arXiv:1807.00312v1 [cs.DC] 1 Jul 2018

Ensuring Domain Consistency in an Adaptive
Framework with Distributed Topology for Fluid
Flow Simulations

Christoph Ertl, Ralf-Peter Mundani and Ernst Rank
Chair for Computation in Engineering
Technical University of Munich, Germany
Corresponding author contact: christoph.ertl@tum.de

Abstract—Top-tier parallel computing clusters continue to
accumulate more and more computational power with more
and better CPUs and Networks. This allows, especially for
environmental simulations, computations with larger domain
sizes and better resolution. One of the challenges becoming
increasingly important is the decomposition and distribution of
the overall work load. State-of-the-art parallel codes usually use
solutions that involve complete knowledge of the domain topology,
which will lead to communication and memory bottlenecks
when computing very large domains. To meet this challenge,
the authors propose a new strategy for decentralised domain
management, based on a proven hierarchic data structure. On
the way of developing a framework where individual sub-domains
only have local knowledge of their surroundings, this contribution
describes the communication patterns used in ensuring a consis-
tent domain, without the need for expensive global broadcast mes-
sages. Furthermore, the routines necessary to deal with adaptive
changes in domain topology, due to refinement, coarsening and
migration of sub-domains to different computational resources,
are discussed in detail.

I. INTRODUCTION

With the continued evolution of massive parallel systems,
the size of the solvable problems grows accordingly. However,
when computing on very large computational domains also
new challenges surface, one of which is the efficient distribu-
tion of sub-domains to cores. One key part of parallel numeric
codes especially in the context of adaptive mesh refinement
is the domain management. This includes the subdivision of
the domain, its distribution and the continued balancing of
workload to the computational resources during runtime. All
this while keeping relations in check that are important for a
fast and efficient computation, like neighbourhood relations
and the number of data transfers between the individual
domains. In adaptive settings, in which the topology of the
domain is subject to change, the distribution of subdomains
and therefore computational cost, while still maintaining these
relations must be updated regularly.

State-of-the-art codes use space filling curves (SFC) to
compute a linearisation of the individual subdomains. When
cut into balanced partitions, the distributions gained from
SFCs are proven to exhibit desired characteristics in terms of
keeping neighbouring domains on physical close cores when
distributed in a parallel network, ensuring fast message transfer

[1]]. In addition, SFCs can also be computed in parallel, making
their use a prime option in that application area [2].

For large problems with complex domain topologies though,
the memory requirement of the domain topology itself may
hinder the actual computational work done on the cores, up to
the point where it cannot be stored in its entirety any more.
One remedy is the use of one of the cores or a group of pro-
cesses be solely responsible for the bookkeeping of the domain
topology, including taking care of all management tasks such
as the ordering of refinements, coarsenings or migration of
grids to a different core in case of a load imbalance. This
strategy has been applied successfully by the works of Jérome
Frisch [3]. However, extensive testing has shown possible
bottle-necks of this approach. The memory requirement for
domain topologies of massive simulation tasks, for example
when modelling the flooding of a city, are even too large for
a dedicated domain management entity. Additionally, since all
cores responsible for actually computing results must commu-
nicate regularly with the manager, communication channels
will be overburdened.

As remedy, the authors propose a newly developed strategy
for a decentralised domain management and load-balancing
based on the proven concepts of the aforementioned work.
Key part of this concept is a heuristic that determines the best
targets for the transfer of sub-domains on cores, weighting
an optimised balance in terms of computational work with
minimising communication cost when applying stencil based
computational kernels. This paper describes the ongoing pro-
cess of developing and implementing the communication rou-
tines that are necessary to achieve a decentralisation without
global knowledge of the domain but only local domain view.
Including the initial generation and distribution and the rou-
tines that are necessary to update the concerned subdomains
when alterations are performed.

The remainder of this paper is structured as follows. The
next section introduces the foundations kept from the work
of Jérome Frisch. Particularly a short outline of the main
application area of fluid dynamics with its governing equations
and discretisation and the hierarchic data structure based on
space-trees, especially designed for use in highly parallel
environments. The third section presents the main contribution
of the present article. First of all the facilities for generating

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which

this version may no longer be accessible.

and distributing the domain initially are discussed, followed
by a closer look on the communication patterns used in
ensuring the consistency of the domain after local refinement,
coarsening and the migration of subdomains of the simulation
space. How the local update routines are conceived for the
three aforementioned domain modifications will be highlighted
afterwards. To verify and compare the new update routines
with the former approach, time measurements were conducted
on a medium-tier cluster. The test setup and the results are
illustrated in the second last section. The last section closes
with a short summary and a broader view of the present
contribution within the scope of the planned prospective work.

II. FOUNDATIONS

The framework at hand is conceived as a derivative of
an earlier framework developed at the Chair of Computa-
tion in Engineering. As such, the application area and its
key characteristics are kept and where necessary enhanced.
This includes specifically the data structure, and the solver
concept. Nevertheless, the new framework was written from
scratch and the former code base was completely revised,
improving algorithmic design where deemed applicable. The
present section will introduce the kept concepts in more detail
and gives the interested reader the related citations for a
comprehensive reference. The framework was designed for
solving large scale fluid flow problems on massive parallel
architectures. Subsequently the data structure and its particular
applicability for distributed applications is illuminated.

A. Data Structure

To be able to be distributed, the domain is divided into
3D block-structured regular Cartesian grids. Each of the grids
regardless of their physical extent encloses the same amount
of cells which constitute the entities at which the entries
of the solution fields (velocities, pressure, temperature etc.)
are stored. The grids are generated following the general
idea of space-trees (with quadtrees as 2D and octrees as 3D
representatives, see also [4]) starting from a single root grid,
representing the complete simulation space on depth 0 of
the tree. This root grid is then subdivided by r, x ry, X r,
spawning grids on depth 1. By subsequently subdividing grids
on the deepest, that is the one with the largest depth, the
domain is represented by more and physically smaller grids,
representing the domain in an increasingly finer resolution,
until a predefined depth d,,,, has been reached. Fig.
illustrates an example data structure, for simplicity in 2D.
The grids are successively refined using a bisection in the
two cardinal directions up to a depth of 5. Additionally, the
data structure supports also adaptive configurations, enabling
to represent regions of interest, or where numerically necessary
with a finer resolution.

The unique characteristic of the structure is that coarser
representations of the domain are not discarded. Custom
tailored to this, a parallel multigrid-like solver according to
Brandt [5]] was developed. The solver benefits from not having
to compute coarser grid representations of the solution field

Fig. 1: Example 2D data structure, adaptively refined up to
depth 5

140000

ideal

SuperMUC depth 8
SuperMUC depth 7 ==-==---
SuperMUC depth 6 7
Shaheen depth 6
Shaheen depth 5
JuQueen depth 8 -~ 4
JuQueen depth 7 ===~

120000 [

100000 [~

80000 [

60000 - -

strong speedup [-]

40000

20000 [~

0

i i i
0 20000 40000 60000 80000 120000

number of processes [-]

100000 140000

Fig. 2: Strong speed-up values plotted against the number of
processes

as they are readily available. Additionally, it can reuse the
communication facilities used in refreshing the data values
across the hierarchic levels, making it readily available for
parallel use. In Fig. 2] and Fig. [3| the strong speed-up as well as
the time-to-solution of solving a Poisson equation for different
resolutions up to 256 x 256 x 256 (depth 8) grids on the finest
level with approx. 707 billion unknowns on different HPC
systems is shown. Details about the solver and all performed
analyses and comparisons can be found in [6].

In addition, the keeping of the coarser hierarchy levels
allows for an elegant way of visualising simulation results,
while limiting the amount of data in need to be processed.
Main idea is to only select subsets of data based on a chosen
region of interest while varying the resolution of displayed data

1000

time to solution [s]

SuperMUC depth 8

SuperMUC depth 7 —

SuperMUC depth 6 -
Shaheen depth 6
Shaheen depth 5
JuQueen depth 8
JuQueen depth 7 - -+ -

1000 100 10

number of grids per process [-]

Fig. 3: Time-to-solution (one full time step) plotted against
the number of grids per processes

rank tag
32 32

rank | GID hash
32 21 9

rank | GID | pi | pj | pi
32 21 31313

Fig. 4: Construction of the UID and naming of individual
construction elements

points equivalent to the size of the view. A more thorough look
on this technique can be found in [7].

B. Message Passing and Grid Identification

For parallel functionality, the framework relies on the Mes-
sage Passing Interface (MPI) in version 3.1 allowing communi-
cation between processes in a distributed memory environment
[8]. Within the distributed environment each participating
process is identified by its rank, a 32 bit unsigned integer. In
the following, processes and ranks are used interchangeably.
Usually one process is spawned per core. Because each core
has its own memory, when information from a remote process
is needed, explicit transfer of data via messages is necessary.

To uniquely identify a grid in the domain each grid is
assigned a unique Identifier (UID). This UID is a long integer
consisting of 64 bits, whereas the first 32 bits from left to right
encode the rank on which the grid resides. The next 23 bits are
used to encode the grid identifier (GID), a number exclusive
for a grid on a certain rank. Finally, the last nine bits are
used to encode the position of the grid in its super-grid, with
always three bits signifying one of the cardinal directions. The
combination of those nine bits is also called a grid’s hash. Fig.
[illustrates this composition of the UID. The combination of
GID and the hash is also called a tag.

This concludes the foundations built upon. The following
chapter will discuss current work towards the goal of self-
managing subdomains on processes without the need for a
centralised management facility.

III. DOMAIN MANAGEMENT

To develop a framework where the executing processes are
able to successfully manage their own share of workload, in-

cluding the redistribution of such when necessary, without the
global knowledge of domain topology, two main challenges
have been identified. The first of which is a suitable commu-
nication scheme used in keeping the domain consistent across
all subdomains. That means every grid knows its neighbours
both in a geometrical and a hierarchical sense, which is needed
for communicating bordering values, residuals and errors
used in the stencil computations and multigrid restriction and
prolongation operations. This neighbouring information has to
be updated regularly to keep track of changes in the domain
topology due to refinements and deletion caused by numerical
considerations or due to migrations to balance computational
workload.

The second challenge is the development of a load-
balancing strategy, tailored to the presented data structure
and limited domain knowledge. Key part of this concept is a
heuristic that determines the best targets for the transfer of sub-
domains on cores modelled after a diffusion process. Diffusion
based load-balancing schemes in the context of distributed
processing can be found at [9]]. This heuristic is part of current
research and, thus, will not be elaborated in detail here.

Before introducing the main contribution of this publication,
the communication routines necessary for a decentral domain
management, the subsequent section briefly highlights the
shortcomings of the formerly used centralised approach utilis-
ing one of the processes as a dedicated topology repository and
manager. Furthermore, the reasoning behind the characteristics
of the new approach is highlighted.

A. Lessons Learned and Design Goals

As already mentioned, large-scale testing on SuperMUC
and JuQueen has shown bottlenecks of the previously used
centralised domain management facilities. On SuperMUC the
pruned tree network aggravated the regular communication
of every computing process with the management instance.
One remedy was to introduce duplicate management instances,
each responsible for a reduced number of processes, effectively
reducing the communication load per instance. However, the
price to pay is an increased effort in synchronising each
instance of the domain manager as well as the need to pin
the managers responsible for a cluster of processes onto the
same rack as those processes — the later not in all cases
possible. On the JuQueen, competition of network links is no
problem due to the very efficient 5D torus network. However
the comparably small memory per core does not allow to store
the complete topology on one process, making the use of
the domain manager impossible. The only remedy to run a
simulation on the machine was to compute the distribution
of the topology on a different machine, then having each
process read in a configuration file. This results in a fixed
topology where no adaptive load-balancing and subsequent
topology changes are possible. The only viable approach to
solve the afore-mentioned problems is a system without the
central domain manager. This approaches is fairly common
among numerical frameworks, having the completely domain
topology be available on all participating processes has some

advantages and drawbacks also. The complete knowledges
allows the computation of an optimal global load-balance, with
the most common approach being the use of a space-filling
curve distribution. A large overhead of communication is
necessary however, to keep the domain information concurrent
on all processes, as well as the problem with limited memory
for storing the information is present. In this case even more
prevalent, since memory occupied by topology information
limits the available space for actual simulation data and
decreases computational efficiency. These shortcomings were
addressed by the development of the central domain manager,
which postponed them, but was not able to solve the issues
conclusively. The authors therefore propose a system, without
a central manager, where individual processes only have
knowledge of their immediate surroundings. Advantages of
this approach are a fixed memory overhead of the domain
information per computational grid, as well as an upper bound
of necessary communication per grid. Communication needs
only be established between processes that hold neighbouring
grids, broadcast operations are completely avoided. A grid in
3D has at most six geometrical neighbours, one hierarchical
parent plus a fixed number of hierarchical children. In the
worst case all neighbours of a grid lay on different proces-
sors, requiring network communication. Therefore, an almost
infinite scalability in a weak sense, i.e. when increasing the
problem size while keeping the number of grids per process
constant, is expected.

B. Domain Generation and Initial Distribution

Even though for the load-balancing as it will be conceived, a
complete domain view is not necessary, the initial distribution
is carried out from a central location, that is from the master
process or rank zero. The domain is created by generating a
single root grid, representing the complete simulation domain.
The root grid will be successively refined in the three cardinal
directions up to a defined maximum depth. This may be carried
out uniformly, such that the entire domain exhibits the same
level of detail, or adaptively, meaning only parts of the domain
which are of special interest or need to have a finer resolution
due to numerical accuracy are resolved further. The grids
generated in this step are hulls, containing only topological
information, that is information about their neighbours, their
location and physical extent. The memory for the simulation
data, for example velocities, pressure and temperature, will not
be allocated before the distribution to their respective ranks has
been carried out.

After the initial creation, the master rank calculates a sorting
according to a space-filling curve using the Morton or depth
first scheme. The linearised order is then cut into equal
amounts to be distributed among all participating processes.
Before the grids are actually distributed, the master process
updates the neighbourhood information with the new UIDs of
all grids. This avoids an expensive additional back and forth
communication, querying for the UID and is possible because
the destination rank as well as the tag of a grid are known.

Since no grids reside on remote ranks at this point, GIDs may
be distributed simply in ascending order.

Finally, the grids are migrated including their meta data to
their respective destination ranks as determined by the Morton
ordering. In this step, every participating rank must at least
obtain one grid. This is necessary since communication is only
established between ranks which share a neighbouring, sub-
or super-grid. Load-balancing therefore cannot consider empty
ranks which would lead to a waste of resources.

This procedure also marks a deviation from the preceding
framework. Due to geometry being read in at the master
process, the memory for every grid’s cell type i.e. fluid, solid
etc. had to be allocated on the master process, further limiting
the problem size. Now geometry is read by every process
where cell types are allocated after distributing the grid hulls.
The possible load imbalance stemming from grids having
uneven load is compensated afterwards using the diffusion
load-balancing.

C. Communication Pattern

At this stage in development, it was deemed to be more
advantageous to enforce a strict separation of communication
and computation phases. For once, this ensures consistency
and reliable results when developing the decentral commu-
nication. Furthermore, the separation of the computational
kernel from the underlying communication, also allows experts
in numerical fluid simulations but not in high-performance
computing to implement their computational kernels, without
having to be knowledgeable in both regimes, making the
framework easily extensible.

The basic premise of the decentral scheme is to completely
avoid expensive broadcast operations to distribute global in-
formation, as well as abandon a single or a few central
repositories, that would have to be contended by the majority
of processes trying to update their neighbourhood information.
The most important paradigm in the scheme is that ranks need
only to communicate with remote ranks with which they have
neighbouring links to. Meaning that grids that lay on the origin
rank are neighbours to grids on the remote rank, both in terms
of hierarchy via super- or subgrids, and in terms of geometry
as bordering grids on the same tree depth. In its first iteration
the communication pattern was ordered in a regular fashion.
Each rank owns an ordered vector RemoteRank, consisting of
all ranks with which it needs to communicate.

In algorithm([I] the scheme is outlined. An Iterator RemoteR-
anklter is used in traversing the vector in a linear way. First,
all ranks post a blocking receive followed by a blocking send
for all ranks that are smaller than their own rank integer. Since
domain updates between grids might as well happen for grids
on the same rank, those are dealt with next. To complete the
pattern, a blocking send followed by a receive is posted for
all ranks larger than one’s own, in reverse order as before.

Tab. [[] visually illustrates the resulting pattern when six
participating ranks, where every rank needs to communicate
with each other. The columns signify individual ranks, the
rows the communication operations. Entries in the table signify

Algorithm 1: Structured communication pattern

1 begin

2 for remoteRanklIter < rank do

3 receive update queries from remote rank
4 send update queries to remote rank

5 end

6 update all local neighbours

7 remoteRanklIter++

8 for remoteRanklter | = size do

9 send update queries to remote rank

10 receive update queries from remote rank
11 end

12 end

the corresponding rank integer with which communication
happens. The color coding serves to increase the visibility
of communicating ranks. One can immediately observe the
ordered pattern with no danger of a deadlock.

stage rank

o 1 2 3 4 5
1 1P 0o - - - -
2 2 - 0 - - -
3 32 1 0 - -
4 4 3 - 1 0 -
5 5 4 1 0
6 -5 - 1
7 - - 4 3
8 - - 5 - 3
9 - - - - 5 4

Tab. I: Regular communication pattern with six ranks where
every rank needs to exchange data with each other rank

However, it also is evident that this pattern is not optimal
due to the idling of certain processes in specific communica-
tion stages. One quick way of improving the efficiency is to
join suitable communication stages. This is illustrated in Tab.
for six participating ranks.

Furthermore, it can be shown that for even counts of
participating processes a complete reordering yields a perfect
solution. For odd numbers an almost perfect solution, with
one process idling during each stage is achievable. This is
accompanied by a drastic increase in algorithmic complexity
however. For a code framework that is consistently requiring
communication from every rank with all others, the effort in
developing and implementing such a pattern would certainly
be warranted. However, for the framework at hand, ranks

stage rank
0 1 2 3 4 5
1&7 1 0 4 3
2&8 2 - 0 5 - 3
3&9 3 2 1 0 5 4
4 4 3 - 1 0 -
5 5 4 1 0
6 -5 - 1

Tab. II: Optimised communication pattern with six ranks where
every rank needs to exchange data with each other rank

only need to communicate with ranks that hold specific grids,
severely limiting the number of exchange pairs. In addition,
that relationship is subject to frequent changes due to load-
balancing and the resulting migration of grids. The compu-
tation of an optimal pattern requires global knowledge of all
pairs, rendering it unobtainable in the present framework.

For the problem at hand there are two reasonable remedies.
The first would be to rely on buffered non-blocking com-
munication, which from an implementation point of view is
readily available since the same pattern as discussed earlier
can be used. The advantage is that the strict ordering is
abolished, however for the cost that every communication has
to be supported by a large enough buffer. The buffer memory
limiting the amount of grids per rank leads to a decreased
computational efficiency because there is less data available
to process per rank. The second possible remedy is using
MPTI’s one-sided communication routines in which the origin
process is assigned a window in the remote rank’s memory.
It therefore can directly interact with the remote machines’
memory without handshaking, leading in theory to a much
more efficient communication pattern. Here, special care to
ensure concurrency due to clashing operations has to be taken
care of. The later certainly increases algorithmic complexity,
however promises the best results in communication efficiency
and memory requirement. As such, it is planned to be imple-
mented and tested in the next overhaul of the communication
routines.

This concludes the section describing the pattern for ex-
changing messages decentrally in the domain. The subsequent
section illustrates the actual update routines, responsible for
exchanging the possible domain alterations, namely the re-
finement of grids, their deletion as well as their migration to
a different rank.

D. Domain Update Algorithms

The three possible alterations that may change the topology
of the domain are refinement, deletion and migration of a
grid to a different process. The first two may stem from a
user interaction, or from numerical reasons when more or less
accuracy is needed. While grids are generated or deleted on
a process, the computational workload per process changes.
If it reaches a certain threshold, a load-balancing becomes
necessary. Since no complete domain view is available, the
balancing is realised using a diffusion-like heuristics, weight-
ing an optimised balance in terms of computational work with
minimising communication cost. Subsequently, grids have to
be migrated to establish the computed balance.

Each process employs a so-called queryVector for every
process including itself, a list of 64 bit integers closely related
to the aforementioned UID. These integers code the tasks, that
are exchanged with the corresponding processes. In Fig. [3] the
construction of a query is illustrated. The first 27 bits from left
to right are unused at the moment. Two bits encode the three
possible tasks. While the queryVector here does not include
migration queries, the structure of the query is kept the same.
The next three bits code the direction in which the neighbour

hash
9

direction
3

unused

27 2 21

task

GID

Fig. 5: Construction of a query

that issues the query lies. These can range from zero to five for
the six neighbours on the same hierarchic level, that is east,
west, north, south, top and bottom. Two more integers six and
seven signify a sub- or a supergrid. Via the following GID, a
query is able to uniquely identify a grid on the remote rank
which is affected by a change on the origin rank. Finally, if
the subgrid of a grid is needed, the hash is used to identify it
via its position in its local coordinate system.

1) Refinement and Deletion: Refinements naturally only
happen at non-refined grids to increase the resolution of the
represented domain. For deletion, removing of a non-leaf grid
would make sense, leads however to a cascade of deletions of
all descending grids. When a rank is affected multiple times
during such a deletion cascade, one process can only identify
all affected grids by checking the boundary box of the highest
hierarchical grids and intersecting it with all other grids resid-
ing on it, leading to a variable overhead. Furthermore, if this
cascade spreads to processes further down the hierarchy with
already finished communication during the current cycle, one
full cycle is not sufficient to carry out all necessary operations.
Restricting deletion to only leaf grids, allows both update
operations to be carried out within one full communication cy-
cle without additional overhead. Furthermore, refinement and
deletion neither cause the communication pattern to change
nor influence each other. All refinement and deletion queries
are grouped in one queryVector an are carried out within
one cycle where the ordering of operations is arbitrary and
conceived in order issue.

If a grid is refined, the task of the update function is to
determine the neighbours of the newly generated subgrids
on the same tree level. Possible neighbours are the subgrids
of neighbouring grids of the grid that is refined. Therefore,
a refinement query asks remote ranks if neighbours of the
grids are refined and if applicable, send back the respective
neighbouring subgrids. The set of queries spawning from the
refinement of a grid therefore includes the GIDs of its geo-
metric neighbours. The task is coded with two bits according
to Fig. [5] Since refinements only need to consider neighbours
on the same tree-depth, directions can range from zero to five
and the hash is unused.

If a grid is deleted, similarly, the task of the update function
is to determine the grids that are affected by the deletion and
inform them to delete their neighbour reference. Again task
and GID of the affected grids are coded according to Fig. [3]
Directions can range from zero to six to signify the deletion
of a geometrical neighbour or the subgrid of a grid. The later
case additionally makes use of the hash to identify the correct
subgrid.

Algorithms [2| and |3 illustrate the routines carried out for
updating the neighbourhood information of all concerned

Algorithm 2: Routine for sending refinement and deletion
queries

1 begin

2 send the queryVector

3 receive all new neighbours

4 update neighbour information

5 send all corresponding neighbours with positive

queries
6 end

Algorithm 3: Routine for receiving refinement and dele-
tion queries

1 begin

2 receive the queryVector

3 foreach query in the queryVector do
4 if task is deletion then

5 find grid in question

6 delete neighbour reference

7 end

8 else if task is refinement then

9 if grid is refined then

10 put neighbouring subgrids in a vector for
collective transmission

11 end

12 end

13 end

14 send all found neighbours

15 receive all new neighbours

16 update neighbour information
17 delete duplicate queries

18 end

ranks due to refinements and deletions. See also the communi-
cation pattern [I] for the ordering of the sending and receiving
routines. Algorithm 2] depicts the view from the origin process.
It first sends all its refinement and deletion queries to the
corresponding remote rank. Afterwards it receives all positive
answers from the refinement queries, including the UIDs of the
subgrids that qualified as new neighbours and updates its own
grids accordingly. Since every grid that got a positive response
on the origin rank has gotten a new neighbour, the converse
is also true, meaning that the hits on the remote rank get new
neighbours. These are collected and send to the remote rank
in the final step of the algorithm.

On the remote side, depicted in algorithm 3] the correspond-
ing operation to receive the queryVector is posted. Afterwards,
a loop traverses every query in the vector, classifying the task
to be performed. For deletion, the affected grid needs to be
identified and the neighbourhood reference in the direction
given is erased. For refinement, a positive response is justified
if the grid in question is refined. If true, the subgrids in the
opposite direction as the query are collected in a so-called
neighbourVector. After all queries are processed, the collected

neighbour UIDs are sent to the origin rank, followed by a
receive of the previously mentioned converse relation. Using
this information, the neighbouring relations are updated on
the remote rank accordingly. Finally, in case a refinement is
carried out on both sides of a neighbour pair residing on
different ranks, the queries would be processed twice since
both refinements cause queries to the respective remote rank.
To avoid unnecessary work, the duplicate queries are erased
from the queryVector on the remote side.

2) Migration: For migration the picture looks different.
Due to migration of grids, the relation between ranks is
subject to change. Since ranks only establish communication
to other ranks with which their grids share neighbourhood
relations, the migration of grids leads to the need to establish
communication with new ranks or abandon communication
respectively. This means that migration cannot be handled
within a single communication cycle but two are needed. In
total three cycles are used to carry out one round of refinement,
deletion and migration, with a load-balancing step before the
migration.

In one cycle, illustrated in algorithms [4] and [5] the grids in
question are actually migrated to the receiving rank, including
all meta data and all simulation variables. The receiving rank
then returns the newly generated UID for the grids. For every
transfer, the origin rank keeps a list of all neighbours, that have
to be informed of the change since the target rank is not yet
able to inform those ranks by itself. Again the links are not yet
established. The remote rank can only be selected out of the
set that previously was in the communication rotation. The
authors expect this to be beneficial in ensuring most of the
communication, induced by the computational kernels when
values at the grid borders have to be exchanged to be between
physical close processes, comparable to a SFC distribution.

Algorithm 4: Routine for sending migration queries

1 send all migration grids
2 receive all new UIDs

Algorithm 5: Routine for receiving migration queries

1 receive all migration grids
2 generate new UIDs
3 send new UIDs

In the second cycle, illustrated in algorithms [6] and [7] the
neighbourhood information on all ranks affected has to be
updated. The main difficulty is posed by the fact, that multiple
grids have been migrated from one origin, altering targets in
the update list. It is therefore necessary to reference the update
list for changes using the UID responses from the migration
step. After the list has been revised, all targets can be informed
of the migrations. This again makes use of the query structure,
coding the task, the GID of the grid on the remote rank that
needs to update its neighbourhood information, the direction
and, if necessary, the hash to uniquely identify a subgrid.

When all migrations and the resulting updates are com-
pleted, rendering all information in the domain consistent,

all ranks update their list of ranks with which they share
neighbouring pairs with.

Algorithm 6: Routine for sending update information

1 update queryVector with new UIDs
2 send queryVector

3 send new UIDs

4 update list of communication links

Algorithm 7: Routine for receiving update queries

1 receive all queryVector

2 receive new UIDs

3 foreach query in the queryVector do
4 identify the grid in question

5 update neighbour reference

6 end

7 update list of communication links

IV. PERFORMANCE MEASUREMENTS

To be able to classify the new decentral communication
routines, they were tested using a series of benchmarks against
the former central approach. Tests were performed on an Intel
Xeon E5-2697 v3 “Haswell”’cCluster operated by the Leibniz
Supercomputing Center of the Bavarian Academy of Sciences
and Humanities. The cluster incorporates 384 nodes, with
28 cores per node and 10752 cores in total. The nodes are
connected with Infiniband FDR14 interconnects.

For the test setup a cubic domain was uniformly refined
up to a prescribed depth for three test cases using a bisection
in each of the cardinal directions. All grids were migrated
to the participating processes using the morton space-filling
curve distribution. The complete domain is then refined by
one level, measuring the total exchange times due to commu-
nication caused by the refinement, i.e. querying and informing
concerned neighbouring grids, updating their neighbourhood
information accordingly. The chosen test cases include re-
finements from depth three to four, four to five and five to
six. With 585, 4681, 37449 and 299593 grids in total for the
respective levels. The measurements were then carried out on
one, two, four, eight and sixteen nodes, or 28, 56, 112, 224
and 448 cores. The results are illustrated in Fig. [6] for the
decentral communication routines and Fig. [7] for the former,
central communication routines.

It can clearly be observed that the decentral routines follow
a decreasing trend with more nodes involved. With times
decreasing from 2.5 seconds when using one node to around
one millisecond when using 16 nodes and a refinement from
depth five to depth six. This matches with the expectations
that a grid introduces a bounded amount of communication
to its respective process. When increasing the amount of
nodes, respectively processes, the number of grids per process
decreases, reducing the communication per process. In com-
bination with the decentral communication, the overall update
time is also reduced. In comparison, the central routines show
the complete opposite trend. When refining the domain from

d3-d4 —o—
d4-ds ,
25 d5-d6 —o—
— 2
&
2
S 15
o
=
=]
= 1
E
0.5
0 —
1 2 4 8 16

number of nodes [-]

Fig. 6: Update times plotted against the number of nodes for
different depths when refining the complete domain, using the
decentral update routines

400 "d3-d4 —e—
d4 - ds5
350 d5-d6 —o—

300

250

200

150

time to update [s]

100

50

number of nodes [-]

Fig. 7: Update times plotted against the number of nodes for
different depths when refining the complete domain, using the
central update routines

depth four to five, the update time increases from 11 seconds to
300 seconds using 16 nodes. The fact that the number of grids
per process is reduced when increasing the number of nodes
is true as well. However, every process needs to query the
neighbourhood server for changes concerning them, leading
to the aforementioned communication bottleneck.

In summary, the measurements show the expected excellent
scaling properties of the decentral approach which were the
motivation behind revising the domain management facilities.
The last section concludes by summarising the main findings
of this contribution and gives an outlook into future work.

V. CONCLUSION AND FUTURE WORK

The present work described the current work on a frame-
work for parallel fluid flow simulations based on a proven

hierarchical data structure. This framework is designed to
not require expensive broadcast operations or central domain
management facilities, which limit the scalability when com-
puting on current peta- or even future exascale machines. On
the way the achieve this via self-managing subdomains, the
authors have presented the communication patterns as well
as the routines to ensure domain consistency when adaptive
domain modifications become imperative due to numerical
necessities. The facilities described here are subject to be
continuously reworked. In case of the communication pattern,
possible optimisations have been laid out.

Testing on a medium-tier machine on up to 448 cores has
shown very promising results in terms of communication times
caused by a refinement of a complete uniform domain of one
level and supports the continued development in this direction.

The next step is the conception of the load-balancing
kernel, again restricted by only a local domain view of the
individual subdomains, in conjunction with incorporating the
unique characteristics of the used hierarchic data structure.
The underlying principle will be based on a diffusion pro-
cess, mimicking the simulated physics. The picture becomes
even more involved when including adaptive time-stepping
schemes, introducing grids with varying computational load
impact, in addition to the varying impact from message
exchanges due to the hierarchy.

ACKNOWLEDGMENT

The authors gratefully acknowledge the computing time
granted by the Leibniz Supercomputing Centre (LRZ). With-
out the kind support, parts of this work would not have been
possible.

REFERENCES

[1] M. Bader, Space-filling curves: an introduction with applications in
scientific computing. Springer Science & Business Media, 2012, vol. 9.

[2] J. Luitjens, M. Berzins, and T. Henderson, “Parallel space-filling curve
generation through sorting,” Concurrency and Computation: Practice and
Experience, vol. 19, no. 10, pp. 1387-1402, 2007.

[3] J. Frisch, “Towards massive parallel fluid flow simulations in computa-

tional engineering,” Ph.D. dissertation, Technische Universitdt Miinchen,

2014.

M. Bader, H.-J. Bungartz, A. Frank, and R.-P. Mundani, “Space tree

structures for PDE software,” in Computational Science, ser. LNCS 2331,

P. Sloot, C. Tan, J. Dongarra, and A. Hoekstra, Eds. Springer, 2002, pp.

662-671.

A. Brandt, “Multi-level adaptive solutions to boundary-value problems,”

Mathematics of Computation, vol. 31, no. 138, pp. 333-390, 1977.

J. Frisch, R.-P. Mundani, and E. Rank, “Parallel multi-grid like solver

for the pressure Poisson equation in fluid flow applications,” in Proc. of

the IADIS Int. Conf. on Applied Computing. 1ADIS Press, 2013, pp.

139-146.

[71 R.-P. Mundani, J. Frisch, V. Varduhn, and E. Rank, “A sliding win-

dow technique for interactive high-performance computing scenarios,”

Advances in Engineering Software, vol. 84, pp. 21-30, 2015.

Message Passing Interface Forum, “Mpi: A message-passing interface

standard, version 3.1,” University of Tennessee, Knoxville, Tennessee,

Specification, June 2015. [Online]. Available: http://mpi-forum.org/docs/

mpi-3.1/mpi3 1-report.pdf

[9] G. Cybenko, “Dynamic load balancing for distributed memory multipro-
cessors,” Journal of parallel and distributed computing, vol. 7, no. 2, pp.
279-301, 1989.

[4

—_

[5

—

[6

[t

[8

[t}

http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

	I Introduction
	II Foundations
	II-A Data Structure
	II-B Message Passing and Grid Identification

	III Domain Management
	III-A Lessons Learned and Design Goals
	III-B Domain Generation and Initial Distribution
	III-C Communication Pattern
	III-D Domain Update Algorithms
	III-D1 Refinement and Deletion
	III-D2 Migration

	IV Performance Measurements
	V Conclusion and Future Work
	References

