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Abstract—We present a compositional validated integration
method based on Taylor models. Our method combines so-
lutions for lower dimensional subsystems into solutions for a
higher dimensional composite system, rather than attempting
to solve the higher dimensional system directly. We have
implemented the method in an extension of the Flow* tool.
Our preliminary results are promising, suggesting significant
gains for some biological systems with nontrivial compositional
structure.
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I. INTRODUCTION

Numerical solutions to Initial Value Problems (IVP) are of
paramount importance for the analysis of hybrid and con-
tinuous systems. Typically, approximations like simulation
are used to obtain these solutions. However, they provide
only estimates that are ‘close’ to solutions, sometimes with
unreliable, or even exponentially growing, error bounds. This
means that they are not necessarily the best fit for use for the
purposes of formal verification. Validated integration (VI)
methods present an alternative that is more in tune with
the needs of formal verification as they compute guaranteed
bounds for the flow of ODEs, usually at the cost of increased
computational complexity.

The field of VI was founded by Moore in the 60s [15] and
early methods simply used interval arithmetic to address the
roundoff errors and discretisation in computations. However,
these methods frequently suffer from excessive imprecision
due to coarse over-approximation. VI first encloses the flow
of a set of ODEs in interval boxes in a fixed coordinate
system. Often the dynamics of the system involve nonlin-
earity or rotation which greatly increases the size of the
interval boxes. This is called the wrapping effect. Further, the
relationships between variables may be lost when they are
represented by intervals. This is known as the dependency
problem.

An important next step in VI was the development of
the parallelepiped method. The parallelepiped method at-
tempts to minimise the wrapping effect by using a moving
coordinate system [15]. Unfortunately, this approach faces
challenges of stability with respect to long integration times,
since the rotation is determined by a matrix that may become
increasingly ill conditioned. Lohner’s QR method [12] is an
extension of the parallelepiped method that makes use of

QR decomposition to find coordinate transformations that
are stable. Despite these advances in tackling the wrapping
effect, both the parallelepiped and QR methods are still
prone to ineffeciencies rooted in the dependency problem.

To address these shortcomings, Berz and Makino in-
troduced Taylor model (TM) based VI [2], [13]. In their
approach, the flow of ODEs is handled by Taylor model
arithmetic, which combines both symbolic computations and
interval arithmetic. The core idea of the Taylor model based
integration is that the majority of the flow of the ODEs
is represented by a polynomial and all roundoff and dis-
cretisation errors are pushed into a remainder interval. The
symbolic part is free of the dependency problem, and while
the interval remainder part still suffers from it, its effect is
reduced since the width of the interval box is smaller. A
downside of the naive Taylor model approach is that the
remainder interval can never decrease, and thus the impact
of the dependency problem grows with integration time. To
mitigate this, Berz and Makino developed preconditioned
Taylor model based integration [14]. In preconditioned meth-
ods the solution is represented by a composition of TMs. The
integration is only concerned with one of them and at each
integration step, a model that minimises the wrapping effect
and dependency problem is chosen.

Our present work began with the evaluation of various
validated integration tools (CAPD [18], VSPODE [11],
Flow* [4]) on a number of examples, many modelling
chemical reactions in biological systems. While the Taylor-
model based tools (VSPODE and Flow*) performed better,
we encountered significant problems. In many cases the vali-
dated integration diverged well before reaching time limits of
interest. When we altered integration parameters to increase
accuracy and extend the integration time, integration became
very slow, taking hours. We noted that the ODE systems
arising from chemical reactions have considerable composi-
tional structure. In this paper, we describe how we exploited
this structure in order to improve the performance of Taylor-
model-based validated integration that uses preconditioning.

The structure of the paper is as follows. In Section
II, we present preliminaries. In Section III, we will give
a description of validated integration methods. In Section
IV, we describe the properties of systems suitable for the
compositional approach, adapt validated integration methods
to the compositional setting and examine the interesting case



of the preconditioned compositional approach in more detail.
In Section V, we provide our experimental results together
with analysis and we conclude with observations and some
open problems in Section VI.

A. Related Work

Chen and Sankaranarayanan present an approach that is
close to the present work [5]. They take a similar approach
of partitioning the system into smaller systems and then
solving them separately. The key difference with our work
is that they are partitioning the system into hybrid systems
based on the range of effects that the subsystems have on
each other. In their setting, the effect of one sub-system on
another is abstracted to an interval, while we track the effect
symbolically with Taylor models.

Other hybrid and continuous system analysis tools in-
clude dReach [9], CAPD [18], iSAT [6], KeYMaera [17],
VNODE-LP [16] and VSPODE [11]. These tools also utilise
interval arithmetic (and some include forms of modular
reasoning), but all utilise techniques quite different from our
work.

A connection with decomposing a system can also be
made with hybridisation tools such as Nltoolbox [19] and
SpaceEx [7]. Hybridisation [1] is essentially splitting up a
continuous state space into regions s.t. each region becomes
a state in a hybrid system, with the dynamics of each region
approximated linearly.

II. PRELIMINARIES

A. Interval Arithmetic

Many rigorous computations involving reals cannot be
carried out directly using floating point numbers. However,
real numbers can be enclosed in intervals with floating
point endpoints, and rigorous arithmetical operations may
be implemented for computing with these intervals. A real
number x ∈ R may be represented by a floating point
interval [x, x] s.t. x ≤ x ≤ x. We denote the set of all real
intervals as IR. Interval arithmetic operations must satisfy
the obvious enclosure property

[x, x] op [y, y] ⊇ {x op y | x ≤ x ≤ x ∧ y ≤ y ≤ y}

where, e.g., op ∈ {+,−,×,÷}. An interval lifting of a real
operation op satisfying this enclosure property is known as
an interval extension [8].

Unnecessary over-approximation is often introduced when
evaluating interval extensions. For example, consider the
naive interval extension of the function f(x) = x − x
evaluated over the interval [−1, 1]. With the standard in-
terval extension for subtraction, this will be computed as
[−1, 1]− [−1, 1] = [−2, 2], yet it is obvious that f([−1, 1])
is actually [0, 0]. This imprecision is a manifestation of the
dependency problem.

B. Taylor Model Arithmetic

A k-th order n-parameter Taylor model (TM) over a
domain D ⊂ Rn is a pair (p, i) of a k-th order n-
variable polynomial p and a remainder interval i ∈ IR. It
approximates an R-valued function f : D ⊂ Rn → R when
∀x ∈ D.f(x) ∈ p(x) + i. We refer to the variables of a TM
as parameters in order to avoid confusion with the variables
of the ODE systems being solved.

We define arithmetic operations on TMs as described by
Makino [13]. For addition and subtraction, one may operate
on the polynomial and remainder parts separately. For k-th
order TMs (p1, i1) and (p2, i2) both over domain D, addition
and subtraction are defined as

(p1, i1)± (p2, i2) = (p1 ± p2, i1 ± i2) ,

resulting in k-th order TMs over domain D. Multiplication
is slightly more complicated; it is defined as

(p1, i1)× (p2, i2) = p1 × p2 + p1 × i1 + p2 × i2 + i1 × i2 .

Since p1×p2 is of order 2k, it is split into two parts p1×p2 =
p+ pe, where p contains the terms of order up to k and pe
contains all other terms. Using the interval extension B of
the polynomial part p we evaluate the polynomial over an
interval and express multiplication as

(p1, i1)× (p2, i2) = (p,B(pe) +B(p1)× i1+

B(p2)× i2 + i1 × i2) .

We commonly work with vectors of Taylor models ~TM and
write typing statements such as ~TM : D ⊂ Rn → IRm. We
also call these vectors Taylor models. Sometimes we con-
sider TMs extended to apply to interval-valued arguments,
in which case we might write ~TM : D ⊂ IRn → IRm.

Composition ~U ◦~V of two Taylor models ~U : D1 ⊂ Rq →
IRr and ~V : D2 ⊂ Rp → IRq is defined by substituting
the variables of ~U with the corresponding elements of ~V
and using Taylor model arithmetic to put the result in the
normal form (~p, i). Composition is only valid if the image
under ~V of ~V’s domain is a subset of the domain of ~U , i.e.
~V(D2) ⊆ D1.

III. VALIDATED INTEGRATION

Definition 1 (Extended Initial Value Problem): An
instance of this problem has the form of an Initial Value
Problem
d~x

dt
= ~f(~x), ~xinit = ~x(tinit) ∈ ~Xinit , t ∈ [tinit , tfinal ]

(1)
where the vector field ~f : Rn → Rn is a sufficiently-
smooth function, ~Xinit ⊆ Rn is a set of initial conditions and
solutions are sought for ~x in the time interval [tinit , tfinal ].

For any point ~xinit ∈ ~Xinit we have a classical IVP
problem. We assume for each ~xinit ∈ ~Xinit and all time
t ∈ [tinit , tfinal ] that a solution for ~x exists and is unique.



For example, if ~f is Lipschitz continuous in neighbourhoods
of all ~xinit ∈ ~Xinit , then the Picard Lindelöf theorem ensures
the existence of solutions in some closed time interval
around tinit , and we then assume that [tinit , tfinal ] is a subset
of this interval.

Our goal is to find a set that encloses the IVP solutions.
We call this enclosure set the flow or flowpipe of the EIVP.

We divide the time interval [tinit , tfinal ] into a number
of smaller intervals and describe the advance in time from
the start to the end of one of these intervals as a timestep.
In the following we focus on how, given an enclosure of
the solution values at the start of a timestep, one can find a
flowpipe over the step interval (sometimes called a flowpipe
segment) and hence an enclosure of the solution values at
the end of the step. This end enclosure then serves as an
enclosure for the start of the next timestep.

The scheme used in Flow* for computation of a flowpipe
segment is based on versions of the Picard operator. These
operator versions are used to compute successively better
approximations to a solution or sets of solutions over a
timestep. For convenience let us now use a time variable
t to measure time since the start of a timestep and let δ be
the timestep size. We then have 0 ≤ t ≤ δ. Let ∆ = [0, δ].

The basic Picard operator takes the form

P~f (~g)(t) = ~x0 +

∫ t

0

~f(~g(s))ds

where ~g(t) is some approximation to a solution that takes
on value ~x0 at the timestep start when t = 0. P~f (~g) is
a better approximation of the solution. Assuming we have
the conditions guaranteeing the existence and uniqueness
of a solution, one can show using the Banach fixed-point
theorem that this solution is the unique fixed-point of the
Picard operator P~f (), and that the approximations obtained
by iterating application of the Picard operator converge to
this solution.

For validated integration we use an interval generalisation
PI

~f
() of this basic operator that for example allows ~x0, ~f and

~g to take on interval values in IRn and allows ~f and ~g to
take interval arguments in IRn and IRn × IR respectively
(~g takes an extra time argument). The initial condition ~x0 is
modelled using a TM with domain D ⊂ Rn and functions ~g
and P~f using TMs with domain D ×∆. One choice for D
is the set of initial conditions ~Xinit at the beginning of the
validated integration. Later in this section, when we discuss
the concept of preconditioning, we remark on other choices
for D. We also express ~f using a TM which encloses the
actual ~f : Rn → Rn. Making the dependence on parameters
~a ∈ D explicit, the interval Picard operator takes the form:

PI
~f
(~g)(~a, t) = ~x0(~a) +

∫ t

0

~f(~g(~a, s))ds.

A TM for the flowpipe segment over a timestep is
computed in three phases.

1) Iterate the Picard operator k times starting with an
initial ~g(~a, t) = ~x0(~a) in order to compute a kth-
order TM with the correct polynomial part ~p. Further
iterations do not change this polynomial part. For effi-
ciency these computations ignore tracking the interval
parts of TMs and discard monomials of order greater
than k.

2) Guess an interval i with the hope that the TM (~p, i)
encloses all the solutions to the EIVP that have start
values at time 0 in the interval defined by the TM ~x0.
Compute (~p′, i′) = PI

~f
((~p, i)) and derive interval

enclosures of all monomials in ~p′ of order greater than
k in order to arrive at a kth order TM (~p, i′′) that
encloses (~p′, i′). Using the Banach fixed point theorem
it can be shown that if i′′ ⊆ i, then the TMs (~p, i) and
(~p, i′′) both enclose all the EIVP solutions.
If the inclusion test i′′ ⊆ i fails, an alternate i is
searched for by successively trying larger guesses.

3) Tighter enclosures of the set of solutions can be found
by iterating the Picard operator on (~p, i′′). As observed
in the PhD thesis of the Flow* implementer [3],
efficiency gains can be made in the application of the
Picard operator here, since the polynomial arithmetic
computations are largely the same as in the previous
phase and so do not have to be repeated.
In Flow*, these iterations are terminated when the
decrease in the remainder interval i size on an iteration
is less than some threshold.

After the last phase, the resulting TM is evaluated at the
timestep end time δ in order to give a TM that encloses the
solution values at the timestep end and that can be used as
an enclosure of the solution values at the start of the next
timestep.

Preconditioning [14] is an important technique for re-
ducing the effects of the wrapping problem in TM based
integration and controlling the growth of remainder inter-
vals. Its use can also lead to significant improvements in
performance: indeed in our experience this benefit seems in
most cases more important than reductions in the effects of
the dependency problem.

The basic idea is to express the TM for a flowpipe segment
as a composition ~U ◦ ~V of a left model ~U and a right model
~V . The right model ~V acts as a transformation of the domain
Dr over which the parameters of the right model take values.
In our work the domain Dr is always an interval box for the
set of initial conditions ~Xinit . During the Picard iterations
for a validated integration step, the Picard operator does not
operate on the composition ~U ◦ ~V . Rather, it just operates on
the left ~U and the right model ~V is held constant. The left TM
then has parameters that take values from the transformed
domain ~V(D), as well as a time parameter with values from
[0, δ].

One particularly-simple right model is an affine trans-



formation that maps ~Xinit to the interval box [−1, 1]n.
Having intervals for each coordinate centred around zero en-
sures that interval arithmetic involved in calculating interval
bounds on higher order monomials produces better results
than when coordinate intervals are not centred around zero.

In general the left and right models are both adjusted,
keeping their composition an overapproximation, between
integration steps. With identity preconditioning1, the new
left model is set to the identity TM and the new right
model is set to the composition of the old left and right
models. This yields significant performance gains as the
Picard operator works on much smaller polynomials than in
the non-preconditioned case. As the left model at the start
of each integration step is the identity, the domain Dl of the
left model is the set ~X0, an enclosure of the IVP solution
values at the step start.

In general the preconditioning transformation has form2

~U ◦ ~V = [λ~a. ~c+ ~C∗~a+ ~N∗(~a)] ◦ ~V
= (λ~a. ~c+ ~C~a+ [0, 0]n)◦{

~C−1(λ~a. ~C∗~a+ ~N∗(~a)) ◦ ~V
}

= ~U ′ ◦ ~V ′

(2)

where the old left TM ~U = λ~a. c+C∗~a+N∗(~a) consists of
constant part c, linear part C∗~a and non-linear and remainder
interval part N∗(~a), and C is the desired linear part for
the new left TM ~U ′. Here we use lambda abstraction to
indicate how Taylor models act as operators. Usually, the
variables bound by such a lambda abstraction correspond to
the Taylor model parameters. Typically C is a function of
C∗. With identity preconditioning, C is the identity matrix.
With parallelepiped preconditioning, C is C∗. With QR
preconditioning, C is the matrix Q of the QR factorization
of the matrix obtained by sorting the columns of C∗ by
size in descending order. Makino and Berz [14] discuss the
relative merits of these different preconditioning schemes.

IV. COMPOSITIONAL VALIDATED INTEGRATION

Let us define a dependency graph G = (~x, → ) with the
variables ~x of the ODE system (1) as vertices and and an
edge y → x whenever the ODE vector field ~f makes dx

dt

directly depend on y. If the specific ODE for dx
dt is of form

dx
dt = fx(y1, . . . , ym) (with {y1, . . . , ym} ⊆ ~x), then →
includes an edge yi → x for each yi.

This dependency graph tells us how dx
dt at some time t

might be influenced by the values of system variable z ∈ ~x
at times t′ ≤ t. Specifically, dx

dt can be influenced by z just
when z →∗ x, where →∗ is the reflexive transitive closure
of → . We sometimes say that z is an influencer of x when
z →∗ x. If z →∗ x does not hold for some x, z ∈ ~x, then
the time evolution of x is independent of z and we have the

1When ignoring constant part of both left and right model.
2Due to simplicity we leave out the details of the scaling used to

guarantee that the range of right model is subset of unit interval box.

option of finding a solution for x for all time before we start
on finding a solution to z. On the other hand if we have both
z →∗ x and x→∗ z, then the system variables x and z are
mutually dependent and we have to advance their solutions
together.

In general, the solutions of the system variables in each
strongly-connected component of G have to be advanced
together. Every variable is a member of exactly one strongly-
connected component and the components form a partition
of the set of all system variables. Consider a directed graph
on these components with an edge from a component A to
component B when there is an edge from some variable in A
to some variable in B. This component graph is acyclic. Any
topological sort of this component graph defines a suitable
ordering in which we can completely solve each compo-
nent in turn. This observation motivates our compositional
approach.

As explained in the previous section, the core compu-
tation is iteration of the Picard operator. Let us focus on
the effect of the iteration on a particular system variable
x ∈ ~x with dx

dt = fx(y1, . . . , ym) as above. The successive
approximations x(j) of the solution for x computed by the
Picard operator are:

x(j)(~a, t) =x0(~a)+∫ t

0

fx(y
(j−1)
1 (~a, s), . . . , y(j−1)

m (~a, s))ds

with x(0)(~a, t) = x0(~a). Here for simplicity we blur the dis-
tinction between the different phases discussed previously.

Now, let us assume that each system variable x depends
on a vector of parameters ~ax that is a subvector of the vector
of all parameters ~a, where if z →∗ x, then ~az ⊆ ~ax (~az
is a subvector of ~ax). We can then write the successive
approximations of the solution for x as x(j)(~ax, t) rather
than x(j)(~a, t). Specifically, we can write:

x(j)(~ax, t) =x0(~ax)+∫ t

0

fx(y
(j−1)
1 (~ay1

, s), . . . , y(j−1)
m (~aym

, s))ds

with x(0)(~ax, t) = x0(~ax). Note here that all the y(j−1)
i take

as arguments ~ayi
which are subvectors of ~ax, so the right-

hand side of these equations only depend on parameters in
~ax and we are justified in writing x(j)(~ax, t) on the left.
These parameters ~a might be used to specify the value of the
system variables ~x at the initial integration time tinit , with
one parameter a ∈ ~a for each x ∈ ~x. However this is not
necessary. For example, we need not introduce a parameter
for a system variable when its initial value is fixed and not
varying over some interval.

One major performance gain of the compositional ap-
proach is a consequence of the TMs for each system
variable solution having fewer parameters. Following the
Flow* implementation, we use a dense representation for



monomials: polynomial computations for a given compo-
nent are carried out with all monomials over ~ax where
each monomial is represented using a vector of parameter
exponents. This is possible because the TMs for all x in
a component have the same parameters. In order to use
TMs from one component A in another component A′,
we have to convert the monomials from the representation
appropriate for A to that appropriate for A′. This conversion
cost is an overhead of using a dense representation. The cost
could be avoided by switching to a sparse representation
(monomials as sequences of pairs of parameter names and
positive exponents), but we estimate the performance benefit
from a dense representation well outweighs this cost. The
performance gain is because the monomial operations such
as copying and multiplying have run-time proportional to
the size of the monomials.

In the worst case, the dependency graph has a single
strongly-connected component and no gain is possible. How-
ever, with many ODE systems, for example those derived
from chemical reaction networks, many components have
significantly fewer parameters than the total number, so
significant peformance gains are possible.

One way to sequence the computations of the x(j) is
to mimic what happens in the non-compositional case and
compute the x(j) for all x ∈ ~x for a given j before moving
on to the x(j+1). Instead in our implementation we choose
to complete the computation of the best approximation of
the each variable in some component before moving on to
any following components in the component dependency
graph. This component by component approach gives us the
freedom to iterate different numbers of times for each com-
ponent. When computing x(j), we use y(j−1)

i for those yi in
the same component as x, but use the final approximations
y

(finyi
)

i for those yi in ancestor components. This approach
is sound because the final approximations are always tighter
enclosures of the solutions than the y(j−1)

i .
How are dependencies affected by preconditioning? Let’s

assume that one of approximations ~x(j) to the ODE solution
is represented by the preconditioned pair of TMs ~U ◦ ~V . As
noted earlier, with preconditioning the successive iterations
that compute better approximations of the solution for a
flowpipe step only operate on the left TM ~U and during
these iterations the right TM ~V stays fixed. Because of
composition, the elements of ~U only depend on some
parameters; specifically element Ux depends only on ~ax.

Let us now consider how the preconditioning step itself
is affected by composition. Let ~U ◦ ~V be the final Taylor
model produced by an integration step. The Taylor model
for a single variable x is given by Ux ◦ ~V where Ux is the
element of ~U corresponding to x. Narrowing equation (2) to
Ux ◦ ~V , we have

Ux ◦ ~V =

U ′x︷ ︸︸ ︷
(λ~a. cx + Cx~a+ [0, 0]) ◦

~V′︷ ︸︸ ︷
(~C−1(λ~a. ~T ∗(~a)) ◦ ~V)

where Cx is the row of the matrix ~C corresponding to x
and ~T ∗(~a) = ~C∗~a + ~N∗(~a) is the sum of the linear and
nonlinear part.

The new left TM element U ′x = λ~a. cx +Cx~a+[0, 0] acts
as the initial condition for the next integration step. We need
to ensure that U ′x depends only on ~ax. Cx has the form

a1 a2 . . . an
[ ]x Cx,a1 Cx,a2 · · · Cx,an

so we need to have the Cx,ai
non-zero only when ai ∈ ~ax.

We call preconditioning methods using such ~C left model
compositional methods. Parallelepiped preconditioning is an
example of a left model compositional method.

From now on we are only concerned with left model com-
positional methods and we explore when compositionality
can also allow us to reduce the parameters required by right
TM elements. Consider the right TM

~V ′ = ~C−1(λ~a. ~T ∗(~a)) ◦ ~V

and let us focus on only the element corresponding to x

V ′x = C−1
x (λ~a. ~T ∗(~a)) ◦ ~V.

If C−1
x has the form

a1 a2 . . . an
[ ]x kx,a1

kx,a2
· · · kx,an

we can write

V ′x = (λ~a. kx,a1T
∗
x1

(~a) + · · ·+ kx,anT
∗
xn

(~a)) ◦ ~V.

Since we are now assuming the preconditioning method
is left model compositional, we know that T ∗xi

actually
only depends on parameters ~axi . We make this explicit by
introducing a version T̃ ∗xi

of the operator T ∗xi
that takes as

argument ~axi
rather than ~a, and write

V ′x = (λ~a. kx,a1
T̃ ∗x1

(~ax1
) + · · ·+ kx,an

T̃ ∗xn
(~axn

)) ◦ ~V

We call left model compositional preconditioning methods
fully compositional preconditioning methods if the kx,ai

are non-zero only if xi is an influencer of x. Identity
preconditioning is an example of a fully compositional
preconditioning method.

Assuming that the preconditioning method is fully com-
positional, we have

V ′x = (λ~a. kx,az1
T̃ ∗z1(~az1) + · · ·+ kx,azp

T̃ ∗zp(~azp)) ◦ ~V

where the zi are all the influencers of x (zi →∗ x) and azi
is the parameter associated with zi. Keeping in mind that
~azi ⊆ ~ax, we can create lifted versions T̃ ∗xzi of the operators
T̃ ∗zi that take arguments ~ax rather than ~azi . We then have

V ′x = (λ~ax. kx,az1
T̃ ∗xz1 (~ax)+· · ·+kx,azp

T̃ ∗xzp (~ax))◦~V
∣∣∣
x

(3)



where ~V
∣∣∣
x

is ~V restricted to exactly the Vz such z →∗ x.
We are now ready to show how a particular compositional

structure of the right TM is preserved by preconditioning.
Let us assume each right TM element Vx has a vector of
parameters ~bx where if z →∗ x then ~bz ⊆ ~bx. From equation
(3) above, the ~b parameters involved in V ′x are⋃

z→∗x

~bz.

But since we have that all such ~bz ⊆ ~bx, the parameters
involved in V ′x are just ~bx.

If a preconditioning method is neither left model com-
positional or fully compositional then we call it a non-
compositional preconditioning method. QR preconditioning
is an example of non-compositional method.

V. EXPERIMENTS

To assess the performance of our approach, we imple-
mented a prototype by extending the (non-compositional)
Flow* [4] version 2.0.0 with our compositional solving
method. Our prototype uses the same parameters and data-
structures as Flow*, with the exception of the remainder esti-
mation, which we compute dynamically instead of statically.
All experiments were performed on a workstation running
Scientific Linux 7.4 with Intel 3.10GHz i5-2400 and 8GB
memory.

Our prototype computes the flows of all ODEs for the
specified amount of time or until a suitable remainder cannot
be found in the validation step.

We present two classes of experiments. In the first class,
we compare performance of preconditioning methods by
examining (a) how far they manage to integrate the system
(or if they managed to complete the integration time goal
at all), and (b) then comparing the widths of the flows.
In the second class, we use the compositional approach
in solving the system with the aforementioned determined
“best” preconditioning method. As described in detail below,
if a system is non-compositional by nature, we make it com-
positional “artificially” by considering a composite system
composed of copies of the non-compositional system.

A. Preconditioning method experiments

We use our tool to compute flows for 5 different systems.
The systems are Lotka-Volterra (Lotka-Volterra equations),
AND-Gate (computes the logical AND-function), Sq-Deg
(nonlinear artificial system with no dependencies), Lin-Dep
(linear artificial system with cascading dependencies), AND-
OR (OR-function of two AND-gates).

Our goal is to compute flows until a specified integration
time is reached. Sometimes that is not possible because the
witdh of the enclosure expands exponentially. If that is the
case then our tool halts, reporting that it can only compute
the flow up to the given time.

The first type of experiments we did were concerned with
determining the most suitable preconditioning method for a
given system. Given two preconditioning methods A and B,
we say that A is better than B if (i) A integrates further than
B, or (ii) A and B integrate for the same amount of time
but A produces a flow that can be bounded by a smaller
interval box.

We present the data for preconditioning methods in Table
I. Based on this data, we decided to use parallelepiped
preconditioning with Lotka-Volterra and identity precondi-
tioning with all other systems3.

B. Compositional vs non-compositional

This section is concerned with comparing the composi-
tional and non-compositional approaches.

We note that two of our systems (Lotka-Volterra and
Squared-Degration) are not compositional in nature and we
simulate compositionality by using identical copies of the
system in parallel with no dependencies (10 copies for
Lotka-Volterra and 20 copies for Squared-Degration).

For each example system, we pick the best precon-
ditioning method as determined by the previous section.
When we pick identity preconditioning we present data
for compositional integration and for compositional inte-
gration together with compositional preconditioning. With
parallelepiped preconditioning we only use compositional
integration.

Since our compositional flow is practically identical to the
non-compositional one, we refrain from presenting the flow
itself, but report instead the time needed to compute it and
the time spent in key parts of the algorithm. These times
correspond to
• total time needed to solve the system (total),
• finding the polynomial in the Picard iteration (polyno-

mial),
• validating the existence and uniqueness of the solution

(validating),
• tightening the remainder interval (refinement),
• mapping before preconditioning (mapping 1),
• preconditioning the left and right model (precondition-

ing),
• mapping after preconditioning (mapping 2).
Table II presents a summary of all experimental results.
Our current setup treats the non-compositional approach

as having everything in a single component. This has the
effect of adding some insignificant overhead in the non-
compositional approach (mapping 1 and mapping 2 for non-
compositional rows in Table II).

Another general observation to be made is that in fully
compositional methods we need a mapping from depen-
dencies (mapping 1). In partially compositional and non

3Note that with our current implementation the parallelepiped precondi-
tioning wasn’t applicable to the system called AND-Gate



Example Dim Order Time Step Preconditioning method
QR Pa Id

IP Wid IP Wid IP Wid
Lotka-Volterra 2 4 10 0.2 10 0.851 10 0.769 10 3.98
AND-Gate 7 5 1000 10 1000 0.00781 - - 1000 0.00771
Sq-Deg3 1 5 1 0.1 100 0.0109 100 0.0109 100 0.0109
Lin-Dep3 2 5 1 0.1 1 0.466 1 0.466 1 0.466
AND-OR 30 2 40 0.05 40 0.0401295 40 0.0250833 40 0.0229715

Table I
PRECONDITIONING EXPERIMENTS

Abbreviations: Dim : Dimension of the system, Step : Time step of the integration, QR : QR preconditioning, ID : identity preconditioning, Pa :
parallelepiped preconditioning, IP : integration progress, Wid: width of the flow for first variable

Example Dim #C Pre Met Comp Times
Total Integration Preconditioning

Poly Val Ref Map 1 P W/O M Map 2
Lotka 20 10 PA LC 59.03 8.26 18.18 7.1 0.91 22.04 1.52

NC 127.58 10.5 45.2 45.78 0.76 22.29 1.94
Sq-Deg 20 20 ID FC 6.54 1.36 2.73 1.49 0 0.83 0

LC 7.32 1.35 2.57 1.51 0.19 1.3 0.31
NC 22.06 1.9 7.99 10.14 0.14 1.4 0.32

Lin-Dep 20 20 ID FC 0.61 0.14 0.13 0.09 0.12 0.06 0
LC 0.58 0.12 0.15 0.13 0.02 0.08 0.04
NC 1.25 0.1 0.42 0.59 0.01 0.1 0.01

AND 7 3 ID FC 36.4 12.3 14.54 1.79 0.14 7.31 0
LC 36.19 11.92 14.43 1.76 0.16 7.28 0.13
NC 31.53 6.58 14.35 3.1 0.09 7.17 0.06

AND-OR 30 22 ID FC 61.76 3.99 28.17 15.09 2.7 8.36 0
LC 69.99 4.19 28.98 15.25 0.81 11.92 6.44
NC 348.96 5.24 124.61 199.12 0.88 11.53 6.57

Table II
COMPOSITION EXPERIMENTS

Abbreviations: Dim : dimension, #C : number of components, Pre Met : preconditioning method, Comp : composition type, FC : fully compositional, LC
: left model compositional, NC : non-compositional, Map 1 : mapping 1, Precond : preconditioning without mapping, Map 2 : mapping 2, Poly :

polynomial, Val : validating, Ref : refinement.

compositional cases we need to map components before and
after the preconditioning phase (mapping 1 and mapping 2).

In general we make the following observations:

• Compared to the non-compositional approach, fully
compositional and left model compositional methods
perform similarly better on the integration phase.

• Compared to the fully compositional approach, left
model compositional and non-compositional methods
perform similarly worse on the preconditioning phase.

The massive speedup for the compositional approaches to
the Lotka-Volterra model reflect the fact that the benchmark
was in a sense crafted to be suitable for composition: Each
part of the integration performs better with composition.
Although we do not gain much in the preconditioning phase,
the total computation time is dominated by integration, so
we still obtain a significant performance gain overall.

The Squared-degradation system is another system some-
what artificially engineered to be suitable for composition.
Since there are no dependencies between components, we
do not need to do any mapping with compositional precon-

ditioning and we achieve significant preconditioning gains
in the compositional setting.

The linearly dependent system is compositional but in
some ways unsuitable for our fully compositional approach.
At a high level, this is because of a specific component
with the property that all components that are not in its
dependencies depend on it. As a result there is a lot of time
spent on mappings in the preconditioning phase.

Turning to the destiffened AND-Gate, we observe that the
time spent computing the polynomial during Picard iteration
is significantly larger with composition. We conjecture this
is the case because, in our implementation, each Picard
operator iteration for the system variables in some com-
ponent makes use of the final most-complex form of the
polynomials for other system variables that these ones im-
mediately depend on. In contrast, in the non-compositional
Picard iterations, the polynomials of all system variables are
refined in lock-step together, so the polynomial computations
are simpler. This design choice in our implementation is not
essential; it is possible in a compositional scheme for the



iterations for every system variable to advance together. We
will investigate this in future work.

Finally, we can see that composition yields significant per-
formance gains on the AND-OR-Gate model, with the fully
compositional approach taking less than 20% of the time of
the non-compositional method. This can be explained by
the fact that most of the system can be partitioned into
two independent parts which are particularly suitable for
composition4 on the integration phase. These independent
system share a key characteristic with the linearly dependent
system in that there are a high number of components with
many dependencies, which results in a performance hit for
compositional preconditioning.

VI. CONCLUSION

We have presented a compositional approach for Taylor
model based validated integration. Through an implementa-
tion in the Flow* tool, we have observed that our composi-
tional approach yields significant performance gains in the
analysis of some compositional biological systems. These
improvements are mostly in the ‘integration’ phase, but we
also observe improvements during the preconditioning phase
in some cases of identity preconditioning. We find these
results promising and plan to continue this work in the
following two directions: (i) adapting compositional versions
of more preconditioning methods, and (ii) relaxing some
restrictions so that the method is applicable to a wider class
of continuous systems.
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