
 
 
 
Portfolio SAT and SMT Solving of Cardinality 
Constraints in Sensor Network Optimization 
 
 
Gergely Kovásznai and Krisztián Gajdár 
Eszterházy Károly University, Eger, Hungary 
 
Laura Kovács 
TU Wien, Austria and Chalmers University of Technology, Sweden 
 
 
 
 
 
 
 
 
NOTE:  
 
This preprint has been accepted as a peer-reviewed publication at the 
SYNASC 2019 conference.  
 
The camera-ready version of this preprint is available at:  
 
https://doi.org/10.1109/SYNASC49474.2019.00021 
 
 
© 2020 IEEE.  Personal use of this material is permitted.  Permission from 
IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional 
purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other 
works. 
 
 



Portfolio SAT and SMT Solving of Cardinality Constraints
in Sensor Network Optimization

Gergely Kovásznai∗, Krisztián Gajdár∗, Laura Kovács†
∗Eszterházy Károly University, Eger, Hungary

† TU Wien, Austria and Chalmers University of Technology, Sweden

Abstract—Wireless Sensor Networks (WSNs) serve as the
basis for Internet of Things applications. A WSN consists
of a number of spatially distributed sensor nodes, which
cooperatively monitor physical or environmental conditions.
In order to ensure the dependability of WSN functionali-
ties, several reliability and security requirements have to be
fulfilled. In previous work, we applied OMT (Optimization
Modulo Theories) solvers to maximize a WSN’s lifetime, i.e.,
to generate an optimal sleep/wake-up scheduling for the sensor
nodes. We discovered that the bottleneck for the underlying
SMT (Satisfiability Modulo Theories) solvers was typically to
solve satisfiable instances. In this paper, we encode the WSN
verification problem as a set of Boolean cardinality constraints,
therefore SAT solvers can also be applied as underlying solvers.
We have experimented with different SAT solvers and also with
different SAT encodings of Boolean cardinality constraints.
Based on our experiments, the SAT-based approach is very
powerful on satisfiable instances, but quite poor on unsatisfiable
ones. In this paper, we apply both SAT and SMT solvers in a
portfolio setting. Based on our experiments, the MiniCARD+Z3
setting can be considered to be the most powerful one, which
outperforms OMT solvers by 1-2 orders of magnitude.

I. INTRODUCTION

Considering Wireless Sensor Network (WSN) problems,
sensor devices are self-powered and, therefore, have limited
power supply. It is thus crucial to apply energy efficient
protocols to the sensor nodes by synchronizing their opera-
tions. To save energy, a sensor node might eventually enter
the sleep mode, in which its power consumption is typically
a fraction of that in the active mode. However, coverage
(and other security constraints) should be maintained during
the entire lifetime of the WSN. It is therefore required to
generate sleep/wake-up scheduling which does not violate
any of those constraints at any time and provides a maximal
lifetime for the WSN.

In literature, there exist results on modeling WSN prob-
lems as SAT instances. For instance, [1] proposes a SAT
encoding of a WSN’s communication model as a directed
graph, which is then checked against strong connectivity
in [2]. The papers [3], [4] apply a Satisfiability Modulo
Theories (SMT) formalization to the coverage problem and
to other WSN constraints, and then they use SMT solvers
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to generate an appropriate sleep/wake-up scheduling for a
WSN. Yet, these works do not address the maximization
problem of the WSN’s lifetime, hindering the practical use
of these techniques.

In our previous work from [5], we generate Optimization
Modulo Theories (OMT) benchmarks from WSNs and apply
OMT solvers to obtain a sleep/wake-up scheduling for a
WSN that maximizes its lifetime. A follow-up paper [6]
investigates further aspects of WSNs that make the OMT
solving process even more challenging, and the paper reports
on experiments with the OMT solvers OPTIMATHSAT [7],
Z3 [8], and SYMBA [9]. In [10], we introduce our OMT
solver called PULI and report on further experiments, show-
ing that PULI significantly outperforms the aforementioned
OMT solvers on WSN benchmarks. PULI uses the SMT
solver Z3 [11] as underlying solver and calls Z3 iteratively.
Within PULI, Z3 shows an interesting behavior: it is fast
in solving unsatisfiable instances, but provides poor perfor-
mance in solving satisfiable ones.

The aim of this paper is to improve our previous results
on SMT-based optimization of WSNs. To do so, we apply
SAT solvers parallel to SMT solvers, in a portfolio setting
and hence improve our previous results [10] by a SAT/SMT-
based portfolio approach for WSN optimization. Section II
introduces basic concepts and definitions on SAT, SMT and
OMT solving, as well as the WSN model we apply, includ-
ing some reliability and security constraints over WSNs.
Section III shows how to encode those constraints into
SAT and SMT, by using Boolean cardinality constraints
as building blocks. In Section IV, we propose a novel
approach for WSN optimization by applying SAT and SMT
solvers in a portfolio setting. We explain certain search
strategies and give details on our implementation. Section V
reports on experiments with our portfolio-based WSN op-
timization approach, with various combinations of different
SAT and SMT solvers, as well as different encodings of
Boolean cardinality constraints. Based on those experiments,
MINICARD + Z3 provide the best performance together,
outperforming OMT solvers in terms of solved instances
and also of runtime by 1-2 orders of magnitude. Regarding
cardinality encodings, sequential counters outperform the
other encodings involved in our experiments, especially in
combination with the SAT solver MINISAT.



II. PRELIMINARIES

A literal l is a Boolean variable x or its negation x. A
clause C is a disjunction of literals. A Boolean formula is
in Conjunctive Normal Form (CNF), if it is a conjunction of
clauses. We say that a Boolean formula, typically in CNF, is
satisfiable, if there exists a truth assignment to the Boolean
variables of the formula such that the formula evaluates
to true. Otherwise, it is said to be unsatisfiable (UNSAT).
The Boolean Satisfiability (SAT) problem is the problem of
determining if a Boolean formula is satisfiable.

Satisfiability Modulo Theories (SMT) is the decision prob-
lem of checking satisfiability of a Boolean formula with
respect to some background theory. Optimization Modulo
Theories (OMT) is an extension of SMT which allows find-
ing models that optimize given objective functions. Common
theories include the theory of integers, reals, fixed-size bit-
vectors, etc. The logics that one could use might differ from
each other in the linearity or non-linearity of arithmetic and
the presence or absence of quantifiers. In this paper, we use
the theory of integers combined with linear arithmetic and
without quantifiers – denoted as QF_LIA in the SMT-LIB
standard [12].

Given the number n ≥ 1 of the sensor nodes, let ri denote
the range of the ith sensor node. The greater the range is,
the shorter the lifetime of the sensor node is, denoted by
Li. The objective for the sensor nodes is to cover a set
of m ≥ 1 points of interest. Let di,j denote the physical
distance between the ith sensor node and the jth point. Let
wi,t be a Boolean variable that denotes whether the ith sensor
node is awake at the tth time interval. T denotes the lifetime
of the WSN. In the rest of this paper, we consider n,m, T
arbitrarily fixed and give all definitions relative to them.

The following constraints are defined on a WSN:

(C1) Lifetime constraint. For each sensor node, the number
of time intervals at which the node is awake must not
exceed the node’s lifetime.

∀i (1 ≤ i ≤ n).

T∑
t=1

wi,t ≤ Li

(C2) Coverage constraint [13], [14], [15]. Every point
must be covered by at least K sensor nodes at any
time, where K ≥ 1 is a predefined constant.

∀j, t (1 ≤ j ≤ m, 1 ≤ t ≤ T ).
∑
i∈Sj

wi,t ≥ K

where Sj = {i | di,j ≤ ri}.
(C3) Evasive constraint [16], [4], [5]. In a hostile envi-

ronment or in critical systems, it is important to protect
the sensors from being active for too long. In such
applications, each sensor node must not stay active for
more than E consecutive time intervals, where E ≥ 1

is a predefined constant.

∀i, t (1 ≤ 1 ≤ t ≤ T − E).

t+E∑
t′=t

wi,t′ ≤ E

(C4) Moving target constraint [4], [5]. To improve
resiliency and security, some critical points may require
not be covered by the same sensor for more than
M consecutive time intervals, where M ≥ 1 is a
predefined constant and M < E.

∀j ∈ CR, ∀i ∈ Sj , ∀t (1 ≤ t ≤ T−M).

t+M∑
t′=t

wi,t′ ≤M

where CR ⊆ [1,m] is a predefined set of critical points.

III. SAT AND SMT ENCODING OF WSN VERIFICATION

To verify WSNs that are represented as introduced in
Section II, we encode the aforementioned constraints (C1)–
(C4) both to Boolean logic (SAT) and to SMT. We avoid the
use of quantifiers by unrolling all constraints, representing
this way (C1)–(C4) as quantifier-free formulas..

In this section we overview related key approaches that
our work builds upon to express WSN (correctness) proper-
ties as instances of SAT/SMT.

A. Boolean Cardinality Constraints

By a Boolean cardinality constraint we mean a so-called
“AtMost" constraint and define it as

∑k
i=1 li ≤ c, where

each li is a Boolean literal and c ∈ N is a constant. Note
that the lifetime constraint (C1), the evasive constraint (C3)
and the moving target constraint (C4) each are of this kind.

The coverage constraint (C2) however is a so-called
“AtLeast" constraint, where an “AtLeast" constraint is de-
fined as

∑k
i=1 li ≥ c. It is easy to see that an “AtLeast"

constraint can be translated to an "AtMost" constraint∑k
i=1 li ≤ k − c.

B. SAT Encoding

There are various existing, well-known approaches ex-
pressing Boolean cardinality constraints into Boolean logic,
for example by using sequential counters [17], cardinality
networks [18] or modulo totalizers [19], [20].

Sequential counters [17] encode a Boolean cardinality
constraint into the following Boolean formula:

(l1 ⇔ s1,1)

∧ s1,j for j ∈ [2, c]

∧ (si,1 ⇔ li ∨ si−1,1) for i ∈ [2, n]

∧
(
si,j ⇔ (li ∧ si−1,j−1) ∨ si−1,j) for i ∈ [2, n], j ∈ [2, c]

All the Boolean variables si,j are introduced as fresh
variables and the formula above can be converted into its
CNF [17].



Cardinality networks [18] yield another, refined approach
for encoding Boolean cardinality constraints. For improv-
ing reasoning about cardinality constraints encoded, for
example, using sequential counters, a cardinality network
encoding of a cardinality constraint divides the cardinality
constraint into multiple instances of the base operations half
sorting and simplified half merging, which basically work as
building blocks, as shown in Figure 1.

Figure 1. Representation of
∑32

i=1 ai ≤ 8 as a cardinality network [18].

The modulo totalizer cardinality encoding [19] and its
variant for k-cardinality [20] improve the above described
approach based on cardinality network, especially in connec-
tion with MaxSAT solving. The modulo totalizer approach
of [19] addresses limitations of the half sorting cardinality
network approach from [18], by using totalizer encodings
from [21] in order to reduce the number of variables during
CNF encodings. The modulo totalizer cardinality encoding
of [19] decreases the number of clauses used in [21],
and hence improves cardinality network encodings during
constraint propagation.

C. SMT Encoding

Boolean cardinality constraints can naturally be encoded
as SMT properties. In particular, in our work, we use SMT
properties expressed in the quantifier-free theory of linear
integer arithmetic QF_LIA. However, the Boolean literals
li from Section III-A need to be converted to express
sum properties over them. Such a conversion can easily
be obtained using if-then-else expression (ite li 1 0)
in the SMT-LIB format, where 1 and 0 represent integer
constants.

IV. PORTFOLIO SOLVING FOR WSN OPTIMIZATION

We now describe our setting and considerations for WSN
optimization. By WSN optimization we mean the search for

the maximal lifetime of a WSN. A satisfying model for WSN
optimization is a truth assignment to the Boolean variables
wi,t, which represents an optimal sleep/wake-up scheduling
for the sensor nodes.

The maximal lifetime for a WSN can be searched by
iteratively calling the underlying SAT/SMT solver with
different values for T . In this regard, T denotes the least
lifetime we are currently trying to satisfy with the given
WSN.

WSN optimization is a monotonic optimization prob-
lem [10] meaning that, as incrementing the value of T , all the
resulting SAT/SMT instances are satisfiable until exceeding
the optimum. That is, there exists no UNSAT instances
below the optimum.

A. Portfolio SAT and SMT Solving

In previous experiments with OMT solvers [5], [6], [10],
we observed that the bottleneck for underlying SMT solvers
was typically to solve satisfiable instances. In our current
experiments with underlying SAT solvers, we observed the
opposite: the SAT-based approach is rather powerful on
satisfiable instances and poor on unsatisfiable ones.

Therefore, it seems to be a decent idea to run a SAT solver
and an SMT solver parallel, in a portfolio setting. Thus, in
each iteration, both the SAT and the SMT encodings of the
current WSN verification problem are generated and fed into
the underlying SAT and SMT solvers, respectively. Then, the
two solvers are executed as parallel processes. Whenever
any of those two solvers obtains the result, we terminate the
other solver.

B. Search Strategies

In this paper, we experiment with three different strategies
for searching the optimal lifetime.

Linear search can be applied by setting T to the lowest
possible value 1 and then, after each satisfiable instance,
incrementing T by one. When we hit the first UNSAT
instance, the optimum T − 1 can returned.

Binary search uses a lower bound lb and an upper bound
ub, and sets the next value of T to lb+ub

2 . In the WSN
context, lb stores the highest lifetime of satisfiable instances
so far and, similarly, ub the lowest lifetime of UNSAT
instances so far. Since the sensor nodes together cannot be
active for longer than the sum of their individual lifetimes
(Li) and at least K sensor nodes must be active in each time
interval, we use the initial values

lb = 1 and ub =

∑n
i=1 Li

K

In [10], we propose a speed-up for linear search by
applying regression analysis. To use this approach, we need
to define a so-called resource function fRES, in order to obtain
data points

(
T, fRES(T )

)
for regression analysis. For a WSN,

the charge of the batteries of sensor nodes can be considered



to be such a resource, which is continuously decreasing
until draining. This is estimated by the following resource
function:

fRES(T ) =

n∑
i=1

Li −
n∑

i=1

T∑
t=1

wi,t

The value of the resource function is obtained by summing
the lifetime of all the sensor nodes (which is the theoretical
maximum of the network’s lifetime), and then subtracting
the sum of the time intervals that have been used up so
far. This is the only search strategy which needs to obtain
the satisfying model from the underlying solver in each
iteration, which suffers from overhead. However, based on
our experiments, this pays off compared to simple linear
search.

C. Implementation

Our WSN optimization approach described in the pre-
vious sections is implemented in Python. The package
PYSAT [22] provides a unified API to several SAT solvers
such as MINISAT [23], GLUCOSE [24] and LINGELING [25].
From our point of view, it is even more important that
PYSAT supports a lot of encodings for Boolean cardinality
constraints, including sequential counters [17], cardinality
networks [18] and modulo totalizer [19], [20]. Furthermore,
PYSAT offers API to the SAT solver MINICARD [26],
which handles Boolean cardinality constraints natively, in-
stead of translating them into CNF.

In a similar manner, the Python package PYSMT [27]
provides a unified API to several state-of-the-art SMT
solvers over QF_LIA, such as MATHSAT [28], Z3 [11],
CVC4 [29] and YICES [30].

To run two solvers parallel to each other, we
instantiate ProcessPool from the Python module
pathos.multiprocessing [31], which can run jobs
with a non-blocking and unordered map.

V. EXPERIMENTS AND RESULTS

In our experiments, we use the WSN benchmarks
from [6], by relying on four different constraint settings and
three different density groups. Our experiments were run on
3.6 GHz 8-core CPU with 8 GB memory. The wall clock
time limit was set to 1200 seconds and the memory limit to
3 GB. Our implementation, together with our benchmarks
and log files, is available at:

https://iot.uni-eszterhazy.hu/en/research/tools

For the sake of comparison with previous results with
OMT solvers, we run our PULI solver from [10] with linear
search boosted by regression and also with binary search,
as well as the OMT solvers OPTIMATHSAT [7], Z3 [8]
and SYMBA [9]. Regarding the portfolio-based approach, we

OMT Search Solved/TO Runtime

PULI
lin-reg 19/1 63.1
binary 19/1 63.7

OPTIMATHSAT 19/1 173.9

Z3-OPT 10/10 605.8

SYMBA 10/10 654.4

SAT Encoding SMT Search Solved/TO Runtime

MINICARD

MATHSAT
linear 20/0 3.6
lin-reg 20/0 2.0
binary 20/0 1.7

Z3
linear 20/0 4.0
lin-reg 20/0 2.1
binary 20/0 1.8

MINISAT SEQ-COUNTER

MATHSAT
linear 20/0 4.7
lin-reg 20/0 2.7
binary 20/0 2.0

Z3
linear 20/0 5.0
lin-reg 20/0 3.0
binary 20/0 2.2

GLUCOSE SEQ-COUNTER

MATHSAT
linear 20/0 4.7
lin-reg 20/0 2.8
binary 20/0 2.2

Z3
linear 20/0 5.1
lin-reg 20/0 3.0
binary 20/0 2.2

LINGELING SEQ-COUNTER

MATHSAT
linear 20/0 5.8
lin-reg 20/0 3.2
binary 20/0 2.8

Z3
linear 20/0 5.9
lin-reg 20/0 3.3
binary 20/0 2.7

Table I
RESULTS FOR WSNS OF 40-50% DENSITY WITH 10 SENSOR NODES, 4

TARGET POINTS, 2-COVERAGE, EVASIVE CONSTRAINT WITH E = 2, AND
MOVING TARGET CONSTRAINT WITH M = 1.

run MINISAT (v2.2), GLUCOSE (v4.1), LINGELING (bbc-
9230380-160707) and MINICARD (v1.2) as SAT solvers,
MATHSAT (v5.5.1) and Z3 (v4.8.4) as SMT solvers.

Tables I-IV summarize some of the results of our experi-
ments. In the columns “OMT”, “SMT” and “SAT” the names
of the OMT, SMT and SAT solvers are shown, respectively.
The “Encoding” column shows the Boolean cardinality con-
straint encoding: sequential counters, cardinality networks
and k-cardinality modulo totalizer. The column “Search”
contains the name of the search strategy, where “lin-reg”
stands for linear search boosted with regression. The column
“Solved” shows the total number of solved instances, “TO”
the number of timeouts, and “Runtime” the average runtime
in seconds. None of the solvers exceeded the memory limit
on any of the benchmark instances.

In Table I, we can see the results for WSNs of 40-50%
density when the WSN constraints defined in Section II are
all checked, including the coverage constraint (with K = 2),

https://iot.uni-eszterhazy.hu/en/research/tools


the evasive constraint (with E = 2) and the moving target
constraint (with M = 1). As it can immediately be seen, our
current portfolio-based approach does not timeout at all and
outperforms the OMT solvers by 1-2 orders of magnitude.
PULI is the fastest OMT solver on the WSN benchmarks in
general [10], but it is still slower by 1 order of magnitude
than the portfolio approach.

We ran three SAT solvers with all the three cardinality
encodings introduced in Section III, but on the WSNs of
density 40-50% we did not observe significant difference in
performance, therefore the table only shows the results for
sequential counters.

Regarding search strategies, regression is able to boost
linear search pretty well, since its performance often ap-
proaches that of binary search. From now on, we will show
only the results for binary search, since binary search outper-
formed the other two strategies on each of the benchmarks
in our experiments.

In Table II, we can see the results for WSNs of 60-70%
density, for the same constraint setting. Here, the difference
between different cardinality encodings starts to manifest, in
terms of the performance of SAT solvers. Using sequential
counters pays off far more than using cardinality networks
or k-cardinality modulo totalizer, especially when running
MINISAT and GLUCOSE. MATHSAT and Z3 provide quite
similar runtimes except for when executed in combination
with LINGELING.

Table III show results for the most difficult 80-90% den-
sity group, but for the easiest constraint setting, i.e., when the
evasive constraint and the moving target constraint are not
checked. In comparison with Table II, the OMT solvers are
even more efficient in solving the current instances, and so
is the portfolio-based approach with MINICARD. The other
SAT solvers behave completely in the other way around. The
solver performance with sequential counters is significantly
higher than that of cardinality networks and k-cardinality
modulo totalizer. For the latter cardinality encodings, the
SAT solvers run out of time quite often, therefore we will
drop those encodings in the next table. The combination of
LINGELING + Z3 seems an interesting exception, but it is
still much slower than the MINICARD-based approaches or
the ones that use sequential counters.

Table IV shows the results for the most difficult bench-
mark: for WSNs of 80-90% density with all the WSN con-
straints being checked. As it was suggested before, we only
show here the results for sequential counters, excepts for the
LINGELING+Z3 setting with k-cardinality modulo totalizer
encoding, which does not seem competitive anymore.

VI. CONCLUSION

In this paper, we propose a novel approach for speeding
up the optimization of WSNs, in comparison with previous
results with OMT solvers. The current approach models

OMT Solved/TO Runtime

PULI 19/1 75.5

OPTIMATHSAT 16/4 327.2

Z3-OPT 6/14 858.8

SYMBA 7/13 924.5

SAT Encoding SMT Solved/TO Runtime

MINICARD MATHSAT 20/0 2.8
Z3 20/0 2.6

MINISAT

SEQ-COUNTER
MATHSAT 20/0 3.5

Z3 20/0 3.6

CARD-NETWORK
MATHSAT 20/0 55.1

Z3 20/0 51.9

kM-TOTALIZER
MATHSAT 19/1 74.8

Z3 19/1 70.2

GLUCOSE

SEQ-COUNTER
MATHSAT 20/0 7.6

Z3 20/0 7.7

CARD-NETWORK
MATHSAT 20/0 62.2

Z3 19/1 70.7

kM-TOTALIZER
MATHSAT 19/1 84.2

Z3 19/1 104.9

LINGELING

SEQ-COUNTER
MATHSAT 20/0 29.5

Z3 20/0 8.8

CARD-NETWORK
MATHSAT 19/1 72.0

Z3 19/1 71.7

kM-TOTALIZER
MATHSAT 19/1 79.7

Z3 20/0 38.5

Table II
RESULTS FOR WSNS OF 60-70% DENSITY WITH 10 SENSOR NODES, 4

TARGET POINTS, 2-COVERAGE, EVASIVE CONSTRAINT WITH E = 2, AND
MOVING TARGET CONSTRAINT WITH M = 1, ONLY WITH BINARY

SEARCH.

the WSN optimization problem as Boolean cardinality con-
straints, which are fed into both an underlying SAT solver
and an SMT solver. The two solvers are executed in parallel
in a portfolio setting. Our experiments with different SAT
and SMT solvers show MINICARD + Z3 to be the most
efficient combination, which outperforms the OMT solvers
by 1-2 orders of magnitude. Our further experiments with
different encodings of Boolean cardinality constraints show
that it is highly recommended to apply sequential counters
as opposed to cardinality networks and k-cardinality modulo
totalizer.

As future work, we would like to run further experiments
with larger WSNs of 10s or 100s of sensor nodes. This was
not yet possible with OMT solvers, but now, with our new
portfolio SAT + SMT approach, this objective looks quite
realistic to achieve. Another objective is to investigate more
realistic WSN models.e For instance, what if the ranges of
the sensor nodes are not fixed, but could be adjusted on
the fly? In this case, the solvers would try to minimize the
scopes every time in order to prolong the WSN’s lifetime.



OMT Solved/TO Runtime

PULI 20/0 11.4

OPTIMATHSAT 14/6 794.5

Z3-OPT 20/0 13.3

SYMBA 20/0 155.0

SAT Encoding SMT Solved/TO Runtime

MINICARD MATHSAT 20/0 1.9
Z3 20/0 1.6

MINISAT

SEQ-COUNTER
MATHSAT 20/0 3.3

Z3 20/0 3.2

CARD-NETWORK
MATHSAT 7/13 852.8

Z3 16/4 282.3

kM-TOTALIZER
MATHSAT 2/18 1097.3

Z3 15/5 322.2

GLUCOSE

SEQ-COUNTER
MATHSAT 20/0 9.4

Z3 20/0 9.3

CARD-NETWORK
MATHSAT 6/13 843.1

Z3 15/5 315.4

kM-TOTALIZER
MATHSAT 7/13 891.3

Z3 16/4 260.3

LINGELING

SEQ-COUNTER
MATHSAT 20/0 94.2

Z3 20/0 16.1

CARD-NETWORK
MATHSAT 4/16 1065.7

Z3 17/3 216.6

kM-TOTALIZER
MATHSAT 11/9 759.3

Z3 19/1 134.0

Table III
RESULTS FOR WSNS OF 80-90% DENSITY WITH 10 SENSOR NODES, 4

TARGET POINTS, 2-COVERAGE, ONLY WITH BINARY SEARCH.

In such a case, Boolean cardinality constraints might not
be sufficient to encode the entire WSN problem, but only a
part of that. We would like to investigate how to apply our
portfolio SAT + SMT approach for such models. It might
also be worth to experiment with planners as alternatives to
SAT solvers, as future work.
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