete the Euclidean algorithm. This implies we need to invert db leading coefficients as well
as lc(b). This accounts for O(dbδ

2) field multiplications. Multiplying through by the leading
coefficients will cost O(d2bδ

2) ≤ O(dadbδ
2) field multiplications since each remainder has degree

≤ db and there are db of them. Next, computing all but the first remainder cost a total of O(d2bδ
2)

field multiplications since each remainder has ≤ db degree and there are db of them in the worst
case. Finally, the first remainder costs O(db(da − db + 1)δ2) field multiplications. Thus, the entire
cost is O(dadbδ

2 + db(da − db + 1)δ2) = O(dadbδ
2).

We will do an asymptotic analysis for the modular c-gcd algorithm that uses Hensel lifting to
handle zero-divisors. The running time of the algorithm is dominated by running the Euclidean
algorithm modulo multiple primes and the division test. This is verified in the previous section’s
timing results. Because of this, we will only consider the running time based on these two parts
of the algorithm. Also, the expected case is that no zero-divisors are encountered. Further, not
encountering a zero-divisor is arguably the worst case scenario. This is because if a zero-divisor is
successfully lifted to Q, then the degree of each component will smaller. Therefore, reduction by
the triangular set takes less operations. This can also be seen in the timing tests by observing the
running time with degrees [4, 4, 4] and [4, 2, 4] in Table 5.1 gives a ratio of about 10.

Now, suppose M primes are needed to successfully compute g = gcd(a, b). Since there are
only finitely many unlucky primes, we assume the algorithm doesn’t encounter any of these. This
implies we need M runs of the Euclidean algorithm modulo primes. This part takes a total of
O(M deg(a) deg(b)δ2) field multiplications modulo primes by Proposition 6. We could find a bound
on M , but we do not think it is worthwhile because our algorithm is output sensitive and any
bound will be bad since it has to handle the worst case. Next, the implementation of the algorithm
does not perform the division test after each prime. We have coded it so that division is only
tested O(log(M)) times. Each division takes O(deg(g) deg(b)δ2) operations over Q for a total of
O(log(M) deg(g) deg(b)δ2) multiplications in Q. Because we’re assuming no unlucky primes are
encountered, this is an expected case analysis.

We would like to discuss an optimization for the division test. It does not avoid the worst
case, but it does improve the expected case. Suppose rational reconstruction successfully outputs a
polynomial h ∈ Q[z1, . . . , zn]/T [x]. Instead of going straight into the division test, we can make use
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of a check prime. That is, we pick one more prime p where p is not bad or radical. Then, compute
g = gcd(a, b) (mod p). If a zero-divisor is encountered in the radical test or in the computation
of g, we pick a new check prime. Next, we check if h ≡ g (mod p). If it is, we proceed to the
division test. If it is not we go back to the main loop and pick more primes starting with p. More
rigorously, we replace lines 33-35 of ModularC-GCD with the following pseudo-code.

1 Set h := RationalReconstruction(G (mod M));
2 if h 6= FAIL then

3 Check-Prime Loop: Pick a new prime p that is not bad or radical;
4 if a zero-divisor is encountered then pick a new prime, go to Check-Prime Loop;
5 Compute g := gcd(a, b) (mod p);
6 if a zero-divisor is encountered then pick a new prime, go to Check-Prime Loop;
7 if g 6≡ h (mod p) then pick a new prime, go to Main Loop;
8 if h | a and h | b then return h;

9 end

10 Pick a new prime: Go to Main Loop;

This optimization only performs the division test once in the expected case. Since there are
finitely many unlucky primes by Theorem 3, the algorithm expects to always pick a lucky prime.
Therefore, the only time the division test can be needlessly performed in the expected case, is if
not enough primes are picked to exceed the bounded needed by rational reconstruction. The use
of a check prime supersedes this since the check prime is expected to be lucky as well. Thus, we
have the following theorem.

Theorem 5. The ModularC-GCD algorithm performs O(M deg(a) deg(b)δ2) operations in Zp.
Additionally, it uses O(deg(g) deg(b)δ2) operations over Q in the expected case, and
O(log(M) deg(g) deg(b)δ2) operations in the worst case.

7 Conclusion

In summary, creating algorithms for computation modulo triangular sets is difficult because of zero-
divisors. We have developed the technique of Hensel lifting to resolve this difficulty. We applied
this to a modular gcd algorithm that we have shown this gives a practical improvement over the
algorithms used in Maple’s RegularChains package. There is room for improvement with our
algorithms that should be discussed:

1. We could avoid the radical prime test as done in the algebraic number field case in [10]. This
would not be a large gain as the radical prime test takes a small fraction of the running time.

2. The division test is a bottleneck of the algorithm and should be the first place to optimize.
We attempted to create a modular division algorithm for this; However, it did not present a
gain. The difficulty is that bounds for the size of the rational coefficients of gcd(a, b) for in
R[x] are too big.

3. Our modular GCD algorithm only works with univariate polynomials over R. The obvious
way to handle multivariate polynomials over R would be to use evaluation and interpolation
as is done by Brown in [4] over Q with no extensions. This would require proving results
about uniqueness of interpolation over products of fields. We could also make use of sparse
interpolation techniques here, see [11] and [21].
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