
ar
X

iv
:2

10
9.

05
59

9v
2 

 [
cs

.L
O

] 
 1

 N
ov

 2
02

1

DELP: Dynamic Epistemic Logic for

Security Protocols

Ioana Leus
,
tean and Bogdan Macovei

Faculty of Mathematics and Computer Science

University of Bucharest

Bucharest, Romania

ioana.leustean@unibuc.ro, bogdan.macovei@unibuc.ro

Abstract

The formal analysis of security protocols is a challenging field, with
various approaches being studied nowadays. The famous Burrows-Abadi-
Needham Logic was the first logical system aiming to validate security
protocols. Combining ideas from previous approaches, in this paper we
define a complete system of dynamic epistemic logic for modeling security
protocols. Our logic is implemented, and few of its properties are verifyied,
using the theorem prover Lean.

1 Introduction

This paper presents DELP, a dynamic epistemic logic for analysing security
protocols. In order to define our logic, we combine the epistemic approach to
authentification from [5], the expectation semantics from [8] and the operational
semantics for security protocols from [7].

Our main contributions are: (i) the definition of DELP as a sound and com-
plete system with respect to an expectation semantics representing the adver-
sary knowledge; (ii) the implementation of DELP in the theorem prover Lean.
Consequently, using Lean: (iii) we defined translations in DELP for a few infer-
ence rules of the Burrows-Abadi-Needham (BAN ) logic [4] and we proved their
soundness, (iv) we defined the Needham-Schroeder authentication protocol as a
theory in DELP and we verified a few security claims.

Section 2 presents the Needham-Schroder security protocol and recalls the
formal approaches from [5], [8] and [7]. In Section 3 we define the system DELP
and we prove its properties. Section 4 contains the Lean implementation of
DELP. Few deduction rules of the BAN Logic are defined in DELP and their
soundness is proved using the Lean implementation. In Section 5 we study the
Needham-Schroeder authentication protocol using DELP and its Lean imple-
mentation. The last section contains conclusions and further developments.

1

http://arxiv.org/abs/2109.05599v2


2 Preliminaries: formal analysis of security pro-

tocols

A security protocol is defined as a set of rules and conventions that determine
the exchange of messages between two or more agents in order to implement
a security service. The protocol must be unambiguous and must allow the
description of several roles, so that an agent can perform a certain role at a
certain protocol round. An example of a security protocol, which we will mention
and use in this paper, is the Needham-Schroeder protocol.

2.1 The Needham-Schroeder symmetric key protocol for

key exchange

The protocol specification for three agents is as follows:

A→ S : A,B,Na

S → A : {Na, B,Kab, {Kab, A}Kbs
}Kas

A→ B : {Kab, A}Kbs

B → A : {Nb}Kab

A→ B : {Nb − 1}Kab

A step-by-step description of the protocol is:

1. Alice initiates the connection with the Server, sending who she is, with
whom she wants to communicate and a nonce;

2. the Server sends - encrypted with the common key between Alice and
Server - the nonce generated by Alice, the identity of Bob and the com-
munication key between Alice and Bob, to which is added a message that
only Bob can decrypt (being encrypted with the communication key be-
tween Bob and Sserver), which contains the communication key shared by
Alice and Bob; in this way, Alice cannot read the message sent by Server
to Bob;

3. Alice sends Bob the message that it could not decrypt, received from the
Server;

4. Bob decrypts the message, and sends Alice a nonce encrypted with the
common key between Alice and Bob;

5. Alice receives Bob’s message, decypts it, and resends it, applying a simple
function to it - in this case, it decrements it. This step is useful in two
situations: it is a first protection on a reply attack and it shows that the
agents are still alive in the session.

2.2 BAN Logic

We will briefly present the BAN logic, based on [4]. The mathematical system
contains the following sets: a set of participating agents in communication pro-
tocol sessions - named, generally, using capital letters of the beginning of the

2



alphabet (A, B, ...), a set of keys - named, generally, Ka,b for the public key
between agents A and B, Ka for A’s public key and K−1

a for A’s secret key, and
a set of messages - named, generally, using capital letters of the end of the al-
phabet (X, Y, ...). An encrypted message is denoted by writing {X}k, meaning
that the message X is encrypted with the key k.

The specific formulas introduced in BAN logic are the following:

• P |≡ X : the agent P believes the message X ;

• P ⊳ X : the agent P sees or receives X ;

• P |∼ X : the agent P once said or sends X ;

• P ⇒ X : the agent P controls X or have jurisdiction over X ;

• #(X): X is a nonce;

• P
k
←→ Q: the agents P and Q shares the communication key k;

•
k
7−→ P : k is P ’s public key;

• {X}k: X is encrypted with the key k;

• < X >Y : X is encrypted with the common secret Y .

In the sequel we recall only two deductions rules, we refer to [4] for the full
deduction system.

The Message Meaning Rule, formally defined by

P |≡ Q
K
←→ P P ⊳ {X}K

P |≡ Q |∼ X
(1)

can be read as follows: if agent P belives that he has a communication key K
with agent Q, and agent P receives a message X encrypted under K, then P
belives that the encrypted message was sent by Q.

The Jurisdiction rule, formally defined by

P |≡ Q⇒ X P |≡ Q |≡ X

P |≡ X
(2)

can be read as follows: if agent P belives that agent Q has jurisdiction over a
message X and, furthermore, agent P belives that Q belives X, then P belives X.

2.3 An approach based on epistemic logic

In this subsection, we recall the main ideas from [5], and we refer to [9] for a
comprehensive presentation of dynamic epistemic logic.

In this paper, there are defined K (the set of communication keys), N (the
set of nonces), T (the set of plain texts) and Φ (the set of formulas). The BNF

3



specification of the language is:

s ::= s | x

m ::= t | k | n | i | (m1,m2) | {m}k | ϕ

ϕ ::= p | senti(s) | recvi(s) | extracti(m) | ¬ϕ | ϕ1 ∧ ϕ2 | Kiϕ |

© ϕ | - ϕ | �ϕ | − ϕ | ∃xϕ | [m] = s | s ⊑ s′ | Pri(ϕ) ≥ α

where p is an atomic formula, i is an arbitrary agent, m is an arbitrary message,
t ∈ T , k ∈ K, n ∈ N , α ∈ [0, 1] a probability, s a string, x a variable over strings
and ϕ ∈ Φ.

For semantics, the models are

I = (R, π,C, {µC}C∈C)

where R is a protocol rounds system, π is an evaluation function, C is a partition
of R, and for every C ∈ C, the measure µC is the distribution probability over
rounds in C. The inductive interpretation of formulas in this models are:

(I, r,m) |= p⇐⇒ π(r(m))(p) is true

(I, r,m) |= ¬ϕ⇐⇒ (I, r,m) 6|= ϕ

(I, r,m) |= ϕ1 ∧ ϕ2 ⇐⇒ (I, r,m) |= ϕ1 and (I, r,m) |= ϕ2

(I, r,m) |= Kiϕ⇐⇒ for all (r′,m′) ∼i (r,m),

we have (I, r′,m′) |= ϕ

(I, r,m) |=©ϕ⇐⇒ (I, r,m+ 1) |= ϕ

(I, r,m) |= - ϕ⇐⇒ m = 0 or (I, r,m− 1) |= ϕ

(I, r,m) |= �ϕ⇐⇒ for all m′ ≥ m, (I, r,m′) |= ϕ

(I, r,m) |= − ϕ⇐⇒ for all m′ ≤ m, (I, r,m′) |= ϕ

(I, r,m) |= Pri(ϕ) ≥ α⇐⇒

µr,m,i({(r
′,m′) | (I, r′,m′) |= ϕ} ∩Ki(r,m) ∩ (C)(r)) ≥ α

(I, r,m) |= ∃xϕ⇐⇒ exists s string, (I, r,m) |= ϕ[s/x]

2.4 An approach based on operational semantics

From [7], the main point of interest is the terms deduction system. In this formal
system we have terms (roles, messages, keys and nonces), variables over Var,
Fresh and Role sorts, functions symbols (in Func), the protocols specifications
and a labeled transition system for the execution of the protocols.

Having Γ a knowledge set, the term deduction rules are:

• if t ∈ Γ, then Γ ⊢ t;

• Γ ⊢ t1 and Γ ⊢ t2 if and only if Γ ⊢ (t1, t2);

• if Γ ⊢ t and Γ ⊢ k, then Γ ⊢ {t}k;

• if Γ ⊢ {t}k and Γ ⊢ k−1, then Γ ⊢ t;

• if Γ ⊢ ti, 1 ≤ 1 ≤ n, then Γ ⊢ f(t1, t2, ..., tn), where f is a function symbol
of Func, with the arity n.

4



2.5 An approach based on expectation models

In this subsection, we will present the main results of [8], that we will use in the
next section to prove the completeness theorem of our system.

In this paper there are introduced two sets, I - the set of agents and P -
the set of formulas. For interpreting formulas there are used Kripke models,
M = (S,∼, V ), where S is the set of accessible world, ∼ is the accessibility
relation between worlds and V is the evaluation function, V : P → P(S).

There are an action set - Σ - and a langue of observations - Lobs. The BNF
grammar of the actions is:

π ::= δ | ε | a | π · π | π + π | π∗ (3)

where δ is an empty set of observations, ε is the empty string and a ∈ Σ.
The observations set is denoted by L(π) and is inductively defined as:

L(δ) = ∅ (4)

L(ε) = {ε} (5)

L(a) = {a} (6)

L(π · π′) = {wv|w ∈ L(π) and v ∈ L(π′)} (7)

L(π + π′) = L(π) ∪ L(π′) (8)

L(π∗) = {ε} ∪
⋃

n>0

(L(π · ... · π)) (9)

An epistemic model defined with this observations is an epistemic expecta-
tion model M = (S,∼, V, Exp), where Exp : S → Lobs is a function that maps
every state from S to an observation π for which L(π) 6= ∅. The logical formulas
are defined using the following BNF description:

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | Kiϕ | [π]ϕ (10)

where p ∈ P , i ∈ I and π ∈ Lobs.
An important result from this paper is the bisimilarity; a binary relation

R between two epistemic expectations models M = (S,∼, V, Exp) and N =
(S′,∼′, V ′, Exp′) is called bisimilarity if for every s ∈ S and s′ ∈ S′, if we have
(s, s′) ∈ R, then:

Propositional invariance: V (s) = V ′(s′) (11)

Observation invariance: L(Exp(s)) = L(Exp(s′)) (12)

Zig: s ∼i t ∈ M =⇒ exists t′ ∈ N (13)

such that s′ ∼′
i t

′ and tRt′

Zag: s′ ∼′
i t

′ ∈ N =⇒ exists t ∈M (14)

such that s ∼i t and tRt′

The article also introduce the bisimilarity invariance: for two epistemic
statesM, s and N , s′, the following two statements are equivalent:

i)M, s↔ N , s′ (15)

ii) for all ϕ: M, s |= ϕ⇐⇒ N , s′ |= ϕ (16)

5



Updated models. Let w be an observation over Σ, andM = (S,∼, V, Exp)
an epistemic expectation model. The, the updated model is denoted with
M|w = (S′,∼′, V ′, Exp′), where S′ = {s | L(Exp(s)−w) 6= ∅}, ∼′

i=∼i |S′×I×S′ ,
V ′ = V |S′ and Exp′(s) = Exp(s)− w, where π − w = {v | wv ∈ L(π)}.

Temporal models. Let M = (S,∼, V, Exp) be an epistemic expectation
model. Then the temporal model is called ET (M) and is defined as ET (M) =
(H,→a,∼′

i, V
′), whereH = {(s, w) | s ∈ S,w = ε or w ∈ L(Exp(s))}, (s, w)→a

(t, v) ⇐⇒ s = t and v = wa, a ∈ Σ, (s, w) ∼i (t, v) ⇐⇒ s ∼i t and w = v and
p ∈ V ′(s, w)⇐⇒ p ∈ V (s).

Using temporal models, is it proved in this paper that M, s |= ϕ ⇐⇒
ET (M), (s, ε) |=EPDL ϕ, so the system is complete by the completeness of
dynamic epistemic logic.

3 DELP - Dynamic Epistemic Logic for Protocols

In order to define our system, we firstly recall the dynamic epistemic logic [9].
Dynamic epistemic logic is a dynamic logic [6] to which is added the knowledge
operator K from epistemic logic. There are two sets, Π - the set of programs,
and Φ - the set of formulas, with Π0 - set of atomic programs, and Φ0 - set of
atomic formulas. The language is described using the following BNF:

ϕ ::= p | ¬ϕ | ϕ→ ϕ | Kiϕ | [α]ϕ (17)

where p ∈ Φ0, ϕ ∈ Φ, i is an arbitrary agent and α ∈ Π.
The evaluation models are Kripke models M = (R,∼, V ), where R is the

finite set of accessible worlds, ∼ is the accessibility relationship between worlds,
and V is the evaluation from dynamic logic: for a formula ϕ ∈ Φ, V (ϕ) ⊆ R,
and for a program α ∈ Π, V (π) ⊆ R ×R.

Interpretation of formulas in this models are inductively defined as:

M, s |= p⇐⇒ v ∈ V (s) (18)

M, s |= ϕ ∧ ψ ⇐⇒M, s |= ϕ andM, s |= ψ (19)

M, s |= ¬ϕ⇐⇒M, s 6|= ϕ (20)

M, s |= Kiϕ⇐⇒ for all t such that s ∼i t, (21)

we haveM, t |= ϕ

M, s |= [α]ϕ⇐⇒ for all t ∈ R such that (22)

(s, t) ∈ V (α), we haveM, t |= ϕ

We also have the following operators for programs:

V (α1 ∪ α2) = V (α1) ∪ V (α2) (23)

V (α1;α2) = V (α1) ◦ V (α2) (24)

V (α∗) =
⋃

n≥0

V (α)n (25)

The deductive system contains all instances of propositional tautologies to

6



which are added the following axioms:

Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ) (26)

Kaϕ→ ϕ (27)

Kaϕ→ KaKaϕ (28)

¬Kaϕ→ Ka¬Kaϕ (29)

[α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ) (30)

[α](ϕ ∧ ψ)↔ [α]ϕ ∧ [α]ψ (31)

[α ∪ β]ϕ↔ [α]ϕ ∧ [α]ψ (32)

[α;β]ϕ↔ [α][β]ϕ (33)

Deductive rules are modus ponens, generalization from dynamic logic and
necessity from epistemic logic:

(MP )
ϕ ϕ→ ψ

ψ
; (GEN)

ϕ

[α]ϕ
; (NEC)

ϕ

Kiϕ

This system is known as the PA-system in [9], and it is proved sound and
complete [9, p. 187-188].

3.1 DELP

In this subsection we define DELP, a logic based on dynamic epistemic logic,
enriched with a set of actions collected during the execution of the protocol and
a grammar for messages, together with a system of deduction for knowledge
based on actions.

3.1.1 Syntax

Let Agent be the set of agents and let Func be a set of (encryption) functions.
We consider the sets Φ and Π like in dynamic epistemic logic, with Φ0 the set
of atomic formulas, and Π0 defined by

Π0 := {sendi, recvi}|i∈Agent (34)

The elements of Π0 are protocols actions : we read sendi as "the agent i sends"
and we read recvi as "the agent i receives".

In the following we define messages and formulas. In a security protocol, a
message contains clear texts, keys, nonces, and agents identities. The possible
operations are messages concatenation and messages encryption. Following [7],
the grammar for messages is:

m ::= text(m) | keym(i, j) | nonce(m) | agent(i) (35)

| (m,m) | {m}m | f(m, . . . ,m) (36)

where i, j ∈ Agent and f ∈ Func. In the sequel we will use t for texts, k for
keys, n for nonces and i, j for agents. Based on [7], we define the following

7



deductive system on messages:

nonce(m)

keyk(i, j)

keyk(j, i)

m1 m2

(m1,m2)
(37)

t k

{t}k

{t}k k

t

t1, t2, ..., tn
f(t1, t2, ..., tn)

Finally, we are able to define the DELP formulas:

ϕ ::= p | ¬ϕ | ϕ→ ϕ | Kiϕ | [α]ϕ | @µ (38)

Note that our formulas are the usual formulas of dynamic epistemic logic with
protocol actions instead of programs, endowed with the @-operator which con-
verts a message into a formula.

3.1.2 Semantics

The models that we use are Kripke models like in dynamic epistemic logic,
M = (R,∼, V ) which we extend with Exp set, a knowledge set with information
collected from protocol runs.

Definition 1. Let M = (R,∼, V, Exp) be a DELP model, where

1. R is the finite set of accessible worlds;

2. ∼:=
⋃

i∈Agent ∼i represents the accessibility relationship between worlds,
based on epistemic relation;

3. V is the evaluation function from dynamic logic: V (ϕ) ⊆ R for any ϕ ∈ Φ,
and V (α) ⊆ R×R, for any α ∈ Π;

4. Exp is the knowledge set: for any s ∈ R, Exp(s) represents the set of all
knowledge inferred up to s-th round of the protocol;

5. for any agent i, V (sendi) ⊆∼i and V (recvi) ⊆∼i.

Having this models, we can interpret @µ formula as:

M, s |= @µ⇐⇒ µ ∈ Exp(s) (39)

The other formulas have the interpretation from the dynamic epistemic logic:

M, s |= p⇐⇒ v ∈ V (s) (40)

M, s |= ϕ ∧ ψ ⇐⇒M, s |= ϕ andM, s |= ψ (41)

M, s |= ¬ϕ⇐⇒M, s 6|= ϕ (42)

M, s |= Kiϕ⇐⇒ for all t such that s ∼i t, (43)

we haveM, t |= ϕ

M, s |= [α]ϕ⇐⇒ for all t ∈ R such that (44)

(s, t) ∈ V (α), we haveM, t |= ϕ

8



3.1.3 Deductive system

The deductive system contains all instances of propositional tautologies to which
are added the following axioms from dynamic epistemic logic:

Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ) (45)

Kaϕ→ ϕ (46)

Kaϕ→ KaKaϕ (47)

¬Kaϕ→ Ka¬Kaϕ (48)

[α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ) (49)

[α](ϕ ∧ ψ)↔ [α]ϕ ∧ [α]ψ (50)

[α ∪ β]ϕ↔ [α]ϕ ∧ [α]ψ (51)

[α;β]ϕ↔ [α][β]ϕ (52)

In addition, we have the following specific axiom, that is necessary to have a
correspondence between states; if the agent i performs an action within the
protocols (sends or receives a message), then he knows the message:

[sendi]@m ∨ [recvi]@m→ Ki@m (53)

The soundness of this system is given by the soundness of the dynamic epis-
temic logic [9, p. 187-188], and all that remains for us to prove is the soundness
of the specific axiom.

Lemma 1. Axiom [sendi]@m ∨ [recvi]@m→ Ki@m is sound.

Proof. LetM = (R,∼, V, Exp) be a DELP model and s ∈ R an arbitrary state.

M, s |= [sendi]@m⇐⇒ for all t such that (s, t) ∈ V (sendi),

we have thatM, t |= @m

but V (sendi) ⊆∼i, so

M, s |= [sendi]@m⇐⇒ for all t such that (s, t) ∈∼i,

we have that M, t |= @m

⇐⇒M, s |= Ki@m

3.1.4 Completeness

In order to prove the completeness of DELP, we follow ideas from [8] and general
results from dynamic epistemic logic.

Definition 2. [Restricted model] Let µ be a message andM = (R,∼, V, Exp)
a DELP model. Then, the restricted model is defined as

M |µ = (R′,∼′, V ′, Exp′)

where R′ = {s | Exp(s) − µ 6= ∅}, ∼′
i=∼i |R′×R′ , V ′ = V |R′ , and Exp′(s) =

Exp(s)− µ.

9



Definition 3. [Temporal model] Let M = (R,∼, V, Exp) be a DELP model.
We define

ET (M) = (H,→,∼′, V ′)

where

• H = {(s,m) | s ∈ R, m ∈ Exp(s)};

• (s,m) → (s′,m′) if and only if s = s′ and {m} ⊢ m′ using the deduction
system (37);

• (s,m) ∼′ (s′,m′) if and only if s ∼ s′ and m ≡ m′ where ≡ is the logic
equivalence;

• p ∈ V ′(s,m) if and only if p ∈ V (s)

Having N = ET (M) a temporal model, we inductively define the following
interpretation of formulas:

N , w |= p⇐⇒ p ∈ V (w) (54)

N , w |= ¬ϕ⇐⇒ N , w 6|= ϕ (55)

N , w |= ϕ ∧ ψ ⇐⇒ N , w |= ϕ and N , w |= ψ (56)

N , w |= Kiϕ⇐⇒ for all v ∈ N , if w ∼i v, (57)

then N , v |= ϕ

N , w |= [α]ϕ⇐⇒ for all µ ∈ Exp(α), (58)

w→ v implies N , w |= ϕ

Definition 4. [Bisimilarity] Based on [8, Def. 11], we have that the binary
relation ρ ⊆ M × N , for two DELP models M = (R,∼, V, Exp) and N =
(R′,∼′, V ′, Exp′) is called bisimilarity if for any v ∈ R and v′ ∈ R′, if we have
vρv′, then:

Propositional invariance (59)

V (v) = V ′(v′)

Observation invariance (60)

Exp(v) = Exp(v′)

Zig v ∼i w ∈ M =⇒ exists w′ ∈ N (61)

such that v′ ∼′
i w

′ and wρw′

Zag v′ ∼′
i w

′ ∈ N =⇒ exists w ∈M (62)

such that v ∼i w and wρw′

Theorem 1. [Bisimilarity invariance] For two DELP statesM, v and N , v′,
the following two statements are equivalent:

(i)M, v ↔ N , v′ (63)

(ii) for all ϕ: M, v |= ϕ⇐⇒ N , v′ |= ϕ (64)

The proof is the same as [8, Prop. 12].

10



Theorem 2. [Completeness] Let M = (R,∼, V, Exp) be a DELP model, ε
the initial knowledge and ϕ ∈ Φ a formula. Then

M, v |= ϕ⇐⇒ ET (M), (s, ε) |= ϕ (65)

Proof. We follow the proof from [8, Prop. 14]. The booleean and epistemic
cases are immediate from the temporal model construction. For ϕ := [α]ψ we
assume thatM, v |= [α]ψ, but ET (M), (v, ǫ) 6|= [α]ψ. Then, exists m ∈ Exp(v)
such that ET (M), (v,m) 6|= ψ. From the construction of ET (M), the definition
of worlds is H = {(s,m) | s ∈ R, m ∈ Exp(s)}, so m ∈ Exp(v). But m is a
message, then exists the restricted modelM|m. From bisimilarity, we have that
ET (M|m), (v, ǫ) is bisimilar with ET (M), (v,m). Then ET (M|m), (v, ε) |=
¬ψ. From the induction hypothesis, we have M, v |= ¬ψ, which contradicts
M, v |= [α]ψ.

We have that the DELP system is complete.

4 Implementation in Lean

In this section we will present the implementation of our system in Lean [1]
prover assistant based on [2], and then we will prove the corectness of BAN
deduction rules in DELP.

4.1 Language

To implement DELP, we have the following inductive types:
1. For messages:

i n du c t i v e message (σ : N) : Type
| nu l l : f i n σ → message
| nonc : message → message
| keys : message → message → message → message
| encr : message → message → message
| decr : message → message → message
| tup l : message → message → message

2. For programs:

i n du c t i v e program (σ : N) : Type
| sk ip : program
| secv : program → program → program
| reun : program → program → program
| send : message σ → program
| recv : message σ → program

3. For formulas:

i n du c t i v e form (σ : N) : Type
| atom : f i n σ → form
| botm : form
| impl : form → form → form
| know : message σ → form → form
| prog : program σ → form → form

11



| mesg : message σ → form
| and : form → form → form
| or : form → form → form

We make the following notations:

notat ion p ‘→‘ q := form . impl p q
notat ion ‘ ι ‘ µ := form . mesg µ

notat ion p ‘∧ ‘ q := form . and p q
notat ion p ‘∨ ‘ q := form . or p q
notat ion ‘K‘ m ‘ , ‘ p := form . know m p
notat ion ‘ [ ‘ α ‘ ] ‘ ϕ := form . prog α ϕ

notat ion ‘ · ‘ := {}
notat ion Γ ‘ ∪ ‘ p := s e t . i n s e r t p Γ

notat ion m ‘ | | ‘ n := message . tup l m n
notat ion ‘{ ‘ m ‘} ‘ k := message . encr m k

4.2 Deductive system

In order to be able to check security properties using DELP, we have two add
two deduction hypotheses that help us specify symmetric key protocols:

@{m}k ∧@keyk(i, j)→ [sendi]@m ∨ [sendj]@m (66)

@keyk(i, j)→ Ki@k ∨Kj@k (67)

Observation 1. The first deduction hypothesis of the system represents a rule
of honesty of the participating agents; its need is highlighted in the modeling of
the BAN logic: if there is an encrypted message with the communication key k,
and the communication key k is a key known to the agents i and j, then the
message is transmitted by only one of them.

Observation 2. The second deduction hypothesis is a rule for modeling sym-
metric key protocols: if the k key is a communication key between i and j, then
each of them knows it.

We define the following context, a set Γ of statements:

def ctx (σ : N) : Type := se t ( form σ )

The deductive system is:

i n du c t i v e p roo f (σ : N) : ctx σ → form σ → Prop
| ax { Γ } { p } (h : p ∈ Γ) : p roo f Γ p
| kand { Γ } { i : message σ } { p q : form σ } : p roo f Γ

( ( (K i , p ) ∧ (K i , q ) ) → (K i , (p ∧ q ) ) )
| ktruth { Γ } { i : message σ } { ϕ : form σ } : p roo f Γ ( (

K i , ϕ) → ϕ)
| k d i s t { Γ } { i : message σ } { ϕ ψ : form σ } : p roo f Γ

( (K i , (ϕ → ψ) ) → ( (K i , ϕ) → (K i , ψ) ) )
| p r o g r d i s t r { Γ } { α : program σ } { ϕ ψ : form σ } :

p roo f Γ ( [α ] (ϕ → ψ) → ( [α ]ψ → [α ]ψ) )

12



| pdtruth { Γ } { α : program σ } { ϕ : form σ } : p roo f Γ

( ( [α ]ϕ) → ϕ)
| hones ty r igh t { Γ } { m k i j : message σ } : p roo f Γ ( ( ι (

k . keys i j ) ) ∧ ( ι ({ m } k) ) → ( [ send j ] ( ι m) ) )
| knowreceive { Γ } { m i : message σ } : p roo f Γ ( ( [ recv i

] ( ι m) ) → (K i , ( ι m) ) )
| knowsend { Γ } { m i : message σ } : p roo f Γ ( ( [ send i ] ( ι

m) ) → (K i , ( ι m) ) )
| knowrece iv e f { Γ } { i : message σ } { ϕ : form σ } :

p roo f Γ ( ( [ recv i ]ϕ) → (K i , ϕ) )
| knowsendf { Γ } { i : message σ } { ϕ : form σ } : p roo f Γ

( ( [ send i ]ϕ) → (K i , ϕ) )
| mp { Γ } { p q : form σ } (hpq : p roo f Γ (p → q ) ) (hp :

p roo f Γ p) : p roo f Γ q
| kgen { Γ } { ϕ : form σ } { i : message σ } (h : p roo f Γ ϕ

) : p roo f Γ (K i , ϕ)
| pdgen { Γ } { ϕ : form σ } { α : program σ } (h : p roo f Γ

ϕ) : p roo f Γ ( [α ]ϕ)

4.3 BAN Rules Verification

In order to be able to verify the corectness of the BAN rules, we translate them
our logic. We use the following correspondence:

1. formula i |≡ m is translated as Ki@m and it means i knows m in current
state;

2. formula i ⊳ m means that i receives m and is translated as [recvi]@m;

3. formula i |∼ m is translated as [sendi]@m;

4. formula i ⇒ m means that i has jurisdiction over m, so the agent knows
m and m is true: Ki@m→ @m;

5. formula i
k
←→ j is translated as @keyk(i, j);

6. formula #(m) is translated as @nonce(m).

Now, we can prove that the translations in DELP of the most important
BAN inference rules (according to [5]) are sound. In the sequel, using Lean, we
give the proofs only for the Message Meaning rule and for the Jurisdiction rule,
few other rules are analysed in the Appendix.

Lemma 2. The Message Meaning rule for shared key is a correct rule in the
DELP system.

i |≡ j
k
←→ i i ⊳ {m}k

i |≡ j |∼ m

Proof. We will prove this using Lean.

lemma MMSK_is_correct (σ : N) { m k i j : message σ } { Γ :
ctx σ }

: (σ−Γ ⊢ ( (K i , ( ι (k . keys i j ) ) ) ∧ ( [ recv i ] ( ι { m } k) ) ) )
→ (σ−Γ ⊢ (K i , ( [ send j ] ( ι m) ) ) ) :=

13



λ h , kgen
$ mp hones ty r igh t

$ mp ktruth
$ mp kand

$ andintro
( and l e f t h )
(mp knowreceive $ andr ight h ) .

A much easier demonstration is for the jurisdiction rule, because it uses the
K operator distributivity over implication:

Lemma 3. Jurisdiction rule is a correct rule in DELP system.

i |≡ j ⇒ m i |≡ j |≡ m

i |≡ m

Proof. We will prove this using Lean.

lemma JR_is_correct (σ : N) { m i j : message σ } { Γ : ctx σ

}
: (σ−Γ ⊢ (K i , (K j , ι m) → ( ι m) ) ∧ (K i , K j , ι m) ) → (σ−Γ

⊢ K i , ι m) :=
λ h , mp

(mp kd i s t $ and l e f t h )
( andr ight h) .

5 Needham-Schroeder protocol implementation in

Lean

In this section we will analyze the Needham-Schroeder protocol and we will
implement the specification in Lean, in order to prove some security properties.
We recall the exchange of messages in Needham-Schroeder protocol:

A→ S : A,B,Na

S → A : {Na, B,Kab, {Kab, A}Kbs
}Kas

A→ B : {Kab, A}Kbs

B → A : {Nb}Kab

A→ B : {Nb − 1}Kab

5.1 Protocol description in Lean

In this subsection we will formalize the specification in DELP and then we will
implement every DELP formula in Lean.

First step: intialization

14



The initial knowledge of agents are:

KA(@NA ∧@keyKAS
(A,S)) (68)

KS(@keyKAS
(A,S) ∧@keyKBS

(B,S) ∧@keyKAB
(A,B)) (69)

KB@keyKBS
(B,S) (70)

In Lean we have:

axiom NSin it (σ : N) { Γ : ctx σ } { A B S Na Kab Kas Kbs :
message σ }

: σ−Γ ⊢ (K A, ( ( ι Na) ∧ ( ι Kas . keys A S) ) )
∧ (K S , ( ( ι Kas . keys A S) ∧ ( ι Kbs . keys B S) ∧ ( ι Kab . keys

A B) ) )
∧ (K B, ( ι Kbs . keys B S) ) .

First round: exchange of messages between A and S

In DELP we have:

[sendA][recvS ]@NA (71)

with the corresponding Lean implementation:

axiom NS1AtoS (σ : N) { Γ : ctx σ } { A S Na : message σ }
: σ−Γ ⊢ [ send A ] [ recv S ] ( ι Na) .

Second round: exchange of messages between S and A

[sendS ][recvA]

(

@{NA}KAS
∧@{keyKAB

(A,B)}KAS
(72)

∧@{{keyKAB
(A,B)}KBS

}KAS

)

axiom NS2StoA (σ : N) { Γ : ctx σ } { A B S Na Kab Kas Kbs :
message σ }

: σ−Γ ⊢ [ send S ] [ recv A] ( ( ι {Na}Kas )
∧ ( ι {(Kab . keys A B)}Kas )
∧ ( ι {{(Kab . keys A B) }Kbs}Kas ) ) .

Third round: exchange of messages between A and B

This is the last round we can formalize using DELP system at the moment.
For the next two round, we need a more expressive system, that can model
both the knowledge and belief. However, up to this point we can prove that
Kab is a common secret between A and B, but we cannot prove the mutual
authentication of these two agents.

[sendA][recvB ]@{keyKAB
(A,B)}KBS

(73)

axiom NS3AtoB (σ : N) { Γ : ctx σ } { A B S Kab Kbs : message
σ }

: σ−Γ ⊢ [ send A ] [ recv B] ι {(Kab . keys A B) }Kbs .

15



5.2 Verifying security properties of Needham-Schroeder

In order to prove some security properties, we must prove the following lemma
that we will use further.

Lemma 4. Let Γ be a set of statements, i and j two agents and ϕ a formula.
Then Γ ⊢ [sendi][recvj ]ϕ implies Γ ⊢ Kjϕ.

Proof. We will prove this lemma using Lean.

lemma secv_imp_knowledge (σ : N) { Γ : ctx σ } { i j : message
σ } { ϕ : form σ }

: (σ−Γ ⊢ [ send i ] [ recv j ]ϕ) → (σ−Γ ⊢ K j , ϕ) :=
λ h , mp knowrece iv e f

$ mp ktruth
$ mp knowsendf h .

We can prove that the agent A knows the communication key between A
and B.

Theorem 3. In Needham-Schroeder protocol, the agent A knows the communi-
cation key between A and B.

Proof. We will prove this theorem using Lean.

theorem A_knows_Kab (σ : N) { Γ : ctx σ } { A B S Na Kab Kas
Kbs : message σ }

: σ−Γ ⊢ K A, ι (Kab . keys A B) :=
kgen

$ mp pdtruth
$ mp hones ty r igh t

$ andintro
(mp ktruth $ A_knows_Kas A B S Na Kab Kas Kbs)
(mp ktruth $ A_knows_Kab_encrypted_Kas A B S Na Kab

Kas Kbs) .

In a similar way, we can prove that also B knows the communication key
between A and B.

Theorem 4. In Needham-Schroeder protocols, the agent B knows the commu-
nication key between A and B.

Proof. We will prove this theorem using Lean.

theorem B_knows_Kab { σ : N } { Γ : ctx σ } { A B S Na Kab Kas
Kbs : message σ }

: σ−Γ ⊢ K B, ι (Kab . keys A B) :=
kgen $ mp pdtruth

$ mp hones ty r igh t
$ andintro

(mp ktruth $ B_knows_Kbs A B S Na Kab Kas Kbs)
(mp ktruth $ secv_imp_knowledge $ NS3AtoB A B S Kab Kbs)

.

16



We have now that Kab is a common secret between A and B, but we cannot
prove that we also have a mutual authentication. We know thatKA@keyKab

(A,B)∧
KB@keyKab

(A,B), but we don’t know ifKAKB@keyKab
(A,B) andKBKA@keyKab

(A,B).

6 Conclusion and further work

The system DELP is closely related to the system POL (Public observation
logic [5]), but it has a different semantics for [α]ϕ: the updated models of POL
are replaced by DEL models [9], while the set Exp represents the "adversary
knowledge" (defined as in the operational semantics from [7]) and not the "ex-
pected observations" (as in POL). Even if our system is simpler than the one
from [5], we are able to translate BAN logic and to validate BAN inference
rules.

Our work so far shows that DELP is a good candidate for modelling and
analysing security protocols. We are aimig to define a system that has a
rigourous theoretical development: it is complete and all proofs are certified
by Lean implementations.

At this stage we’ve already noticed that further refinements are needed: so
far we used "knowledge" operators but, in order to increse our system expres-
siveness, we would like to model the epistemic "trust"; we also consider adding
a temporal behaviour, in order to be able to model the property of freshness
since, currently, we use a weaker variant, namely the uniqueness on the system
(nonce). Last but not least, we consider adding the probabilistic interpretation,
following the initial idea from [5].

On the implementation side in Lean, we will add the proof for the complete-
ness theorem and we will keep all the theoretical results automatically verified
for any subsequent modification.

References

[1] Avigad, Jeremy and de Moura, Leonardo
and Kong, Soonho Theorem Proving in Lean
https://leanprover.github.io/theorem_proving_in_lean/theorem_proving_in_lean.pdf,
2021

[2] Bentzen, Bruno. "A Henkin-style completeness proof for the modal logic
S5." arXiv preprint arXiv:1910.01697 (2019).

[3] Blackburn, Patrick, Maarten De Rijke, and Yde Venema. Modal logic: graph.
Darst. Vol. 53. Cambridge University Press, 2002.

[4] Burrows, Michael, Martin Abadi, and Roger Michael Needham. "A logic of
authentication." Proceedings of the Royal Society of London. A. Mathematical
and Physical Sciences 426.1871 (1989): 233-271.

[5] Halpern, Joseph Y., Ron van der Meyden, and Riccardo Pucella. "An epis-
temic foundation for authentication logics." arXiv preprint arXiv:1707.08750
(2017).

17

https://leanprover.github.io/theorem_proving_in_lean/theorem_proving_in_lean.pdf
http://arxiv.org/abs/1910.01697
http://arxiv.org/abs/1707.08750


[6] Harel, David, Dexter Kozen, and Jerzy Tiuryn. "Dynamic logic." Handbook
of philosophical logic. Springer, Dordrecht, 2001. 99-217.

[7] Cremers, Cas, and Sjouke Mauw. "Operational semantics." Operational Se-
mantics and Verification of Security Protocols. Springer, Berlin, Heidelberg,
2012. 13-35.

[8] Van Ditmarsch, Hans, et al. "Hidden protocols: Modifying our expectations
in an evolving world." Artificial Intelligence 208 (2014): 18-40.

[9] Van Ditmarsch, Hans, Wiebe van Der Hoek, and Barteld Kooi. Dynamic
epistemic logic. Vol. 337. Springer Science & Business Media, 2007.

18


	1 Introduction
	2 Preliminaries: formal analysis of security protocols
	2.1 The Needham-Schroeder symmetric key protocol for key exchange
	2.2 BAN Logic
	2.3 An approach based on epistemic logic
	2.4 An approach based on operational semantics
	2.5 An approach based on expectation models

	3 DELP - Dynamic Epistemic Logic for Protocols
	3.1 DELP
	3.1.1 Syntax
	3.1.2 Semantics
	3.1.3 Deductive system
	3.1.4 Completeness


	4 Implementation in Lean
	4.1 Language
	4.2 Deductive system
	4.3 BAN Rules Verification

	5 Needham-Schroeder protocol implementation in Lean
	5.1 Protocol description in Lean
	5.2 Verifying security properties of Needham-Schroeder

	6 Conclusion and further work

