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Abstract—Over the last decade, climate change has impacted
Earths’ atmosphere and environment more than anytime before.
Glaciers are the most sensitive indicators of its impact. In this
work, we model a glacier’s evolution by applying computer
vision algorithms on high-resolution satellite imagery. We detect
changes in the ice coverage movement by applying a dense
optical flow algorithm over an image time series covering a
particular scene (region) and processed to extract the NDSI. We
perform tests on the Jungfrau-Aletsch-Bietschhorn (JAB) glacier
in the Swiss Alps. Our results show that we are able to obtain
relevant information by computing motion vectors across time.
Furthermore, we observe small differences between our predicted
NDSI and the observed values demonstrating the efficiency of the
approach.

Index Terms—Glacier retreat, Computer vision, Satellite im-
ages, Landsat 8, Image alignment, Dense Optical Flow, Jungfrau-
Aletsch-Bietschhorn glacier

I. INTRODUCTION

According to a report delivered by NASA in March, 2021,
Earth’s average surface temperature which was recorded in
2020 came to be equal with the temperatures which designated
2016 as the hottest year on record [1] and they are expecting
that records will continue to be broken.

Analysing temperature trends on a global scale provides vi-
tal indicators such as carbon dioxide levels in the atmosphere,
which are now growing more than they can be naturally
eliminated, causing an increase in phenomena such as sea ice
and ice sheet mass loss, heat waves which will become more
intense and longer, rising level of the sea, as well as changes
in the fauna and flora of the planet.

Having a mature enough approach for timely identification
of these climate trends represents an essential necessity for
human life. Changes in environment will require changes
of approach to problems such as managing water resources,
creating different crops which can withstand extreme changes
of temperature and being prepared for potentially disastrous
weather events.

Since glaciers are known the be the most sensitive indica-
tors to climate change, extraction of information about their
changes in the last years could prove valuable. Glacier retreat
is happening due to increased values in temperature causing
less snow fall and less accumulation of ice in time.

For instance, according to our satellite imagery based mea-
surements, the Jungfrau-Aletsch-Bietschhorn glacier lost 4256

pixels worth of snow, which at 30m resolution is equivalent to
3830400 squared meters, or 383.04 hectares between 1985 and
2020 as it can be seen in Figs. 1 and 2. Studies performed in
2011 have indicated that by 2100 almost 90% of its ice volume
will disappear [2].

Fig. 1. Change in the Jungfrau-Aletsch-Bietschhorn glacier: 1985 (left) and
2020 (right).

Fig. 2. Evolution of the Jungfrau-Aletsch-Bietschhorn glacier between 1985
and 2020. The y-axis represents the number of snow pixels extracted by
applying NDSI (Normalized Difference Snow Index) with 2 threshold levels.

The goal of this paper is to model glaciers by analysing
the optical flow between consecutive satellite images. Based
on information extracted from datasets constructed over the



past decade, we are creating predicted images which could
highlight future glacier retreat and different patterns of accu-
mulation. Since current methods of large dataset acquisition
do not scale, we are also creating a tool for easier search and
download.

The rest of the paper is structured as follows: Sect. II
provides an overview of the related work; Sect. III describes
in detail the proposed solution; Sect. IV summarizes the
experiments and their results; and finally Sect. V outlines the
main conclusion and future work.

II. STATE OF THE ART

In [3], the authors use both Sentinel and Landsat satellites
for image collection in order to produce a higher quantity of
qualitative images for glacier mapping, while also covering
wider areas. They propose four approaches for studying auto-
matic glacier mapping. The first analyses different band ratios
for multispectral image creation. The second proposes robust
methods used for improving glacier mapping by exploiting
the seasonal variation yielded by the spectral properties of
snow. The third highlights spatio-temporal variation of glacier
surface types. Finally, the fourth analyses how the chosen band
ratio images generated from the first application can be used
for automatically detecting changes in glaciers. Their results
show that the alpine and arctic advances and retreats provide
the most visible signs of climate change and they propose to
revisit current methods for glacier mapping in order to reduce
the practice of manual glacier mapping.

Glacier sensitivity to climate change is also addressed in [4].
The authors propose a remote sensing based framework used
on multispectral satellite imagery for studying the ablation and
accumulation processes of glaciers in order to quantify their
mass balance. They study the mass loss between 1998 and
2016 for the Parvati glacier, located in the western Himalayas.
Their results show that the glacier responds to climate change
factors each year through a high mass loss, resulting in a strong
effect on water availability and river flows.

In [5], the authors propose a decision-based image classifi-
cation algorithm for separating ice, debris and snow surfaces
on glaciers and extracting snow lines both monthly and annu-
ally. They achieved this by automatically partitioning glacier
surfaces through band ratios combined with topographic cri-
teria which are extracted for each pixel. They have conducted
the study on the Karakoram and Trishuli regions located in
eastern Himalaya, with images taken between 2000 and 2016.
They have concluded that snow lines are the most sensitive
to manual corrections, elevation dataset, topographic , and the
calculated thresholds for the band ratios for the spring and
winter months.

In [6], the authors propose descriptive methods for glacier
mapping by using aerial time series produced by the Synthetic
Aperture Radar sensor from Radarsat-2 and Sentinel-1A. Out
of their five scenarios, the first tracks transient snow lines
and it proved to correlate with both Landsat 8 and Sentinel-
2A produced aerial images. As a conclusion, they state that
automatically derived satellite imagery products prove to be
important in analysing glacier change.

Another interesting approach to determine glacier melt was
analysed in [7] where the authors have compared the band
ratio method with the Normalized Difference Snow Index
(NDSI) one for extracting parameters which highlight glaciers.
They have conducted their studies on the Karakoram area with
satellite imagery collected from Landsat 8 starting from 2014.
Their results show that for boundary extraction, the band ratio
technique yielded better results. They also state that visual
interpretation is still an major factor in analysing the obtained
results.

In this paper we rely on another idea which tries to capture
movement in consecutive images. Farnebäck, Gunnar proposes
an interesting approach in [8] in which they present an
algorithm for estimating flow in images by approximating
each neighbourhood through quadratic polynomials. Their
transformation under translation is then analysed in order to
extract displacement fields. This method of computer vision
has not been tried yet in the field of glacial analysis and it has
potential to yield interesting results.

III. PROPOSED SOLUTION

Based on the already existing approaches as described in
Section II, we propose to extract the snow and ice sections of
the images by using the normalised snow difference index, as
explained in [7] and analyse movement of ice by calculating
the dense optical flow between pairs of time consecutive
satellite images, based on the algorithm created by Farnebäck,
Gunnar, as described in [8].

The processing workflow can be seen in Figure 3. The next
sections will describe each step in greater detail focusing on
the technical challenges and algorithmic solutions.

Fig. 3. Processing diagram.

A. Image collection and NDSI processing
We have chosen to work with images collected by the

Landsat 8 satellite mainly because their archive is structured
such that the images are consistent over time, of high quality,
and fit for time series analysis. On top of this, since the satellite
has a cycle of 16 days, there are over two million freely
available images, dating from 2013 until September 2021.

One of the most popular services for satellite imagery down-
loading is USGS Earth Explorer. It can query and order aerial
data collected from various satellites. The tool is particularly
useful when the main focus is to analyse a specific area rather
than trying to acquire a large dataset of scenes. However,
downloading a large set of images proves to be rather difficult
as the parameters for each scene need to be manually set.
On top of this, the query results have to be manually picked
and then passed for downloading through another application
which handles their bulk download.



In order to fix the problem of excessive manual labour which
appeared by using the USGS Earth Explorer we implemented
an endpoint of the SpatioTemporal Asset Catalog API1. A
script is used to bulk search and download based on an already
existing database of over 130,000 entries representing glaciers
and their afferent parameters (e.g., location, elevation, name).

By using this method we can choose which glaciers we want
to download directly from the database and the dataset will be
automatically structured as they are fetched. Images containing
clouds can be dropped by setting a maximum allowed cloud
coverage. This tool works as a plug-in and it is independently
executed from the main application.

For snow extraction, we have decided to use the Normalized
Snow Difference Index (NDSI) measure with a threshold
of 0.3. The value for the NDSI threshold was chosen as a
suggestion made by D. Hall and G. Riggs, in their paper on
snow and ice-mapping algorithms [9], where they concluded
that 0.3 showed the most consistent results for snow detection.
After experimenting with different values (cf. Fig. 2), we have
come to the same conclusion.

In order to obtain the NDSI image, we make use of the
formula described in Eq. 1, which uses two of the Landsat
8 bands. The shortwave infrared 1 band (1.57 - 1.65 mi-
crometers) is particularly useful for enhancing objects which
look similar in other bands, such as soils and rocks [10].
Alongside this, it also discriminates moisture content of soil
and vegetation and penetrates thin clouds [11]. The green band
(0.53- 0.59 micrometers) is usually used for mapping peak
vegetation. Snow and ice usually have a very low reflectance
in the shortwave infrared spectrum and very high in the visible
one, which is useful for removing most types of clouds from
the scene [12].

NDSI =
green− swir1

green + swir1
(1)

We can then apply the thresholding function from Eq. 2 to
separate snow free land from covered one.

thresholding(pixel) =

{
snow/ice, NDSI ≥ 0.3

snow-free, NDSI < 0.3

}
(2)

To aid the visualisation we have coloured the result such
that snow pixels are white, while snow free land is green.
The resulting NDSI image can be seen in Figure 4 for the
Jungfrau-Aletsch-Bietschhorn glacier in the Swiss Alps.

B. Alignment

Landsat’s trajectory orbiting Earth is not precise, therefore
not all images will overlap at pixel level. The green and
swir1 bands have a spacial resolution of 30 m, therefore a
misalignment of just 50 pixels between two images can lead
to a 1.5 km offset. Tracking pixel motions through a series of
images without aligning them first would yield in erroneous
results, due to inconsistent geographical coordinates. Figure 5
highlights the misalignment between scenes B and C.

1http://nsidc.org/data/glacier\ inventory/index.html

Fig. 4. NDSI image of scene A: Jungfrau-Aletsch-Bietschhorn glacier.

Fig. 5. Overlapped unaligned (top) and aligned (bottom) NDSI scenes B and
C.

We have solved this problem by using a strong keypoint
detection algorithm which collects features from all bands
within an image and matches them with a given reference. In
our case we found that the most reliable keypoints were around
mountain edges and other geographical features present in the
image. We have used a combination of ORB (Oriented FAST
and Rotated BRIEF), Harris Corner Detector, and RANSAC
(Random Sample Consensus) which we applied on the raw
16bit grayscale bands of each scene.

ORB represents a fusion between the features extracted
by using the fast accelerated segment test (FAST) keypoint
detector combined with the binary robust independent el-
ementary features (BRIEF) descriptor. The FAST detector



finds keypoints in the image and uses Harris corner measure
to select a number of top points from the generated list.
We have found that keeping the top 25% matches extracted
from 5,000 keypoints yielded the best results. Splitting the
image into multiple boxes and applying the ORB algorithm
on each separate part of the image such that features are
homogeneously distributed also improved valid match making.
As a final optimisation we set the maximum allowed shifting
euclidean distance between any two pixels to be at most 200
(6 km on the map) therefore getting rid of outlier matches
based on the distance.

The obtained matches can be then used to create an affine
transformation matrix, generated through the RANSAC al-
gorithm, proposed by Fischler and Bolles [13]. The affine
transformation matrix describes the rotation and translation of
the image to be aligned in comparison to its reference and it
is used for warping it such that no two pixels are misaligned.

C. Movement extraction through optical flow

From our series of satellite images we can track the motion
of each pixel from one image to the next. This effectively
allows us to generate new images from information extracted
from previous ones.

Extracting the motion vectors between two consecutive im-
ages can be achieved by calculating their optical flow. Optical
flow is defined as the motion of objects between consecutive
frames of a series, produced by the relative movement between
the object and camera. By using computer vision algorithms
which calculate the optical flow of two scenes, we can track
the changes in glacier retreat across a time series dataset by
estimating their current velocity and predicting their position
in the next images.

Figure 6 depicts this idea, where we can express an image as
a function I : N3 → N3 of 2D space with coordinates (x, y),
and time t. If we take the first image to be I(x, y, t) and we
move its pixels by a distance of ∆x,∆y over a timeperiod ∆t
we obtain the new image as I(x + ∆x, y + ∆y, t + ∆t).

Fig. 6. Optical flow between NDSI(time = t) and NDSI(time = t +
∆t).

There are multiple types of optical flow generation algo-
rithms, but for the purpose of our paper, we have chosen the
dense optical flow algorithm proposed by Farnebäck, Gunnar
[8]. Even if dense implementations have a higher cost we
chose to make this trade because it calculates the motion for
each pixel of the frame while also having a higher accuracy
compared to sparse methods such as in the one proposed in
[14].

The best results have been generated with a pyramid scale
of 0.5 and 6 pyramid levels keeping in mind that the images
that we work with are large. At each level, the image is going
to be reshaped at half the size of the previous one; therefore
the search area for motion is small enough for optical flow to
track movement, with 3 iterations over each layer. The rest of
the parameters have been been set at their typical values.

The results contain the computed motions for each pixel,
treated as a pair representing the distance and direction that its
coordinates moved from one image to the next (cf. Figure 6).
As an example, the generated optical flow vectors for scene D
can be seen in Figure 7. To avoid visually flooding the image
with vectors we are only drawing them every 30 pixels (900
m).

Fig. 7. Overlayed motion vectors generated by optical flow for image D.

D. Generating predicted images based on motion
Optical flow can detect the movement of the ice front.

Therefore we propose to generate NDSI images whose pixels
will be predicted based on the past extracted motions for a
given frame. We can obtain the motion predicted NDSI image
by relocating each pixel value from the NDSI(time = t) to a
new location (x+2 ·∆x, y+2 ·∆y), effectively generating the
new image NDSI(time = t + ∆t) as described in Figure 8:
(I(x + 2 ·∆, y + 2 ·∆x, t + 2 ·∆y).

Fig. 8. Overlayed motion vectors generated by optical flow for scene D.

As a first approach of populating the new image, we have
simply iterated over all the pixels in NDSI(time = t + ∆t)
image and calculated their new coordinates based on their
respective motion vector. Since this is an iterative approach,
it does not scale for images as large as the ones we are using.



For a typical image of 8543× 8039 pixels it took as much as
10 minutes for generating the image on the machine that we
have used for processing (cf. Section IV-G).

In the iterative approach, for each pixel we add its motion
to its position such that we get its new location. These
numbers can be computed ahead of time and transformed
into arrays such that we only use optimised operations. By
creating an array of the initial coordinates (x, y) and adding
the motion vectors (dx, dy) array to it, we generated the
absolute coordinates where each pixel from the NDSI image
should be translated.

Algorithm 1: Improved algorithm used for motion
predicted image generation based on the optical flow
vectors and NDSI(time = t + dt)

1 function generate (NDSI,motion vectors);
Input : NDSI(time = t + ∆t and the motion

vectors generated by optical flow between
NDSI(time = t) and
NDSI(time = t + ∆t)

Output: The predicted image
NDSI(time = t + 2 ·∆t)

2 motion predicted image← NDSI.shape;
3 width← NDSI.width();
4 height← NDSI.height();
5 index array ← [[[0, 0], [1, 0]...[width, 0]

[0, 1], [1, 1]...[width, 1] ...
[0, height], [1, height]...[width, height]]];

6 absolute coordinates←
motion vectors + index array;

7 motion predicted image[absolute coordinates]←
NDSI;

8 return motion predicted image;

Fig. 9. Raw generated NDSI image, unfiltered, zoomed in for a clear view.

The function used to generate the predicted NDSI is non-
surjective leaving some pixels undefined. This results in a
noisy generated image as it can be seen in Figure 9 (black pix-
els). We solved this through a filter which uses the weighted

average of the neighbouring pixels values to fill the missing
ones.

E. Generated image filtering

A first step into creating the filter for the motion predicted
NDSI image is to create a mask which will be applied on
the black border of the scene such that we are looking for
undefined values only inside it. The value of each found
undefined pixel has to be calculated as an weighted average
composed of its neighbouring pixels, as shown in Figure 10
(top). We created a kernel which holds the weight of each
pixel in the neighbourhood such that pixels closer to the centre
have a higher weights than those near the edge. However,
there are cases when multiple undefined pixels exist in the
same neighbourhood. Since we cannot take their values in
consideration we do not include them in the weighted average
by setting their weight to 0 as shown in Figure 10 (bottom left).
The result of the weighted average will be then stored as the
value of the currently focused undefined pixel as highlighted
in Figure 10 (bottom right).

Fig. 10. Zoomed in part of the predicted NDSI (top left ); extracted
neighbourhood (top right); kernel of weights (bottom left); generated value
(bottom right).

After experimenting with different kernel sizes (3x3, 7x7),
we have empirically come to the conclusion that a kernel size
of 5x5 ensures that the generated image stays sharp, while also
being able to handle a high amount of black pixels without
high distortion.

IV. EXPERIMENTS

A. Dataset

For our tests we have used two well studied glaciers and
downloaded all their public available satellite imagery with
at most 20% cloud coverage. Due to different seasonal snow
coverage fluctuations we have split our dataset based on
(path, row,month) pairs as suggested in [5]. The predicted
image is overlapped onto the analysed one, and we have
colourised them as follows: green represents the areas which



are snow free, while white represents the areas which are
covered, as described in Formula 2. The cyan areas represent
areas which are predicted to develop snow buildup, and the
orange areas are expected to melt. These two colours represent
the error of motion prediction between the two images.

The first glacier region which will be analysed is named
Jungfrau-Aletsch-Bietschhorn, located in the Swiss Alps
(46.477◦N, 8.056◦E) an elevation between 809 and 4274
m. This location is at the intersection of multiple WRS-
2 coordinates, therefore we will three different sets of
(path, row,month) as depicted next. The images are captured
between January 2013 and July 2021.

The second glacier which we have taken into con-
sideration is named Parvati and it is located in India,
(31.754◦N, 77.675◦E) at a maximum elevation of 5599 me-
ters. We have chosen this glacier in order to compare our
results with those in [4]. They have chosen a dataset of images
located at WRS-2 path 147, row 38. Unfortunately, we could
not fetch the images for that specific path and row in order to
be able to make this comparison. Instead our results are for
path 146, row 38.

B. Evaluation metrics and approach

To asses the accuracy of our approach we have used the
percentage of snow covered areas within an image as deter-
mined by applying NDSI. Furthemore, we have used MAPE
(Mean Absolute Percentage Error) to estimate the difference
between our predictions and the observed NDSI percentage
values for each scene.

MAPE =
100

n

∑
n

∣∣∣∣NDSIobserved −NDSIpredicted
NDSIobserved

∣∣∣∣ (3)

Predictions were made by considering a rolling series of
two consecutive images in a scene. For each pair we extracted
the motion vectors and generated the next image as depicted
in Sect. III.

A summary of results can be seen in Fig. 11 and Fig. 12.

Fig. 11. Comparison between the actual and predicted NDSI values in
percentage of covered areas.

Fig. 12. MAPE comparison between the actual and predicted NDSI values.

Fig. 13. Overlapped motion generated NDSI for the Jungfrau-Aletsch-
Bietschhorn glacier, at path 194, row 28, captured in April.

C. Jungfrau-Aletsch-Bietschhorn (194, 28, 4)

The motion generated image for this path and row can
be seen in Figure 13. This scene was captured in April,
when temperatures are still low and snow fall fluctuates a lot
resulting in a low signal to noise ratio. This pattern proved
to yield inconsistent results for the generated images. We
obtained a MAPE of 2.12%.

D. Jungfrau-Aletsch-Bietschhorn (194, 28, 7)

Fig. 14. Overlapped motion generated NDSI for the Jungfrau-Aletsch-
Bietschhorn glacier, on path 194, row 28, captured in July.

Figure 14 shows the motion predicted NDSI image afferent
to this path, row and month pair. The scene was captured in
July, hence the more consistent snow fall. These results yield



a better estimation of movement than the one obtained in early
spring with a MAPE of 2.04%.

E. Jungfrau-Aletsch-Bietschhorn (194, 28, 8)

Fig. 15. Overlapped motion generated NDSI for the Jungfrau-Aletsch-
Bietschhorn glacier, on path 194, row 28, captured in August.

The result of the experiment is visible in Figure 15. The
image was captured during August, which in this case has the
least amount of snow fall. The result for this data set was
the most reliable, as one can observe since the moraines are
clearly exposed, a fact also demonstrated by the MAPE value
of only 1.04%.

F. Parvati (146, 38, 4)

Fig. 16. Overlapped motion generated NDSI for the Parvati glacier, path 146,
row 38, captured in April.

Here we can see again that the high snow fluctuation yields
in big differences between the predicted image and the actual
one, as it can be observed in Figure 16. The MAPE in this
case is 3.87% Given that the Parvati region is located at a
higher altitude than the Jungfrau-Aletsch-Bietschhorn one, its
snowfall is higher. This can also be seen while analysing the
snow coverage values for the values from Figure 11, where the
maximum snow fall for Parvati is around 57% (2014) and the
one for Jungfrau-Aletsch-Bietschhorn is around 23% (2016).

G. Performance

For the performance evaluation we are using a machine
which has an Intel i7-7700HQ CPU, with 24 GB of RAM.
The images were stored remotely and mounted through NFS.

Downloading the dataset of two glaciers which have been
used for the experiment took around two hours on my machine,
while their querying took around half an hour. For Parvati there

were 185 entries, while for Jungfrau-Aletsch-Bietschhorn there
were 109. The processing and caching of all datasets took
around 8 hours which sums up to around 1 minute and 30
seconds per scene.

V. CONCLUSIONS AND FUTURE WORK

The best and consistent results were obtained for scenes
which were acquired between April and September, due to
lower snow fall and better glacier exposure. We have found
that scenes which are taken during the winter months are
prone to high errors due to higher snow coverage which
creates high fluctuations and outliers. In [4] (Parvati), only
September was taken into consideration when conducting the
experiments, mainly because it is the month which has the
lowest recorded snow coverage of the area. Also, in [5], the
experiments were performed on seasonal organized data and
the scenes with higher snow coverage proved problematic as
well. Another factor which influenced the results is cloud
coverage, since even if the shortwave infrared band filters
out most of the clouds found in a scene, still there are some
cases when the coverage is very dense and the land underneath
cannot be analysed. Since the terrain is not visible, the glacier
pixels cannot be properly extracted, resulting in erroneous
snow coverage and distorted motion generated images at the
locations where the clouds have appeared or disappeared.

During the process of implementing and testing the solution
multiple problems were met. One of them was that even
though the number of available aerial images collected in the
Landsat 8 archive are high most of them have very high cloud
coverages. Filtering out results which have lower percentages
led to datasets with low number of entities. In turn this meant
that we could not test our results on longer time series. As
clouds interfere both with extracting glacier pixels from a
scene and analysing motion we suggest for future work two
approaches on:

1) Harvesting images provided by multiple satellites, such
as Sentinel and older versions of Landsat, as proposed in
[6]. Even if these satellites use other types of sensors for
Earth observation, by matching the wavelengths of their bands
we could organize and pair their datasets, resulting in time
series with more entities and more scenes with lower cloud
coverage. By only using data provided by the Landsat 8
satellite, even with an allowed cloud coverage of just 20%
(as we have used for our experiments) the average length of
a path, row,month) dataset was around 15 images;

2) Implementing cloud mapping algorithms so that clouds
could be detected and trimmed out before the calculation of the
normalized snow difference index and optical flow extraction.
Our results do not consider the difference between snow pixels
and cloud ones.

Another possible improvement is to change the way in
which the coordinates of the pixels from the motion gener-
ated image are calculated. Time series forecasting models
could be applied on the distance vectors generated by optical
flow for each pixel over time in order to generate future
entries. This could be done with statistical methods such
as the autoregressive integrated moving average (ARIMA).



However, doing this forecast over each pixel of a high res-
olution image would take a lot of processing power. Further-
more, a larger path, row,month dataset would be needed for
such an analysis. Preliminary work on the Jungfrau-Aletsch-
Bietschhorn glacier’s snow coverage by using linear regression
and ARIMA has demonstrated that promising results with
95% confidence level for ARIMA, and a good performance
by the linear regression for short term forecasts (R2 = 0.92
– coefficient of determination – for 3 year forecasts) can be
achieved. As an exercise we predicted (by looking at the
95% prediction interval and using a 0.65 NDSI threshold
to avoid seasonal snow) that the glacier would completely
disappear by 2800 if current trends remain stable. This is a
rather optimistic prediction when compared to the one made
by Jouvet et al. (2011) [2], that most of the glacier will be
gone by 2100. However, by extrapolating from the number of
pixels obtained with both NDSI thresholds and assuming the
same decreasing trend we forecast for a 0.3 threshold that
the glacier will disappear during 2155, while for the 0.65
threshold during 2121. Unfortunately, for the glacier, both
these results are closer to the one predicted in 2011 by the
Swiss team. It remains to be seen if either prediction will
come true considering current efforts to limit the effects of
the global warming.

One of the main slow downs in developing and using the
application was the slow processing time due to the large data
files. Migrating the processing unit to a cloud infrastructure
and hiring a machine with a CPU which has a high number of
cores and better performance could solve this issue. However,
in this case we would have to consider the amount of time
needed for moving the large scene files to the machine on
cloud. A solution would be to move the dataset before starting
the processing and make sure that they are on the same
machine. However, cloud storage can get very expensive and
the trade off between processing time and expenses could
prove too unbalanced.
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