
The Polylog-Time Hierarchy Captured by
Restricted Second-Order Logic
Flavio Ferrarotti
Software Competence Center Hagenberg, Hagenberg, Austria
flavio.ferrarotti@scch.at

https://orcid.org/0000-0003-2278-8233

Senén González
Software Competence Center Hagenberg, Hagenberg, Austria
senen.gonzalez@scch.at

Klaus-Dieter Schewe
Christian-Doppler Laboratory for Client-Centric Cloud Computing, Linz, Austria
kdschewe@acm.org

José María Turull-Torres
Universidad Nacional de La Matanza, Buenos Aires, Argentina
jturull@unlam.edu.ar

Abstract
Let SOplog denote the restriction of second-order logic, where second-order quantification ranges
over relations of size at most poly-logarithmic in the size of the structure. In this article we
investigate the problem, which Turing machine complexity class is captured by Boolean queries
over ordered relational structures that can be expressed in this logic. For this we define a
hierarchy of fragments Σplog

m (and Πplog
m) defined by formulae with alternating blocks of existential

and universal second-order quantifiers in quantifier-prenex normal form. We first show that the
existential fragment Σplog

1 captures NPolyLogTime, i.e. the class of Boolean queries that can
be accepted by a non-deterministic Turing machine with random access to the input in time
O((logn)k) for some k ≥ 0. Using alternating Turing machines with random access input allows
us to characterise also the fragments Σplog

m (and Πplog
m) as those Boolean queries with at most m

alternating blocks of second-order quantifiers that are accepted by an alternating Turing machine.
Consequently, SOplog captures the whole poly-logarithmic time hierarchy. We demonstrate the
relevance of this logic and complexity class by several problems in database theory.

2012 ACM Subject Classification Theory of computation → Finite Model Theory

Keywords and phrases Expressive power, Second order logic, Descriptive complexity

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

Funding The research reported in this paper results from the project Higher-Order Logics and
Structures supported by the Austrian Science Fund (FWF: [I2420-N31]).

1 Introduction

According to Immerman, the credo of descriptive complexity theory is that “the computational
complexity of all problems in Computer Science can be understood via the complexity of
their logical descriptions” [17, p.5]. Starting from Fagin’s fundamental result [8] that the
existential fragment SO∃ of second-order logic over finite relational structures captures all
decision problems that are accepted by a non-deterministic Turing machine in polynomial

© Flavio Ferrarotti, Senén González, K.-D. Schewe and José María Turull-Torres;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:1

80
6.

07
12

7v
1

 [
cs

.L
O

]
 1

9
Ju

n
20

18

mailto:flavio.ferrarotti@scch.at
https://orcid.org/0000-0003-2278-8233
mailto:senen.gonzalez@scch.at
mailto:kdschewe@acm.org
mailto:jturull@unlam.edu.ar
http://dx.doi.org/10.4230/LIPIcs.CVIT.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 The Polylog-Time Hierarchy Captured by Restricted Second-Order Logic

time—in other words: SO∃ captures the complexity class NP—many more connections
between logics and Turing complexity classes have been discovered (see e.g. the monographs
by Immerman [17] and Libkin [23] or the collection [12]). The polynomial time hierarchy is
captured by full second-order logic SO over finite relational structures [25], but it is unknown,
whether there exists a logic capturing the complexity class P.

In order to understand the gap between P and NP a lot of research has been dedicated
to extensions of first-order logic. For instance, adding transitive closure to first-order logic
defines the logic FO[TC], which captures NLOGSPACE [17, p.150]. Blass, Gurevich and
Shelah investigate the choiceless fragment of P [3] using Abstract State Machines [4]. They
present a logic that expresses all properties expressible in any other P logic in the literature,
but does does not capture all of P.

The project Higher-Order Logics and Structures is dedicated to a somehow inverse
approach, the investigation of semantically restricted higher-order logics over finite structures
and their relationship to Turing complexity. The logic SOω introduced by Dawar in [6]
and the related logic SOF introduced in [13], respectively, provide the main background
for the theoretical line of work in this direction. Both logics restrict the interpretation of
second-order quantifiers to relations closed under equivalence of types of the tuples in the
given relational structure. Through the study of different semantic restrictions over the
existential second-order logic with second-order quantification restricted to binary relations,
many interesting results regarding the properties of the class of problems expressible in this
logic (known as binary NP) were established [7]. Another relevant example of a semantic
restriction over existential second-order logic can be found in [21].

The expressive power of higher-order logics (beyond second-order) on finite structures
has been studied, among a few others, by Kuper and Vardi [20], by Leivant [22] and by Hull
and Su [16]. However, the exact characterization of each prenex fragment of higher-order
logics (in terms of oracle machines) over finite structures is more recent and it is due to
Hella and Turull Torres [14, 15]. Independently, Kolodziejczyk [18, 19] characterized the
prenex fragments of higher-order logic in terms of alternating Turing machines, but taking
also into account the arity of the higher-order variables. Starting from studies about the
expressiveness of restricted higher-order logics in [10] and fragments on higher-order logics
that collapse to second-order [11, 9], all of which defining complexity classes that include NP,
the question comes up, which restrictions to SO give rise to meaningful complexity classes.

1.1 Main Contributions
In this paper we concentrate on complexity classes inside POLYLOG-SPACE. Analogous
to the polynomial time hierarchy inside PSPACE we investigate a poly-logarithmic time
hierarchy PLH, where Σ̃plog

1 is defined by NPolyLogTime capturing all decision problems
that can be accepted by a non-deterministic Turing machine in time O((logn)k) for some
k ≥ 0, where n is the size of the input. In order to be able to deal with the sublinear time
constraint random access to the input is assumed. Higher complexity classes Σ̃plog

m (and
Π̃plog
m) in the hierarchy are defined analogously using alternating Turing machines with a

bound m on the alternations.
In the same spirit we define the logic SOplog, which denotes the restriction of second-order

logic, where second-order quantification ranges over relations of size at most poly-logarithmic
in the size of the structure. A hierarchy of fragments Σplog

m (and Πplog
m) is then defined

by formulae with alternating blocks of existential and universal second-order quantifiers in
quantifier-prenex normal form. We first show that the existential fragment Σplog

1 captures
NPolyLogTime = Σ̃plog

1 , i.e. the class of Boolean queries that can be accepted by a non-

F. Ferrarotti, S. Gonzáles, K.-D. Schewe and J. M. Turull-Torres 23:3

deterministic Turing machine with random access to the input in time O((logn)k) for some
k ≥ 0. Using alternating Turing machines with random access input allows us to characterise
also the fragments Σplog

m (and Πplog
m) as those Boolean queries with at most m alternating

blocks of second-order quantifiers that are accepted by an alternating Turing machine. That
is, we obtain Σplog

m = Σ̃plog
m (and Πplog

m = Π̃plog
m). Consequently, SOplog captures the whole

poly-logarithmic time hierarchy PLH.

1.2 Related Work
The logic SOplog is similar to the restricted second-order logic (let us denote it as SOr)
defined by David A. Mix Barrington in [2]. He uses SOr to characterize a class of families of
circuits qAC 0, showing1 that the class of Boolean queries computable by DTIME[(logn)O(1)]
DCL-uniform families of Boolean circuits of unbounded fan-in, size 2(logn)O(1) and depth
O(1), coincides with the class of Boolean queries expressible in SOr.

There is a well known result ([17], Theorem 5.22) which shows that the class of first-
order uniform families of Boolean circuits of unbounded fan-in, size nO(1) and depth O(1),
coincides with the class of languages ATIME[logn,O(1)] that are accepted by random-access
alternating Turing machines that make at most logn steps and at most O(1) alternations
between existential and universal states. The intuitive idea is that as alternating Turing
machines have bounded fan-out in their computation trees, to implement an AND (OR)
gate of unbounded fan-in, a full balanced tree of depth logarithmic in the size of the
circuits, of universal (existential) states is needed. Then it appears as natural that qAC0

coincides with the whole poly-logarithmic time hierarchy PLH as defined in this paper, since
PLH = ATIME[(logn)O(1), O(1)] and (logn)O(1) is the logarithm of the size 2(logn)O(1) of
the circuits in qAC0.

Then the fact that SOplog captures the whole class PLH could also be seen as a corollary
of Barrington’s theorem in [2] (see Section 3, page 89). This however does not applies to our
main results, i.e., the capture of NPolyLogTime by the existential fragment of SOplog and the
one-to-one correspondence between the prenex fragments of SOplog and the corresponding
levels of PLH. The critical difference between Barrington’s SOr logic and SOplog is that we
impose a restriction in the first-order logic sub-formulae, so that the universal first-order
quantifier is only allowed to range over sub-domains of polylog size. This is a key feature
since otherwise the fist-order sub-formulae of the Σplog

m (and Πplog
m) fragments of SOplog would

need at least linear time to be evaluated. Of course, Barrington does not need to define such
constraint because he always speaks of the whole class PLH, and we show indeed that for
every first-order logic formula there is an equivalent SOplog formula.

It is not a trivial task to establish an exact correspondence between the levels Σ̃plog
m of

the polylog-time hierarchy PLH and sub-classes of families of circuits in qAC 0. On this
regard, we have explored the relationship with the sub-classes qAC 0

m of families of circuits
in qAC 0 where the path from an input gate to the output gate with the maximum number
of alternated gates of unbounded fan-in of type AND and OR in the circuits is m. Let us
denote as ∃qAC0

m (∀qAC0
m) the sub-class of qAC0

m where the output gate is of type OR

1 The result in [2] is actually more general, allowing any set of Boolean functions F of nO(1) inputs
complying with a padding property and containing the functions OR and AND. The restricted second-
order logic is defined by extending first-order logic with a second-order quantifier Qf for each f ∈ F
which range over relations on the sub-domain {1, . . . , log n}, where n is the size of the interpreting
structure. The case related to our result is when F = {OR, AND}, which gives raise to restricted
existential and universal second-order quantifiers.

CVIT 2016

23:4 The Polylog-Time Hierarchy Captured by Restricted Second-Order Logic

(AND). We were able to show that:
i. ∃qAC0

m ⊆ Σ̃plog
m , and ∀qAC0

m ⊆ Σ̃plog
m+1 for all m ≥ 1.

ii. If t, k ≥ 1, ψ ∈ Σ1,plog
t , the first-order sub-formula ϕ of ψ belongs to Σ0

k and the
vocabulary of ψ includes the BIT predicate, then there is a family Cψ of Boolean circuits
in ∃qAC0

t+k that computes the Boolean query expressed by ψ.
Sketches of the proofs of (i) and (ii) are included in Appendix A (see Lemmas 10 and 11,
respectively). Whether the converse of these results hold or not is still open.

1.3 Organization
We reach our results by following an inductive itinerary. After presenting some preliminaries
in Section 2, we introduce the logic SOplog in Section 3. We do this in a comprehensive
way, following our research program in the line of restricting sizes or other properties of
valuating relations in higher-order logics. We give examples of natural queries expressible
in SOplog, such as the classes DNFSAT of satisfiable propositional formulas in disjunctive
normal form and CNFTAUT of propositional tautologies in conjunctive normal form, both
defined in as early as 1971 ([5]). The expression of such queries in SOplog can in general be
done by means of relatively simple and elegant formulae, despite the restriction we impose in
the universal first-order quantification. This is not fortuitous, but the consequence of using
in the definition of SOplog a more relaxed notion of second-order quantification than that
used by Barrington in the definition of SOr. Indeed, the second-order quantifiers in SOplog

range over arbitrary relations of polylog size on the number of elements of the domain, not
just over relations defined on the set formed by the first logn elements of that domain as in
SOr. The descriptive complexity of SOplog is not increased by this more liberal definition of
polylog restricted second-order quantifiers. The fragments Σplog

m and Πplog
m of formulae in

quantifier-prenex normal form are defined using the classical approach in second-order logic,
showing that every SOplog formula can be written in this normal form. This forms the basis
for the definition of the hierarchy inside SOplog.

Section 4 shows how the logic captures the poly-logarithmically bounded binary arithmetics
necessary to prove our main results.

In Section 5 we define a non-deterministic Turing machine inspired in the random access
deterministic and alternating Turing machines used in [24], as well as the corresponding
complexity class NPolyLogTime and the levels of the implied polylog-time hierarchy PLH
inside POLYLOG-SPACE as indicated above.

Section 6 contains our main results. First we give a detailed, constructive proof of
the fact that the existential fragment of SOplog, i.e. Σplog

1 , captures the complexity class
NPolyLogTime. This part is the most challenging since, as pointed out earlier, it requires
the use of a restricted form of first-order universal quantification. After that, we follow the
inductive path and prove the expressive power of the fragments Σplog

m and Πplog
m , for everym ≥

1, and prove that each layer is characterized by a random-access alternating Turing machine
with polylog time and m alternations. The fact that PLH = ATIME[(logn)O(1), O(1)] =
SOplog follows as a simple corollary.

We conclude the paper with a brief summary and outlook in Section 7.

2 Preliminaries

Unless otherwise stated, we work with ordered finite structures and assume that all vocabular-
ies include the relation and constant symbols: ≤, SUCC, BIT, 0, 1, logn and max. In every
structure A, ≤ is interpreted as a total ordering of the domain A and SUCC is interpreted

F. Ferrarotti, S. Gonzáles, K.-D. Schewe and J. M. Turull-Torres 23:5

by the successor relation corresponding to the ≤A ordering. The constant symbols 0, 1 and
max are in turn interpreted as the minimum, second and maximum elements under the ≤A

ordering and the constant logn as dlog2 |A|e. By passing to an isomorphic copy, we assume
that A is the set {0, 1, . . . , n− 1} of natural numbers less than n, where n is the cardinality
|A| of A. Then BIT is interpreted by the following binary relation:

BITA = {(i, j) ∈ A2 | Bit j in the binary representation of i is 1}.

We assume that all structures have at least two elements. This results in a cleaner presentation,
avoiding the trivial case of structures with only one element which would satisfy 0 = 1. In
this paper, logn always refers to the binary logarithm of n, i.e. log2 n. We write logk n as a
shorthand for (dlogne)k and finally log n − 1 as z such as SUCC(z, logn).

3 SOplog: A Restricted Second-Order Logic

We define SOplog as the restricted second-order logic obtained by extending existential first-
order logic with (1) universal and existential second-order quantifiers that are restricted to
range over relations of poly-logarithmic size in the size of the structure, and (2) universal
first-order quantifiers that are restricted to range over the tuples of such poly-logarithmic
size relations.

I Definition 1 (Syntax of SOplog). firstFor every r≥1 and k≥0, the language of SOplog

extends the language of first-order logic with countably many second-order variables Xr,logk

1 ,
Xr,logk

2 , . . . of arity r and exponent k. The set of well-formed SOplog-formulae (wff) of
vocabulary σ is inductively defined as follows:
i. Every well-formed formula of vocabulary σ in the existential fragment of first-order logic

with equality is a wff.
ii. If Xr,logk is a second-order variable and t1, . . . , tr are first-order terms, then both

Xr,logk (t1, . . . , tr) and ¬Xr,logk (t1, . . . , tr) are wff.
iii. If ϕ and ψ are wff, then (ϕ ∧ ψ) and (ϕ ∨ ψ) are wff.
iv. If ϕ is a wff, Xr,logk is a second-order variable and x̄ is an r-tuple of first-order variables,

then ∀x̄(Xr,logk (x̄)→ ϕ) is a wff.
v. If ϕ is a wff and x is a first-order variables, then ∃xϕ is a wff.
vi. If ϕ is an SOplog-formula and Xr,logk is a second-order variable, then both ∃Xr,logk

ϕ

and ∀Xr,logk

ϕ are wff’s.

Note that the first-order terms ti in these rules are either first-order variables x1, x2, . . .

or constant symbols; we do not consider function symbols. Whenever the arity is clear from
the context, we write X logk instead of Xr,logk .

I Definition 2 (Semantics of SOplog). Let A be a σ-structure where |A| = n ≥ 2. A valuation
over A is any function val which assigns appropriate values to all first- and second-order
variables and satisfies the following constraints:

If x is a first-order variable then val(x) ∈ A.
If Xr,logk is a second-order variable, then

val(Xr,logk

) ∈ {R ⊆ Ar | |R| ≤ (dlogne)k}.

As usual, we say that a valuation val is V -equivalent to a valuation val ′ if val(V ′) = val ′(V ′)
for all variables V ′ other than V .

SOplog extends the notion of satisfaction of first-order logic, with the following rules:

CVIT 2016

23:6 The Polylog-Time Hierarchy Captured by Restricted Second-Order Logic

A, val |= Xr,logk (x1, . . . , xr) iff (val(x1), . . . , val(xr)) ∈ val(Xr,logk).
A, val |= ¬Xr,logk (x1, . . . , xr) iff (val(x1), . . . , val(xr)) 6∈ val(Xr,logk).
A, val |= ∃Xr,logk (ϕ) iff there is a valuation val ′ which is Xr,logk -equivalent to val such
that A, val ′ |= ϕ.
A, val |= ∀Xr,logk (ϕ) iff, for all valuations val ′ which are Xr,logk -equivalent to val, it
holds that A, val ′ |= ϕ.

I Remark. The standard (unbounded) universal quantification of first-order logic formulae of
the form ∀xϕ can be expressed in SOplog by formulae of the form ∀X log0∀x(X log0(x)→ ϕ).
Thus, even though SOplog only allows a restricted form of universal first-order quantification,
it can nevertheless express every first-order query.

We denote by Σplog
m , where m ≥ 1, the class of SOplog-formulae of the form:

∃X logk11

11 · · · ∃X logk1s1
1s1

∀X logk21

21 · · · ∀X logk2s2
2s2

· · ·QX logkm1

m1 · · ·QX logkmsm

msm
ψ,

where Q is either ∃ or ∀ depending on whether m odd or even, respectively, and ψ is an
SOplog-formula free of second-order quantifiers. Analogously, we denote by Πplog

m the class of
SOplog-formulae of the form:

∀X logk11

11 · · · ∀X logk1s1
1s1

∃X logk21

21 · · · ∃X logk2s2
2s2

· · ·QX logkm1

m1 · · ·QX logkmsm

msm
ψ.

We say that an SOplog-formula is in Skolem normal form (SNF aka quantifier prenex
normal form) if it belongs to either Σplog

m or Πplog
m for some m ≥ 1.

I Lemma 3. For every SOplog-formula ϕ, there is an equivalent SOplog-formula ϕ′ that is
in SNF.

The straightforward proof is given in Appendix B.

3.1 Examples of Queries in SOplog

We start with a simple, but useful example. Let X and Y be SOplog variables of the form
Xr1,logk and Y r2,logk . The following Σplog

1 formula, denoted as |X| ≤ |Y |, express that the
cardinality of (the relation assigned by the current valuation of) X is less than or equal to
that of Y .
∃R
(
∀x̄
(
X(x̄)→ ∃ȳ

(
Y (ȳ) ∧R(x̄, ȳ) ∧ ∀z̄(X(z̄)→ (z̄ 6=x̄→ ¬R(z̄, ȳ)))

)))
,

where R is an SOplog variable of arity r1 + r2 and exponent k. We write |X|=|Y | to denote
|X|≤|Y | ∧ |Y |≤|X|.

Let G = (V,E) be an n-node undirected graph. The following sentence expresses a
poly-logarithmically bounded version of the clique NP-complete problem. It holds iff G

contains a clique of size dlognek.

∃IS
(
DEFk(I)∧ |S|=|I| ∧ ∀x

(
S(x)→(V (x)∧∀y(S(y)→ (x 6= y → (E(x, y)∧E(y, x)))))

))
Other bounded versions of classical Boolean NP-complete problems that are easily expressible
in Σplog

1 are for instance to decide whether G has an induced subgraph of size dlognek that
is 3-colourable, or whether a G has an induced subgraph which is isomorphic to another
given graph of at most polylog size w.r.t. the size of G.
I Remark. Although possible, it is much more complex and cumbersome to write these
examples of queries in Barrington’s restricted second-order logic SOr. For instance we cannot

F. Ferrarotti, S. Gonzáles, K.-D. Schewe and J. M. Turull-Torres 23:7

directly express, as we do in the SOplog-formula that defines the poly-logarithmically bounded
version of the clique problem, that there is a set S of arbitrary nodes of G (where S is of size
dlognek) such that the sub-graph induced by S in G is a clique. To do that in SOr we would
need to define instead a set of arbitrary binary numbers, which would need to be encoded
into a relation of arity k + 2 defined on the sub-domain {1, . . . , logn}, and then use BIT to
check whether the nodes of G corresponding to these binary numbers induce a sub-graph of
G which is a clique.

The class DNFSAT of satisfiable propositional formulas in disjunctive normal form is
an example of a natural problem expressible in SOplog. In the standard encoding of DNF
formulae as word models of alphabet σ = {(,),∧,∨,¬, 0, 1, X}, DNFSAT is decidable in
P [5]. In this encoding, the input formula is a disjunction of arbitrarily many clauses enclosed
in pairs of matching parenthesis. Each clause is the conjunction of an arbitrary number of
literals. Each literal is a variable of the form Xw, where w ∈ {0, 1}∗, possibly preceded by a
negation symbol. Obviously, the complement NODNFSAT of DNFSAT is also in P. In Πplog

2
NODNFSAT can be defined by a sentence stating that for every clause there is a pair of
complementary literals. Every clause is logically defined by a pair of matching parentheses
such that there is no parenthesis in between. A pair of complementary literals is defined by
a bijection (of size < logn) between the substrings that encode two literals, which preserve
the binary numbers and such that exactly one of them is negated. The actual formula Πplog

2
is included in Appendix C. Similarly, DNFSAT can be defined Σplog

2 by a sentence stating
that there is a clause that does not have a pair of complementary literals.

4 Bounded Binary Arithmetic Operations in Σplog
1

We define Σplog
1 -formulae that describe the basic (bounded) arithmetic operations of sum,

multiplication, division and modulo among binary positive integers between 0 and 2dlognek−1
for some fixed k ≥ 1. These formulae are latter required for proving our main result regarding
the expressive power of the prenex fragments of SOplog.

Without loss of generality we assume that the size n of the structures in which the
formulae are evaluated is at least 3. This simplifies the presentation avoiding the special
case in which dlogne = 1. In our approach, binary numbers between 0 and d2(logn)ke − 1 are
represented by means of (SOplog) relations.

I Definition 4. Let b = b0 · · · bl be a binary number, where b0 and bl are the least and
most significant bits of b, respectively, and l ≤ dlognek. Let B = {0, . . . , dlogne − 1}. The
relation Rb encodes the binary number b if the following holds: (a0, . . . , ak−1, ak) ∈ Rb iff
(a0, . . . , ak−1) ∈ Bk is the i-th tuple in the increasing numerical order (numbers read left to
right) of Bk, ak = 0 if i > l, and ak = bi if 0 ≤ i ≤ l.

Note that the size of Rb is exactly dlognek, and thus Rb is a valid valuation for SOplog

variables of the form Xk+1,logk . The numerical order relation ≤k among k-tuples can be
defined as follows:

x̄ ≤1 ȳ ≡ x0 ≤ y0 and
x̄ ≤k ȳ ≡ (x0 ≤ y0 ∧ x0 6= y0) ∨ (x0 = y0 ∧ (x1, . . . , xk−1) ≤k−1 (y1, . . . , yk−1)) (1)

In our approach, we need a successor relation SUCCk among the k-tuples in Bk, where
B is the set of integers between 0 and dlogne − 1 (cf. Definition 4).

SUCC1(x̄, ȳ) ≡ y0 ≤ logn ∧ y0 6= logn ∧ SUCC(x0, y0) and

CVIT 2016

23:8 The Polylog-Time Hierarchy Captured by Restricted Second-Order Logic

SUCCk(x̄, ȳ) ≡ y0 ≤ logn ∧ y0 6= logn∧
[(y0 = x0∧SUCCk−1(x1, . . . , xk−1, y1, . . . , yk−1)) ∨ (SUCC(x0, y0)∧
SUCC(x1,logn) ∧ · · · ∧ SUCC(xk−1, logn) ∧ y1 = 0 ∧ · · · ∧ yk−1 = 0)] (2)

It is useful to define an auxiliary predicate DEFk(I), where I is a second-order variable
of arity and exponent k, such that A, val |= DEFk(I) if val(I) = Bk. Please, note that we
abuse the notation, writing for instance x̄ = 0̄ instead of x0 = 0 ∧ · · · ∧ xk−1 = 0. Such
abuses of notation should nevertheless be clear from the context.

DEFk(I) ≡ ∃x̄(x̄ = 0̄ ∧ I(x̄)) ∧ ∀ȳ(I(ȳ)→ ((SUCC(y0, logn) ∧ · · ·
∧ SUCC(yk, logn)) ∨ ∃z̄(SUCCk(ȳ, z̄) ∧ I(z̄)))) (3)

The formula BINk(X), where X is a second-order variable of arity k + 1 and exponent k,
expresses that X encodes (as per Definition 4) a binary number between 0 and 2dlognek − 1.

BINk(X) ≡ ∃I(DEFk(I) ∧ ∀x̄(I(x̄)→ (X(x̄, 0) ∨X(x̄, 1)))) (4)

As X is of exponent k, the semantics of SOplog determines that the number of tuples in
any valid valuation of X is always bounded by dlognek. It is then clear that the previous
formula is equivalent to

∃I(DEFk(I) ∧ ∀x̄(I(x̄)→ ((X(x̄, 0) ∧ ¬X(x̄, 1)) ∨ (X(x̄, 1) ∧ ¬X(x̄, 0))))).

In the following, BINk(X, I) denotes the sub-formula ∀x̄(I(x̄)→ (X(x̄, 0) ∨X(x̄, 1))) of
BINk(X).

The comparison relations X =k Y and X <k Y (X is strictly smaller than Y) among
binary numbers encoded as second-order relations are defined as follows:

X =k Y ≡ ∃I
(
DEFk(I) ∧ BINk(X, I) ∧ BINk(Y, I) ∧=k(X,Y, I)

)
, (5)

where =k(X,Y, I) ≡ ∀x̄
(
I(x̄)→ ∃z(X(x̄, z) ∧ Y (x̄, z))

)
.

X <k Y ≡ ∃I
(
DEFk(I) ∧ BINk(X, I) ∧ BINk(Y, I) ∧<k(X,Y, I)

)
, (6)

where <k(X,Y, I) ≡ ∃x̄
(
I(x̄)∧X(x̄, 0)∧Y (x̄, 1)∧∀ȳ

(
I(ȳ)→ (ȳ ≤k x̄∨∃z(X(ȳ, z)∧Y (ȳ, z)))

))
.

Sometimes we need to determine if the binary number encoded in (the current valuation
of) a second-order variable X of arity k + 1 and exponent k corresponds to the binary
representation of an individual x from the domain. The following BNUMk(X,x) formula
holds whenever that is the case.

BNUMk(X,x) ≡ ∃I
(
DEFk(I) ∧ BINk(X, I)∧

∀ȳ
(
I(ȳ)→

(
(y0 = 0 ∧ · · · ∧ yk−2 = 0 ∧ (X(ȳ, 1)↔ BIT (x, yk−1)))∨
(¬(y0 = 0 ∧ · · · ∧ yk−2 = 0) ∧X(ȳ, 0))

)))
(7)

We use BNUMk(X,x, I) to denote the sub-formula ∀ȳ(I(ȳ) → ((y0 = 0 ∧ · · · ∧ yk−2 =
0 ∧ (X(ȳ, 1)↔ BIT (x, yk−1))) ∨ (¬(y0 = 0 ∧ · · · ∧ yk−2 = 0) ∧X(ȳ, 0)))) of BNUMk(X,x).

We now proceed to define Σplog
1 -formulae that describe basic (bounded) arithmetic

operations among binary numbers. We start with BSUMk(X,Y, Z), where X, Y and Z are
free-variables of arity k + 1 and exponent k. This formula holds if (the current valuation of)
X, Y and Z represent binary numbers between 0 and 2dlognek − 1, and X + Y = Z. The
second-order variables I and W in the formula are of arity k and k + 1, respectively, and

F. Ferrarotti, S. Gonzáles, K.-D. Schewe and J. M. Turull-Torres 23:9

both have exponent k. We use the traditional carry method, bookkeeping the carried digits
in W .

BSUMk(X,Y, Z) ≡
∃IW

(
DEFk(I) ∧ BINk(X, I) ∧ BINk(Y, I) ∧ BINk(Z, I) ∧ BINk(W, I)∧
W (0̄, 0) ∧ (<k(X,Z, I) ∨=k(X,Z, I)) ∧ (<k(Y,Z, I) ∨=k(Y, Z, I))∧
∀x̄(I(x̄)→ ((x̄ = 0̄ ∧ ϕ(X,Y, Z))∨

(∃ȳ(SUCCk(ȳ, x̄) ∧ ψ(x̄, ȳ,W,X, Y)) ∧ α(x̄,W,X, Y, Z))))
)

(8)

where ϕ holds if the value of the first bit of Z is consistent with the sum of the first bits of
X and Y . ψ holds if the value of the bit in position x̄ of W is consistent with the sum of the
values of the bits in the position preceding x̄ of W,X and Y . Finally, α holds if the value of
the bit in position x̄ of Z is consistent with the sum of the corresponding bit values of W,X
and Z. For reference, see the actual ϕ, ψ and α formulae in Appendix D.

For the operation of (bounded) multiplication of binary numbers, we define a formula
BMULTk(X,Y, Z), where X, Y and Z are free-variables of arity k+ 1 and exponent k. This
formula holds if (the current valuations of) X, Y and Z represent binary numbers between 0
and 2dlognek − 1, and X · Y = Z.

The strategy to express the multiplication consists on keeping track of the (partial) sums
of the partial products by means of a relation R ⊂ Bk ×Bk × {0, 1} of size dlogne2k (recall
that B = {0, . . . , dlogne− 1}). We take X to be the multiplicand and Y to be the multiplier.
Let ā ∈ Bk be the i-th tuple in the numerical order of Bk, let R|ā denote the restriction of
R to those tuples starting with ā, i.e., R|ā = {(b̄, c) | (ā, b̄, c) ∈ R}, and let pred(ā) denote
the immediate predecessor of ā in the numerical order of Bk, then the following holds:

a. If ā = 0̄ and Y (ā, 0), then R|ā encodes the binary number 0.
b. If ā = 0̄ and Y (ā, 1), then R|ā = X.
c. If ā 6= 0̄ and Y (ā, 0), then R|ā = R|pred(ā).
d. If ā 6= 0̄ and Y (ā, 1), then (the binary number encoded by) R|ā results from adding

R|pred(ā) to the (i− 1)-bits arithmetic left-shift of X.

BMULTk(X,Y, Z) holds if Z = R|(a0,...,ak−1) for a0 = · · · = ak−1 = dlogne−1. Following
this strategy, it is not difficult to write the actual formula for BMULTk(X,Y, Z). See
formula (17) in Appendix D.

The operations of division and modulo are expressed by BDIVk(X,Y, Z,M), where X,
Y , Z and M are free-variables of arity k + 1 and exponent k. This formula holds if Z is
the quotient and M the modulo (remainder) of the euclidean division of X by Y , i.e., if
Y · Z +M = X. See formula (19) in Appendix D.

5 The Poly-logarithmic Time Hierarchy

The sequential access that Turing machines have to their tapes makes it impossible to
compute anything in sub-linear time. Therefore, logarithmic time complexity classes are
usually studied using models of computation that have random access to their input. As
this also applies to the poly-logarithmic complexity classes studied in this paper, we adopt
a Turing machine model that has a random access read-only input, similar to the log-time
Turing machine in [24].

A random-access Turing machine is a multi-tape Turing machine with (1) a read-only
(random access) input of length n+ 1, (2) a fixed number of read-write working tapes, and
(3) a read-write input address-tape of length dlogne.

CVIT 2016

23:10 The Polylog-Time Hierarchy Captured by Restricted Second-Order Logic

Every cell of the input as well as every cell of the address-tape contains either 0 or 1
with the only exception of the (n+ 1)st cell of the input, which is assumed to contain the
endmark /. In each step the binary number in the address-tape either defines the cell of the
input that is read or if this number exceeds n, then the (n+ 1)st cell containing / is read.

I Example 5. Let polylogCNFSAT be the class of satisfiable propositional formulae in
conjunctive normal form with c ≤ dlognek clauses, where n is the length of the formula.
Note that the formulae in polylogCNFSAT tend to have few clauses and many literals. We
define a random-access Turing machine M which decides polylogCNFSAT. The alphabet of
M is {0, 1,#,+,−}. The input formula is encoded in the input tape as a list of c ≤ dlognek
indices, each index being a binary number of length dlogne, followed by c clauses. For every
1 ≤ i ≤ c, the i-th index points to the first position in the i-th clause. Clauses start with
and are followed by a list of literals. Positive literals start with a +, negative with a −.
The + or − symbol of a literal is followed by the ID of the variable in binary. M proceeds as
follows: (1) Using binary search with the aid of the “out of range” response /, compute n
and dlogne. (2) Copy the indices to a working tape, counting the number of indices (clauses)
c. (3) Non-deterministically guess c input addresses a1, . . . , ac, i.e., guess c binary numbers
of length dlogne. (4) Using c 1-bit flags, check that each a1, . . . , ac address falls in the range
of a different clause. (5) Check that each a1, . . . , ac address points to an input symbol + or
−. (6) Copy the literals pointed by a1, . . . , ac to a working tape, checking that there are no
complementary literals. (7) Accept if all checks hold.

Let L be a language accepted by a random-access Turing machine M . Assume that for
some function f on the natural numbers, M makes at most O(f(n)) steps before accepting
an input of length n. If M is deterministic, then we write L ∈ DTIME[f(n)]. If M is
non-deterministic, then we write L ∈ NTIME[f(n)]. We define the classes of deterministic
and non-deterministic poly-logarithmic time computable problems as follows:

PolyLogTime =
⋃
k∈N

DTIME[logk n] NPolyLogTime =
⋃
k∈N

NTIME[logk n]

The non-deterministic random-access Turing machine in Example 5 clearly works in polylog-
time. Therefore, polylogCNFSAT ∈ NPolyLogTime.

In order to relate our logic SOplog to these Turing complexity classes we adhere to
the usual conventions concerning a binary encoding of finite structures [17]. Let σ =
{Rr1

1 , . . . , R
rp
p , c1, . . . , cq} be a vocabulary, and let A with A = {0, 1, . . . , n−1} be an ordered

structure of vocabulary σ. Each relation RA
i ⊆ Ari of A is encoded as a binary string

bin(RA
i) of length nri where 1 in a given position indicates that the corresponding tuple is

in RA
i . Likewise, each constant number cA

j is encoded as a binary string bin(cA
j) of length

dlogne. The encoding of the whole structure bin(A) is simply the concatenation of the
binary strings encodings its relations and constants:

bin(A) = bin(RA
1) · · · bin(RA

p) · bin(cA
1) · · · bin(cA

q).

The length n̂ = |bin(A)| of this string is nr1 + · · · + nrp + qdlogne, where n = |A|
denotes the size of the input structure A. Note that log n̂ ∈ O(dlogne), so NTIME[logk n̂] =
NTIME[logk n] (analogously for DTIME). Therefore, we will consider random-access Turing
machines, where the input is the encoding bin(A) of the structure A followed by the endmark
/.

In the present work our machine is also based in an alternating Turing machine. An
alternating Turing machine comes with a set of states Q that is partitioned into subset Q∃
and Q∀ of so-called existential and universal states. Then a configuration c is accepting iff

F. Ferrarotti, S. Gonzáles, K.-D. Schewe and J. M. Turull-Torres 23:11

c is in a final accepting state,
c is in an existential state and there exists a next accepting configuration, or
c is in a universal state, there exists a next configuration and all next configurations are
accepting.

In analogy to our definition above we can define a random-access alternating Turing
machine. The languages accepted by such a machine M , which starts in an existential
state and makes at most O(f(n)) steps before accepting an input of length n with at
most m alternations between existential and universal states, define the complexity class
ATIME[f(n),m]. Analogously, we define the complexity class ATIMEop[f(n),m] comprising
languages that are accepted by a random-access alternating Turing machine that starts in a
universal state and makes at most O(f(n)) steps before accepting an input of length n with
at most m alternations between universal and existential states. With this we define

Σ̃plog
m =

⋃
k∈N

ATIME[logk n,m] and Π̃plog
m =

⋃
k∈N

ATIMEop[logk n,m].

The poly-logarithmic time hierarchy is then defined as PLH =
⋃
m≥1 Σ̃plog

m . Note that
Σ̃plog

1 = NPolyLogTime holds.

I Remark. Note that a simulation of a NPolyLogTime Turing machine M by a deterministic
machine N requires checking all computations in the tree of computations of M . As
M works in time (logn)O(1), N requires time 2lognO(1) . This implies NPolyLogTime ⊆
DTIME(2lognO(1)), which is the complexity class called quasipolynomial time of the fastest
known algorithm for graph isomorphism [1], which further equals DTIME(nlognO(1))2.

6 Expressive power of the Quantifier-Prenex Fragments of SOplog

We say that a logic L captures the complexity class K iff the following holds:
For every L-sentence ϕ the language {bin(A) | A |= ϕ} is in K, and
For every property P of (binary encodings of) structures that can be decided with
complexity in K, there is a sentence ϕP of L such that A |= ϕP iff A has the property P .

Recall that we only consider ordered, finite structures A. Our main result is that SOplog

captures PLH, which we will prove in this section.

I Theorem 6. Over ordered structures with sucessor relation, BIT and constants for logn,
the minimum, second and maximum elements, Σplog

1 captures NPolyLogTime.

Proof. Part a. We first show Σplog
1 ⊆ NPolyLogT ime, i.e. a non-deterministic random

access Turing Machine M can evaluate every sentence φ in Σplog
1 in poly-logarithmic time.

Let φ = ∃Xr1,logk1

1 . . . ∃Xrm,logkm

m ϕ, where ϕ is a first-order formula with the restrictions
given in the definition of SOplog. Given a σ-structure A with |dom(A)| = n, M first guesses
values for Xr1,logk1

1 , . . . , X
rm,logk

m
m and then checks if ϕ holds. As val(Xri,logki

i) is a relation of
arity ri with at most logki n tuples, M has to guess ri ∗ (log(n))ki values in A, each of which
encoded in dlog(n)e bits. Thus, the machine has to generate E =

m∑
i=1

(
ri ∗ (log(n))ki+1

)
bits

2 This relationship appears quite natural in view of the well known relationship NP = NTIME(nO(1)) ⊆
DTIME(2nO(1)

) = EXPTIME.

CVIT 2016

23:12 The Polylog-Time Hierarchy Captured by Restricted Second-Order Logic

in total. As E ∈ O(dlognekmax+1), the generation of the values val(Xri,logki

i) requires time
in O(dlognek′) for some k′.

In order to check the validity of ϕ we distinguish two cases: (1) ϕ = ∃xψ, and (2)
ϕ = ∀x̄(Xr,logk (x̄)→ ψ).

Case (1). Here M first guesses x, for which at most dlogne steps are required. Then we
get the following cases for ψ:

If ψ is a first-order quantifier-free formula, then according to the proof of [17, Theorem
5.30] ϕ can be checked in O(log(n)) time. Thus, checking ϕ can be done in poly-logarithmic
time.
If ψ = ψ1 ∨ ψ2 (or ψ = ψ1 ∧ ψ2), then M has to check if ψ1 or ψ2 (or both, respectively)
holds, which requires at most the time for checking both ψ1 and ψ2. Thus, by induction
the checking of ϕ can be done in poly-logarithmic time.
If ψ is not an first-order quantifier-free formula, then by induction the checking of ψ can
be done in poly-logarithmic time, hence also the checking of ϕ.

Case (2). As M has already guessed a value for Xr,logk , it remains to check {ā/x̄}.ψ
for every element ā in this relation. The number of such tuples is in O(logk

′
n), and we get

the following cases:
If ψ is a first-order quantifier-free formula, a disjunction or a conjunction, then we can
use the same argument as in case (1).
If ψ is not an first-order quantifier-free formula, then by induction each check {ā/x̄}.ψ
can be done in poly-logarithmic time, say in O(log` n), hence also the checking of ϕ is
done in O(logk

′+` n) time.

Part b. Next we show NPolyLogTime ⊆ Σplog
1 . For this let M be a non-deterministic

random access Turing Machine that accepts a σ-structure A in O(logk n) steps. We may
assume that the input is encoded by the bitstring bin(A) of length dlog(n̂)e. Furthermore,
let the set of states be Q = {q0, . . . , qf}, where q0 is the initial state, qf is the only final
state, and in the initial state the header of the tapes are in position 0, the working tape is
empty and the index-tape is filled with zeros.

As M runs in time dlognek, it visits at most dlognek cells in the working tape. Thus,
we can model positions on the working tape and time by k-tuples p̄ and t̄, respectively.
Analogously, the length of the index tape is bound by dlognek

′
, so we can model the positions

in the index tape by k′-tuples d̄. We use auxiliary relations I and I ′ to capture k-tuples and
k′-tuples, respectively, over {0, . . . , dlogne}. We define those relations using DEFk(I) and
DEFk′(I ′) in the same way as in (3). As M works non-deterministically, it makes a choice
in every step. Without loss of generality we can assume that the choices are always binary,
which we capture by a relation C of arity k + k′ + 1; C(t̄, d̄, c) expresses that at time t̄ any
position d̄ in the index-tape has the value c ∈ {0, 1}, which denotes the two choices.

In order to construct a sentence in Σplog
1 that is satisfied by the structure A iff the input

bin(A) is accepted by M we first describe logically the operation of the random access Turing
machine M, then exploit the acceptance of bin(A) for at least one computation path.

We use predicates T0, T1, T2, where Ti(t̄, p̄) indicates that at time t̄ the working tape at
position p̄ contains i for i ∈ {0, 1} and the blank symbol for i = 2, respectively. The following
formulae express that the working tape is initially empty, and at any time a cell can only
contain one of the three possible symbols:

∀p̄ I(p̄)→ T2(0̄, p̄)

F. Ferrarotti, S. Gonzáles, K.-D. Schewe and J. M. Turull-Torres 23:13

∀t̄I(t̄)→ ∀p̄ I(p̄)→ (T0(t̄, p̄)→ ¬T1(t̄, p̄) ∧ ¬T2(t̄, p̄))
∀t̄I(t̄)→ ∀p̄ I(p̄)→ (T1(t̄, p̄)→ ¬T0(t̄, p̄) ∧ ¬T2(t̄, p̄))
∀t̄I(t̄)→ ∀p̄ I(p̄)→ (T2(t̄, p̄)→ ¬T0(t̄, p̄) ∧ ¬T1(t̄, p̄)) (9)

Then we use a predicate H with H(t̄, p̄) expressing that at time t̄ the header of the
working tape is in position p̄. This gives rise to the following formulae:

H(0̄, 0̄) ∀t̄I(t̄)→ ∃p̄(I(p̄) ∧H(t̄, p̄))
∀t̄I(t̄)→ ∀p̄ I(p̄)→ (H(t̄, p̄)→ ∀p̄′(I(p̄′)→ H(t̄, p̄′)→ p̄ = p̄′)) (10)

Predicates Si for i = 1, . . . , f are used to express that at time t̄ the machine M is in the
state qi ∈ Q, which using (1) gives rise to the formulae

S0(0̄) ∧ ∀t̄
(
I(t̄)→ (t̄ 6= 0̄→

∨
0≤i≤f

Si(t̄))
)
∧ ∃t̄f

(
∀t̄
(
I(t̄)→ t̄ ≤k t̄f

)
∧ Sf (t̄f)

)
∧

0≤i≤f
∀t̄
(
I(t̄)→

(
Si(t̄)→

∧
0≤j≤f,j 6=i

¬Sj(t̄)
))

(11)

The following formulae exploiting (2) describe the behaviour of M moving in every step
its header either to the right, to the left or not at all (which actually depends on the value
for c in C(t̄, d̄, c)):

∀t̄I(t̄) ∧ t̄ 6= 0̄ ∧H(t̄, 0̄)→ ∃t̄′, d̄′ (SUCCk(t̄′, t̄)∧
SUCCk(0̄, d̄′) ∧ (H(t̄′, 0̄) ∨H(t̄′, d̄′)))

∀t̄, d̄I(t̄) ∧ t̄ 6= 0̄ ∧ I ′(d̄) ∧H(t̄, d̄)→ (d̄ 6= 0̄ ∧ d̄ 6= last →
∃t̄′, d̄1, d̄2 (SUCCk(t̄′, t̄) ∧ SUCCk(d̄1, d̄) ∧ SUCCk(d̄, d̄2)∧

(H(t̄′, d̄1) ∨H(t̄′, d̄) ∨H(t̄′, d̄2)))
∀t̄I(t̄) ∧ t̄ 6= 0̄ ∧H(t̄, last)→ ∃t̄′, d̄′ (SUCCk(t̄′, t̄)∧

SUCCk(d̄′, last) ∧ (H(t̄′, last) ∨H(t̄′, d̄′))) (12)

Furthermore, we use predicates Li (i ∈ {0, 1, 2}) to describe that M reads at time t̄ the
value i (for i ∈ {0, 1}) or / for i = 2, respectively. As exactly one of these values is read, we
obtain the following formulae:

∀t̄ I(t̄)→ (L0(t̄) ∨ L1(t̄) ∨ L2(t̄)) ∀t̄ I(t̄)→ (L0(t̄)→ ¬L1(t̄) ∧ ¬L2(t̄))
∀t̄ I(t̄)→ (L1(t̄)→ ¬L0(t̄) ∧ ¬L2(t̄)) ∀t̄ I(t̄)→ (L2(t̄)→ ¬L0(t̄) ∧ ¬L1(t̄)) (13)

The conjunction of the formulae in (9)-(13) with all second-order variables existentially
quantified merely describes the operation of the Turing machine M. If M accepts the input
bin(A) for at least one computation path, i.e. for one sequence of choices, we can assume
without loss of generality that if at time t̄ with d̄ on the index-tape the bit c indicating the
choice equals the value read from the input, then this will lead to acceptance. Therefore, in
order to complete the construction of the required formula in Σplog

1 we need to express this
condition in our logic.

The bit M reads from the input corresponds to the binary encoding of the relations
and constants in the structure A. In order to detect, which tuple or which constant is
actually read, we require several auxiliary predicates. We use predicates Mi (i = 0, . . . , k′)
to represent the numbers ni, which leads to the formulae

BNUMk′(M0, 1, I ′), BNUMk′(M1,max, I ′) and BMULTk′(M1,Mi−1,Mi) for i ≥ 2 (14)

CVIT 2016

23:14 The Polylog-Time Hierarchy Captured by Restricted Second-Order Logic

For this we exploit the definitions in (7) and (17). Note that the latter one is a formula
that is not in SNF. In Section 4 following (17) we already showed how to turn such a formula
into a formula in Σplog

1 in SNF, which requires additional auxiliary second-order variables.
The same hold for several of the following formulae.

Next we use relations Pi (i = 0, . . . , p+ 1) representing the position in bin(A), where the
encoding of RA

i+1 for the relation Ri starts (for 0 ≤ i ≤ p − 1), the encoding of where the
constants cj (j = 1, . . . , q) starts (for i = p), and finally representing the length of bin(A)
(for i = p+ 1). As each constant requires dlogne bits we further use auxiliary relations Ni
(for i = 1, . . . , q) to represent i · dlogne, which we require to detect, which constant is read.
This leads to the following formulae (exploiting (7) and (8)):

BNUMk′(P0, 0, I ′) ,
∧

1≤i≤p
BSUMk′(Pi−1,Mri

, Pi) and BSUMk′(Pp, Nq, Pp+1)

BNUMk′(N1, logn, I ′) and
∧

1≤i≤q
BSUMk′(Ni−1, N1, Ni) (15)

Finally, we can express the acceptance condition linking the relation C to the input bin(A).
In order to ease the representation we use for fixed t̄ the shortcut Ct̄ with Ct̄(d̄, c)↔ C(t̄, d̄, c).
Likewise we use shortcuts with subscript t̄ for additional auxiliary predicates Di (i = 0, . . . , p),
Qi, Q′i, Q′′i and Q′′′i (i = 1, . . . , rmax) which we need for arithmetic operations on the
length of bin(A), which is represented by Pp+1. We also use ≤k′ (X,Y, I) as shortcut for
<k′ (X,Y, I)∨ =k′ (X,Y, I) defined in (5) and (6).

For fixed t̄ with I(t̄) the relation Ct̄ represents a position in the bitstring bin(A), which
is either at the end, within the substring encoding the constants cA

j , or within the substring
encoding the relation RA

i . The following three formulae (using (6), (7), (8), and (19)) with
fixed t̄ correspond to these cases:

<k′ (Pp+1, Ct̄, I
′)→ L2(t̄)

<k′ (Pp, Ct̄, I ′)∧ ≤k′ (Ct̄, Pp+1, I
′) ∧ BSUMk′(Pp, D0,t̄, Ct̄)∧

BDIVk′(D0,t̄, N1, Q1,t̄, Q
′
1,t̄)→ ∃xy

(
BNUMk′(Q1,t̄, x) ∧ BNUMk′(Q′1,t̄, y)∧

BIT(cx, y)↔L1(t̄)
)∧

1≤i≤p
<k′ (Pi−1, Ct̄, I

′)∧ ≤k′ (Ct̄, Pi, I ′) ∧ BSUMk′(Pi−1, Di,t̄, Ct̄)→

∃x̄

(∧
1≤j≤ri

(
BNUMk′(Q′′′j,t̄, xj) ∧ BDIVk′(Di,t̄,Mj , Qj,t̄, Q

′
j,t̄)

∧ BDIVk′(Qj,t̄,M1, Q
′′
j,t̄, Q

′′′
j,t̄)
)
∧((

L1(t̄))→ Ri(x̄)
)
∨
(
L0(t̄))→ ¬Ri(x̄)

)))
(16)

Note that in the second case Q1,t̄ represents an index j ∈ {1, . . . , q} and Q′1,t̄ represents the
read bit of the constant cA

j in bin(A). In the third case Di,t̄ represents the read position d
in the encoding on relation RA

i , which represents a particular tuple, for which we use Q′′′
j,t̄

to
determine every value of the tuple and depending of the read in Li(t̄) check if that particular
tuple is in the relation or not.

Finally, the sentence Ψ describing acceptance by M results from building the conjunction
of the formulae in (9)-(16), expanding the macros as shown in Section 4, which brings in

F. Ferrarotti, S. Gonzáles, K.-D. Schewe and J. M. Turull-Torres 23:15

additional second-order variables, and existentially quantifying all second-order variables.
Due to our construction we have A |= Ψ iff A is accepted by M. J

I Theorem 7. Over ordered structures with sucessor relation, BIT and constants for logn,
the minimum, second and maximum elements, Πplog

1 captures Π̃plog
1 .

I Theorem 8. Over ordered structures with sucessor relation, BIT and constants for logn,
the minimum, second and maximum elements, Σplog

m captures Σ̃plog
m and Πplog

m captures Π̃plog
m

for all m ≥ 1.

Sketches of the proofs of Theorems 7 and 8 will be given in Appendix E. With Theorem 8
the following corollary is a straightforward consequence of the definitions.

I Corollary 9. Over ordered structures with sucessor relation, BIT and constants for logn,
the minimum, second and maximum elements, SOplog captures the poly-logarithmic time
hierarchy PLH.

7 Conclusions

We investigated SOplog, a restriction of second-order logic, where second-order quantification
ranges over relations of poly-logarithmic size and first-order quantification is restricted to
the existential fragment of first-order logic plus universal quantification over variables in the
scope of a second-order variable. In this logic we defined the poly-logarithmic hierarchy PLH
using fragments Σplog

m (and Πplog
m) defined by formulae with alternating blocks of existential

and universal second-order quantifiers in quantifier-prenex normal form. We showed that
the existential fragment Σplog

1 captures NPolyLogTime, i.e. the class of Boolean queries that
can be accepted by a non-deterministic Turing machine with random access to the input
in time O(logk n) for some k ≥ 0. In general, Σplog

m captures the class of Boolean queries
that can be accepted by an alternating Turing machine with random access to the input in
time O(logk n) for some k ≥ 0 with at most m alternations between existential and universal
states. Thus, PLH is captured by SOplog.

For the proofs the restriction of first-order quantification is essential, but it implies that
we do not have closure under negation. As a consequence we do not have a characterisation
of the classes co-Σplog

m and co-Πplog
m . These consitute open problems. Furthermore, PLH

resides in the complexity class PolyLogSpace, which is known to be different from P, but it
is conjectured that PolyLogSpace and P are incomparable. Whether the inclusion of PLH in
PolyLogSpace is strict is another open problem.

The theory developed in this article and its proofs make intensive use of alternating Turing
machines with random access to the input. We observe that it appears awkward to talk
about poly-logarithmic time complexity, when actually an unbounded number of computation
branches have to be exploited in parallel. It appears more natural to refer directly to a
computation model that involves directly unbounded parallelism such as Abstract State
Machines that have already been explored in connection with the investigation of choiceless
polynomial time [3]. We also observe that a lot of the technical difficulties in the proofs result
from the binary encodings that are required in order to make logical structures accessible for
Turing machines. The question is, whether a different, more abstract treatment would help
to simplify the technically complicated proofs. These more general questions provide further
invitations for future research.

CVIT 2016

23:16 The Polylog-Time Hierarchy Captured by Restricted Second-Order Logic

References
1 László Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the forty-

eighth annual ACM symposium on Theory of Computing (STOC 2016), pages 684–697,
2016.

2 David A. Mix Barrington. Quasipolynomial size circuit classes. In Proceedings of the
Seventh Annual Structure in Complexity Theory Conference, Boston, Massachusetts, USA,
June 22-25, 1992, pages 86–93. IEEE Computer Society, 1992. URL: https://doi.org/
10.1109/SCT.1992.215383, doi:10.1109/SCT.1992.215383.

3 Andreas Blass, Yuri Gurevich, and Saharon Shelah. Choiceless polynomial time. Ann. Pure
Appl. Logic, 100(1-3):141–187, 1999.

4 E. Börger and R. F. Stärk. Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer, 2003.

5 Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the
Third Annual ACM Symposium on Theory of Computing, STOC ’71, pages 151–158, New
York, NY, USA, 1971. ACM. URL: http://doi.acm.org/10.1145/800157.805047, doi:
10.1145/800157.805047.

6 Anuj Dawar. A restricted second order logic for finite structures. Inf. Comput., 143(2):154–
174, 1998.

7 Arnaud Durand, Clemens Lautemann, and Thomas Schwentick. Subclasses of binary NP.
J. Log. Comput., 8(2):189–207, 1998.

8 Ronald Fagin. Contributions to Model Theory of Finite Structures. PhD thesis, U. C.
Berkeley, 1973.

9 Flavio Ferrarotti, Senén González, and José María Turull Torres. On fragments of higher
order logics that on finite structures collapse to second order. In Juliette Kennedy and
Ruy J. G. B. de Queiroz, editors, Logic, Language, Information, and Computation - 24th
International Workshop (WoLLIC 2017), volume 10388 of LNCS, pages 125–139. Springer,
2017.

10 Flavio Ferrarotti, Wei Ren, and José María Turull Torres. Expressing properties in
second- and third-order logic: hypercube graphs and SATQBF. Logic Journal of the IGPL,
22(2):355–386, 2014.

11 Flavio Ferrarotti, Loredana Tec, and José María Turull Torres. On higher order query lan-
guages which on relational databases collapse to second order logic. CoRR, abs/1612.03155,
2016. URL: http://arxiv.org/abs/1612.03155.

12 Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Maarten Marx, Joel Spencer, Moshe Y.
Vardi, Yde Venema, and Scott Weinstein. Finite Model Theory and Its Applications. Texts
in Theoretical Computer Science. An EATCS Series. Springer, 2007.

13 Alejandro L. Grosso and José María Turull Torres. A second-order logic in which variables
range over relations with complete first-order types. In Sergio F. Ochoa, Federico Meza,
Domingo Mery, and Claudio Cubillos, editors, SCCC, pages 270–279. IEEE Computer
Society, 2010.

14 Lauri Hella and José María Turull Torres. Expressibility of higher order logics. Electr.
Notes Theor. Comput. Sci., 84, 2003.

15 Lauri Hella and José María Turull Torres. Computing queries with higher-order logics.
Theor. Comput. Sci., 355(2):197–214, 2006.

16 Richard Hull and Jianwen Su. On the expressive power of database queries with interme-
diate types. J. Comput. Syst. Sci., 43(1):219–267, 1991.

17 Neil Immerman. Descriptive complexity. Graduate texts in computer science. Springer,
1999.

18 Leszek Aleksander Kolodziejczyk. Truth definitions in finite models. J. Symb. Log.,
69(1):183–200, 2004.

https://doi.org/10.1109/SCT.1992.215383
https://doi.org/10.1109/SCT.1992.215383
http://dx.doi.org/10.1109/SCT.1992.215383
http://doi.acm.org/10.1145/800157.805047
http://dx.doi.org/10.1145/800157.805047
http://dx.doi.org/10.1145/800157.805047
http://arxiv.org/abs/1612.03155

F. Ferrarotti, S. Gonzáles, K.-D. Schewe and J. M. Turull-Torres 23:17

19 Leszek Aleksander Kolodziejczyk. Truth Definitions and Higher Order Logics in Finite
Models. PhD thesis, Institute of Philosophy, Warsaw University, Warsaw, Poland, February
2005.

20 Gabriel M. Kuper and Moshe Y. Vardi. On the complexity of queries in the logical data
model. In Marc Gyssens, Jan Paredaens, and Dirk Van Gucht, editors, Proceedings of the
2nd International Conference on Database Theory, volume 326 of Lec. Notes Comput. Sci.,
pages 267–280. Springer, 1988.

21 Clemens Lautemann, Thomas Schwentick, and Denis Thérien. Logics for context-free lan-
guages. In Leszek Pacholski and Jerzy Tiuryn, editors, CSL, volume 933 of Lecture Notes
in Computer Science, pages 205–216. Springer, 1994.

22 Daniel Leivant. Descriptive characterizations of computational complexity. J. Comput.
Syst. Sci., 39(1):51–83, 1989.

23 Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.
24 David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity within

NC1. J. Comput. Syst. Sci., 41(3):274–306, 1990.
25 Larry J. Stockmeyer. The polynomial-time hierarchy. Theor. Comput. Sci., 3(1):1–22, 1976.

Appendix

A The Hierarchy in qAC0

We assume from the reader a basic knowledge of Circuit Complexity ([17] is a good reference
for the subject). We consider a circuit as a connected acyclic digraph with arbitrary
many input nodes and exactly one output node. As in [2] we define qAC0 as the class of
DTIME[logO(1) n] DCL uniform families of Boolean circuits of unbounded fan-in, Size
2logO(1) n and Depth O(1). If C is a family of circuits, we consider that (h, t, g, zn) ∈ DCL(C)
iff the gate with number h is of type t and the gate with number g is a child of gate h, and
zn is an arbitrary binary string of length n, if the type is ∨, ∧, or ¬. If the type is x, then h
is an input gate that corresponds to bit g of the input. bin(A), of length n, is the binary
encoding of the input structure A on which MC will compute the query (see [17]). With n̂
we denote the size of the domain of A. Further, for every m ≥ 1 we define qAC0

m as the
subclass of qAC0 of the families of circuits in qAC0 where the path from an input gate to
the output gate with the maximum number of alternated gates of unbounded fan-in of type
AND and OR in the circuits is m. Following [24] we assume that in all the circuits in the
family the NOT gates can occur only at the second level from the left (i.e., immediately
following input gates), the gates of unbounded fan-in at any given depth are all of the same
type, the layers of such gates alternate in the two types, and the inputs to a gate in a given
layer are always outputs of a gate in the previous layer. Besides the m alternated layers
of only gates of unbounded fan-in, we have in each circuit and to the left of those layers a
region of the circuit with only AND and OR gates of fan-in 2, with an arbitrary layout, and
to the left of that region a layer of some possible NOT gates and then a layer with the n
input gates. It is straightforward to transform any arbitrary qAC0 circuit into an equivalent
one that satisfies such restrictions. Let us denote as ∃qAC0

m (∀qAC0
m) the subclass of qAC0

m

where the output gate is of type OR (AND).

I Lemma 10. For all m ≥ 1 we have that ∃qAC0
m ⊆ Σ̃plog

m , and ∀qAC0
m ⊆ Σ̃plog

m+1.

Proof (sketch). Let C be a family of circuits in ∃qAC0
m with the uniformity conditions given

above. We build an alternating Turing machine MC that computes the query computed by C.
We have a deterministic Turing machine that decides the DCL of C in time logc n, for some

CVIT 2016

23:18 The Polylog-Time Hierarchy Captured by Restricted Second-Order Logic

constant c. Then for any given pair of gate numbers g, h, gate type t, and arbitrary string of n
bits zn, we can deterministically check both (h, t, g, zn) ∈ DCL(C) and (h, t, g, zn) 6∈ DCL(C).
To be able to have a string zn of size n, we allow the input tape of MC to be read/write, so
that to compute those queries we write h, t, g, to the left of the input bin(A) in the input
tape of the machine. Note that each gate number is O(logc

′
n) bits long for some constant

c′, and the type t is 2 bits long (which encodes the type in {AND, OR, NOT, x}, where x
indicates that the gate is an input gate).

First MC computes the size n of the input bin(A), which can done in logarithmic time
(see [24]).

Corresponding to the m alternated layers of gates of unbounded fan-in of type AND and
OR, where the last layer consists of one single OR gate which is the output gate, we will
have in MC m alternated blocks of existential and universal states, which will be executed
in the opposite direction to the edge relation in the circuit, so that the first block, which is
existential will correspond to layer m in C. Each such block takes time O(logc

′
n). In the

following we will consider the layers from right to left.
In the first block, which is existential, MC guesses gate numbers go, h2, and checks
whether (h2,∧, go, zn) ∈ DCL(C). If it is true, thenMC writes in a work tape the sequence
〈go, h2〉. Note that h2 is of type ∧. Then it checks whether (h2,∧, go, zn) 6∈ DCL(C). If
it is true then MC rejects.
The second block is universal, and has two stages. In the first stage, MC checks whether
go is the output gate. To that end it guesses a gate number u, and checks whether
(go,∨, u, zn) ∈ DCL(C). If it is true, then MC rejects.
In the second stage, MC checks the inputs to gate h2. It guesses a gate number h3, and
checks whether (h3,∨, h2, zn) ∈ DCL(C), in which case it adds h3 at the right end of the
sequence in the work tape. It then checks whether (h3,∨, h2, zn) 6∈ DCL(C), in which
case it accepts.
The third block is existential. MC checks the inputs to gate h3. It guesses a gate number
h4, and checks whether (h4,∧, h3, zn) ∈ DCL(C), in which case it adds h4 at the right
end of the sequence in the work tape. It then checks whether (h4,∧, h3, zn) 6∈ DCL(C),
in which case it rejects.
Following the same alternating pattern, the (m − 1)-th block will be existential or
universal depending on the type of the gates in C at the (m− 1)-th layer. Note that, in
our progression from the output gate towards the input gates (right to left), the parents
of hm (which is the gate number guessed at the (m − 1)-th block of MC) are the first
gates in the region of C of the arbitrary layout of only gates with bounded fan-in. As
the depth of each circuit in the family C is constant, say it is w for all the circuits in
the family, in the m-th block MC can guess the whole sub-circuit of that region. Then it
guesses w gate numbers and checks that they form exactly the layout of that region of
the circuit. Once MC has guessed that layout it can work deterministically to evaluate it,
up to the input gates, which takes time O(1).
If the (m− 1)-th block is universal, then if the guessed w gate numbers do not form the
correct layout, MC accepts. If the (m − 1)-th block is existential, and the guessed w
gate numbers do not form the correct layout, then MC rejects.

Note that if the family C is in ∀qAC0
m, the first block of states is still existential, to guess

the output gate. Then it works as in the case of ∃qAC0
m. J

I Lemma 11. Let t, k ≥ 1 and ψ ∈ Σ1,plog
t with first-order sub-formula ϕ ∈ Σ0

k, and whose
vocabulary includes the BIT predicate. Then there is a family Cψ of Boolean circuits in

F. Ferrarotti, S. Gonzáles, K.-D. Schewe and J. M. Turull-Torres 23:19

∃qAC0
t+k that computes the Boolean query expressed by ψ.

Proof (sketch). We essentially follow the sketch of the proof of the theorem in Section 3,
page 89 of [2], where it shows that for a given ψ ∈ SOr there is an equivalent circuit family Cψ
in qAC0. But we use a simple strategy to define a layout of the circuits which will preserve
the number of alternated blocks of quantifiers in ψ and ϕ.

Starting from the canonical AC0 circuit corresponding to an first-order formula in prenex,
as in Theorem 9.1 in [24], we follow the same idea extending such circuit Cϕ for ϕ ∈ Σ0

k, to a
canonical circuit Cψ in ∃qAC0 for ψ ∈ Σ1,plog

t , in such a way that Cψ is in ∃qAC0
t+k.

The layout of Cϕ basically follows from left to right the opposite order of the formula ϕ,
so that the output gate is an unbounded fan-in ∨ gate that corresponds to the first-order
quantifier ∃1, the inputs to that gate are the outputs of a layer of unbounded fan-in ∧ gates
that correspond to the first-order quantifier ∀2, and so on. To the left of the leftmost layer of
unbounded fan-in gates corresponding to the quantifier Qk, there is a constant size, constant
depth region of the circuit which corresponds to the quantifier free sub-formula of ϕ. This
part has the input gates, constants, NOT gates, and AND and OR gates of fan-in 2.

In a similar way, we extend Cϕ to the right, to get Cψ. To that end, to the right of the
first-order quantifier ∃1 (which in Cψ becomes a layer of unbounded fan-in ∨ gates), we
will have in Cψ one layer of gates of unbounded fan-in for each SO quantifier: of ∨ gates
for existential SO quantifiers, and ∧ gates for universal SO quantifiers. The first added
layer corresponds to the SO quantifier Qt, and the rightmost layer will correspond the SO
quantifier ∃1, which is a layer of one single gate, that becomes the new output gate.

Clearly, by following the construction above we get a family of circuits in ∃qAC0
t+k.

To build the Turing machine MC ∈ DTIME[logO(1) n] that decides the language DCL(C),
we use the same kind of encoding sketched in [2] (which in turn is an extension of the one
used in [24] for AC0). In the number of the gates we encode all the information that we need
to decide the language, while still keeping its length polylogarithmic. Each such gate number
will have different sections: i) type of the gate; ii) a sequence of k fields of polylogarithmic size
each to hold the values of the first-order variables; iii) a sequence of t fields of polylogarithmic
size each to hold the values of of the SO variables; iv) a constant size field for the code of the
NOT, OR and AND gates of fan-in 1, 2, 2, respectively, in the region of Cψ corresponding
to the quantifier-free part of the formula ϕ; v) a logarithmic size field for the bit number
that corresponds to an input gate, vi) a polylogarithmic size field for the number of the gate
whose output is the left (or only) input to the gate; and vii) idem for the right input.

The idea is that for any given gate, its number will hold the values of all the first-order
and SO variables that are bounded in ψ, in the position of the formula that corresponds,
by the construction above, to that gate, or zeroes if the variable is free. Note that each
sequence of all those values uniquely define a path in Cψ from the output gate to the given
gate. For the gates which correspond to quantifiers, and for those in the quantifier free part
that are parents of them, the encoding allows to easily compute the number of their child
gates. The gates for the quantifier free part hold in their numbers (iv) a number which
uniquely identifies that gate in that region of the circuit for a particular branch in Cψ which
is given by the values of the bounded variables. Note that the layout of each such branch of
the circuit is constant and hence stored in the transition function of MC , and it can evaluate
that sub circuit in polylogarithmic time. Note that the predicate BIT(i, j) can be evaluated
by MC by counting in binary in a work tape up to j and then looking at its bit i.

In this way, clearly MC decides DCL(C) in time logO(1) n. J

CVIT 2016

23:20 The Polylog-Time Hierarchy Captured by Restricted Second-Order Logic

B The Normal Form for SOplog

We show the proof of Lemma 3

I Lemma 12 (Lemma 3). For every SOplog-formula ϕ, there is an equivalent SOplog-formula
ϕ′ that is in SNF.

Proof. An easy induction using renaming of variables and equivalences such as (¬∃X logk

ϕ)
≡ ∀X logk (¬ϕ) and (φ∨∃xψ) ≡ ∃x(φ∨ψ) if x is not free in φ, shows that each SOplog-formula
is logically equivalent to an SOplog-formula in prenex normal form, i.e., to a formula where
all first- and second-order quantifiers are grouped together at the front, forming alternating
blocks of consecutive existential or universal quantifiers. Yet the problem is that first- and
second-order quantifiers might be mixed. Among the quantifiers of a same block, though,
it is clearly possible to commute them so as to get those of second-order at the beginning
of the block. But, we certainly cannot commute different quantifiers without altering the
meaning of the formula. What we can do is to replace first-order quantifiers by second-order
quantifiers so that all quantifiers at the beginning of the formula are of second-order, and
they are then eventually followed by first-order quantifiers. This can be done using the
following equivalences:

∃x∀Y logk

ψ ≡ ∃X log0
∀Y logk

∃x(X log0
(x) ∧ ψ).

∀x∃Y logk

ψ ≡ ∀X log0
∃Y logk

∀x(X log0
(x)→ ψ).

J

C NODNFSAT Query

The following sentence expresses the NODNFSAT query described in Section 3.1. For clarity,
we write the query using an unbounded first order universal quantifier. Nevertheless, we
can rewrite it as a Πplog

2 sentence by simply replacing the universal first order quantifiers
by a second quantifier as explained in Remark 3. We use H as a variable with arity 2 and
exponent 2, and assume the alphabet of input formula in DNF as {(,),∧,∨,¬, 0, 1, X} with
σ =<, I(, I), I∧, I∨, I¬, I0, I1, IX >, same encoding as in [5].

∀xbxc

(
0

¬I((xb) ∨ ¬I)(xc) ∨ ∃y
[

1

y > xb ∧ y < xc ∧ (I((y) ∧ I)(y))
]

1

∨

∃H∃xax′axaax′aaxfx′f∀xx′yy′
[

1

(
2

(
3
H(x, x′) ∧H(y, y′)

)
3
→[

3

(
4
(xb ≤ x ∧ x ≤ xc) ∧ (xb ≤ x′ ∧ x′ ≤ xc) ∧ (xb ≤ y ∧ y ≤ xc)∧

(xb ≤ y′ ∧ y′ ≤ xc)
)

4
∧
(

4
x = y→x′ = y′

)
4
∧
(

4
x′ = y′→x = y

)
4

∧
(

4
x = xa ∨ x = xaa ∨ x = xf ∨

(
5I0(x) ∧ I0(x′)

)
5

)
4

∧
(

4
x′ = x′a ∨ x′ = x′aa ∨ x′ = x′f ∨

(
5I1(x) ∧ I1(x′)

)
5

)
4

∧
(

4
SUCC(x, y)↔SUCC(x′, y′)

)
4
∧(

4
∀zz′

(
5(6H(z, z′) ∧ (I0(z) ∨ I1(z)) ∧ (I0(x) ∨ I1(x)))6→x ≤ z

)
5 ↔

F. Ferrarotti, S. Gonzáles, K.-D. Schewe and J. M. Turull-Torres 23:21

∀vv′
(

5(6H(v, v′) ∧ (I0(v′) ∨ I1(v′)) ∧ (I0(x′) ∨ I1(x′)))6→x′ ≤ v′
)

5

)
4
∧[

4

[
5∀zz

′(
5(6H(z, z′) ∧ (I0(z) ∨ I1(z)) ∧ (I0(x) ∨ I1(x)))6→x ≤ z

)
5∧

SUCC(xa, x)∧SUCC(xaa, xa)∧SUCC(x′a, x′)∧SUCC(x′aa, x′a)
]
5 →[

5IX(xa) ∧ IX(x′a) ∧
(

5I((xaa) ∨ I∧(xaa) ∨ I¬(xaa)
)

5 ∧
(

5I((x
′
aa)∨

I∧(x′aa) ∨ I¬(x′aa)
)

5 ∧
(

5I¬(xaa)↔ I∧(x′aa)
)

5

]
5

]
4
∧(

4
∀zz′

(
5(6H(z, z′) ∧ (I0(z) ∨ I1(z)) ∧ (I0(x) ∨ I1(x)))6→z ≤ x

)
5 ↔

∀vv′
(

5(6H(v, v′) ∧ (I0(v′) ∨ I1(v′)) ∧ (I0(x′) ∨ I1(x′)))6→v′ ≤ x′
)

5

)
4
∧[

4

[
5∀zz

′(
5(6H(z, z′) ∧ (I0(z) ∨ I1(z)) ∧ (I0(x) ∨ I1(x)))6→z ≤ x

)
5∧

SUCC(x, xf) ∧ SUCC(x′, x′f)
]
5 →

[
5

(
5I)(xf) ∨ I∧(xf)

)
5 ∧
(

5I)(x
′
f)∨

I∧(x′f))
)

5

]
5

]
4

]
3

)
2

]
1

)
0

D Details of Bounded Binary Arithmetic in SOplog

We describe next the sub-formulae ϕ, ψ and α of BSUMk (please, refer to formula (8) in the
main text).

The sub-formulae ϕ(X,Y, Z) is satisfied if the value of the least significant bit of Z is
consistent with the sum of the least significant bits of X and Y .

ϕ(X,Y, Z) ≡
(
Z(0̄, 0) ∧ ((X(0̄, 0) ∧ Y (0̄, 0)) ∨ (X(0̄, 1) ∧ Y (0̄, 1)))

)
∨(

Z(0̄, 1) ∧ ((X(0̄, 1) ∧ Y (0̄, 0)) ∨ (X(0̄, 0) ∧ Y (0̄, 1)))
)

The sub-formulae ψ(x̄, ȳ,W,X, Y) is satisfied if the value of the bit in position x̄ of W
(i.e., the value of the carried bit), is consistent with the sum of the values of the bits in
position ȳ (i.e., the position preceding x̄) of W , X and Y .

ψ(x̄, ȳ,W,X, Y) ≡(
W (x̄, 0) ∧ ((W (ȳ, 0) ∧X(ȳ, 0) ∧ Y (ȳ, 0)) ∨ (W (ȳ, 0) ∧X(ȳ, 0) ∧ Y (ȳ, 1))∨

(W (ȳ, 0) ∧X(ȳ, 1) ∧ Y (ȳ, 0)) ∨ (W (ȳ, 1) ∧X(ȳ, 0) ∧ Y (ȳ, 0)))
)
∨(

W (x̄, 1) ∧ ((W (ȳ, 1) ∧X(ȳ, 1) ∧ Y (ȳ, 0)) ∨ (W (ȳ, 1) ∧X(ȳ, 0) ∧ Y (ȳ, 1))∨
(W (ȳ, 0) ∧X(ȳ, 1) ∧ Y (ȳ, 1)) ∨ (W (ȳ, 1) ∧X(ȳ, 1) ∧ Y (ȳ, 1)))

)
Finally, α(x̄,W,X, Y, Z) is satisfied if the value of the bit in position x̄ of Z is consistent

with the sum of the corresponding bit values of W , X and Z.

α(x̄,W,X, Y, Z) ≡(
Z(x̄, 0) ∧ ((W (x̄, 0) ∧X(x̄, 0) ∧ Y (x̄, 0)) ∨ (W (x̄, 0) ∧X(x̄, 1) ∧ Y (x̄, 1))∨

(W (x̄, 1) ∧X(x̄, 1) ∧ Y (x̄, 0)) ∨ (W (x̄, 1) ∧X(x̄, 0) ∧ Y (x̄, 1)))
)
∨(

Z(x̄, 1) ∧ ((W (x̄, 0) ∧X(x̄, 0) ∧ Y (x̄, 1)) ∨ (W (x̄, 0) ∧X(x̄, 1) ∧ Y (x̄, 0))∨
(W (x̄, 1) ∧X(x̄, 0) ∧ Y (x̄, 0)) ∨ (W (x̄, 1) ∧X(x̄, 1) ∧ Y (x̄, 1)))

)
In the following formula expressing BMULTk(X,Y, Z), the variable I has arity k and

exponent k. I ′ is of arity 2k and exponent 2k. The remaining second-order variables R, S

CVIT 2016

23:22 The Polylog-Time Hierarchy Captured by Restricted Second-Order Logic

and W are of arity 2k + 1 and exponent 2k.

BMULTk(X,Y, Z) ≡
∃II ′RSW

(
DEFk(I) ∧ BINk(X, I) ∧ BINk(Y, I) ∧ BINk(Z, I)∧

DEF2k(I ′) ∧ BIN2k(R, I ′) ∧ BIN2k(S, I ′) ∧ BIN2k(W, I ′)∧
SHIFT(S,X, I)∧
∀x̄(I(x̄)→ ((x̄ = 0̄ ∧ Y (x̄, 0) ∧ ϕa(R, x̄))∨

(x̄ = 0̄ ∧ Y (x̄, 1) ∧ ϕb(R, x̄,X))∨
(Y (x̄, 0) ∧ ∃ȳ(SUCCk(ȳ, x̄) ∧ ϕc(R, x̄, ȳ)))∨
(Y (x̄, 1) ∧ ∃ȳ(SUCCk(ȳ, x̄) ∧ ϕd(R,S,W, x̄, ȳ)))))

)
(17)

The sub-formula ϕa(R, x̄) ≡ ∀ȳ(I(ȳ) → R(x̄, ȳ, 0)) expresses that R|x̄ encodes the binary
number 0, the sub-formula ϕb(R, x̄,X) ≡ ∀ȳ(I(ȳ)→ ∃z(R(x̄, ȳ, z) ∧X(ȳ, z))) expresses that
R|x̄ = X, the sub-formula ϕc(R, x̄, ȳ) ≡ ∀w̄(I(w̄) → ∃z(R(x̄, w̄, z) ∧ R(ȳ, w̄, z))) expresses
that R|x̄ = R|ȳ, and the sub-formula SHIFT(S,X, I) expresses that if ā ∈ Bk is the i-th
tuple in the numerical order of Bk, then S|ā is the (i− 1)-bits arithmetic left-shift of X, i.e.,
S|ā is X multiplied by 2i−1 in binary. We have

SHIFT(S,X, I) ≡ ∃x̄ȳ
(
SUCCk(x̄, logn) ∧ SUCCk(ȳ, x̄) ∧ S(ȳ, x̄, 0)

)
∀x̄
(
I(x̄)→((x̄ = 0̄ ∧ ϕb(S, x̄,X))∨

∃ȳ(SUCCk(ȳ, x̄)∧
∀z̄(I(z̄)→ ((z̄ = 0̄ ∧ S(x̄, z̄, 0))∨

∃z̄′b(SUCCk(z̄′, z̄) ∧ S(ȳ, z̄′, b) ∧ S(x̄, z̄, b))))))
)

(18)

Finally, the sub-formula ϕd(R,S,W, x̄, ȳ) expresses that R|x̄ results from adding R|ȳ to S|x̄.
The carried digits of this sum are are kept in W |x̄. Given the formula BSUMk described
earlier, it is a straightforward task to write ϕd. We omit further details.

BDIVk(X,Y, Z,M) can be written as follows.

BDIVk(X,Y, Z,M) ≡
∃II ′ARSWW ′

(
DEFk(I) ∧ BINk(X, I) ∧ BINk(Y, I) ∧ BINk(Z, I)∧
BINk(M, I) ∧ BINk(A, I) ∧ ¬BNUMk(Y, 0, I)∧
<k(M,Y, I) ∧ BMULTk(Z, Y,A, I, I ′, R, S,W)∧
BSUMk(A,M,X, I,W ′)

)
. (19)

Where in the previous formula BMULTk(Z, Y,A, I, I ′, R, S,W) denotes the formula
obtained from BMULTk(X,Y, Z) by eliminating the second-order quantifiers (so that I, I ′,
R, S and W become free-variables) and by renaming X and Z as Z and A, respectively.
Likewise, BSUMk(A,M,X, I,W ′) denotes the formula obtained from BSUMk(X,Y, Z) by
eliminating the second-order quantifiers (so that I and W become free-variables) and by
renaming X, Y , Z and W as A, M , X and W ′, respectively.

E Sketches of the Proofs of Theorems 7 and 8

I Theorem 13 (Theorem 7). Over ordered structures with sucessor relation, BIT and
constants for logn, the minimum, second and maximum elements, Πplog

1 captures Π̃plog
1 .

F. Ferrarotti, S. Gonzáles, K.-D. Schewe and J. M. Turull-Torres 23:23

Proof (sketch). In order to show Πplog
1 ⊆ Π̃plog

1 we proceed in the same way as in the
proof of Theorem 6[Part a] with the only difference that all states are universal. Let
φ = ∀Xr1,logk1

1 . . . ∃Xrm,logkm

m ϕ, where ϕ is a first-order formula with the restrictions given in
the definition of SOplog. We first determine all possible values for the second-order variables
Xri,logki

i . Any combination of such values determines a branch in the computation tree of
M, and for each such branch the machine has to checks ϕ. The argument that these checks
can be done in poly-logarithmic time is the same as in the proof of Theorem 6. Then by
definition of the complexity classes ATIMEop[logk n,m] and the definition of acceptance for
alternating Turing machines the machine M evaluates φ in poly-logarithmic time.

In order to show the inverse, i.e. Π̃plog
1 ⊆ Πplog

1 , we exploit that the given random access
alternating Turing machine has only universal states and thus all branches in its computation
tree must lead to an accepting state. Consequently, the same construction of a formula φ as
in the proof of Theorem 6[Part b] can be used with the only difference that all second-order
existential quantifiers have to be turned into universal ones. Then the result follows in the
same way as in the proof of Theorem 6. J

I Theorem 14 (Theorem 8). Over ordered structures with sucessor relation, BIT and
constants for logn, the minimum, second and maximum elements, Σplog

m captures Σ̃plog
m and

Πplog
m captures Π̃plog

m for all m ≥ 1.

Proof (sketch). We proceed by induction, where the grounding cases for m = 1 are given by
Theorems 6 and 7. For the inclusions Σplog

m ⊆ Σ̃plog
m and Πplog

m ⊆ Π̃plog
m we have to guess (or

take all) values for the second-order variables in the leading block of existential (or universal,
respectively) quantifiers, which is done with existential (or universal, respectively) states.
For the checking of the subformula in Πplog

m−1 (or in Σplog
m−1, respectively) we have to switch to

a universal (existential) state and apply the induction hypothesis for m− 1.
Conversely, we consider the computation tree of the given alternating Turing machine M

and construct a formulae as in the proofs of Theorems 6 and 7 exploiting that for each switch
of state from existential to universal (or the other way round) the corresponding submachine
can by induction be characterised by a formula in Πplog

m−1 or Σplog
m−1, respectively. J

CVIT 2016

	1 Introduction
	1.1 Main Contributions
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	3 TEXT: A Restricted Second-Order Logic
	3.1 Examples of Queries in TEXT

	4 Bounded Binary Arithmetic Operations in TEXT
	5 The Poly-logarithmic Time Hierarchy
	6 Expressive power of the Quantifier-Prenex Fragments of TEXT
	7 Conclusions
	A The Hierarchy in TEXT
	B The Normal Form for TEXT
	C NODNFSAT Query
	D Details of Bounded Binary Arithmetic in TEXT
	E Sketches of the Proofs of Theorems 7 and 8

