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HOMOTOPY TECHNIQUES FOR ANALYTIC COMBINATORICS IN
SEVERAL VARIABLES

KISUN LEE, STEPHEN MELCZER, AND JOSIP SMOLČIĆ

Abstract. We combine tools from homotopy continuation solvers with the methods of
analytic combinatorics in several variables to give the first practical algorithm and imple-
mentation for the asymptotics of multivariate rational generating functions not relying on
a non-algorithmically checkable ‘combinatorial’ non-negativity assumption. Our homo-
topy implementation terminates on examples from the literature in three variables, and
we additionally describe heuristic methods that terminate and correctly predict asymp-
totic behaviour in reasonable time on examples in even higher dimension. Our results
are implemented in Julia, through the use of the HomotopyContinuation.jl package, and
we provide a selection of examples and benchmarks.

Let (fn)n∈N = f0, f1, . . . be a complex-valued sequence with generating function F (z) =
∑

n≥0 fnz
n. Although F is a priori only a formal power series, in a wide variety of appli-

cations (in fact, whenever fn has at most exponential growth) it represents an analytic
function in a neighbourhood of the origin. The field of analytic combinatorics creates
effective techniques to determine the asymptotic behaviour of fn through a study of the
analytic behaviour of F (z). Most classical methods in analytic combinatorics take as
input an algebraic or differential equation satisfied by F (z) and, when successful, return
the leading terms in an asymptotic expansion of fn (see [10] or [17, Chapter 2]).

More recently, a theory of analytic combinatorics in several variables (ACSV) [17, 22]
has been developed to translate the analytic behaviour of a d-variate generating function

F (z) =
∑

i∈Nd

fiz
i :=

∑

i∈Nd

fi1,...,idz
i1
1 · · · zidd

into asymptotic information about its coefficient sequence (fi)i∈Nd. In this paper we
focus on the case of a power series expansion of a multivariate rational function F (z) =
G(z)/H(z) and attempt to determine asymptotics of the r-diagonal sequence (fnr)n∈N for
a fixed direction vector r ∈ Zd

>0. The most common situation to arise in practice is the
main diagonal, when r = 1.

Remark 0.1. If r has some zero coordinates then we can reduce to the above situation
by setting some of the variables equal to zero and working in a lower dimension. For
instance, the (0, r2, r3)-diagonal of any series F (x, y, z) is the (r2, r3)-diagonal of F (0, y, z).
Furthermore, our asymptotic statements continue to hold for directions r ∈ Q>0 if they
are interpreted to be valid only when nr ∈ Nd. In fact, the methods of ACSV show
that asymptotics of the r-diagonal usually vary smoothly with r, allowing one to give
a natural interpretation of asymptotics in irrational directions and derive central limit
theorems [17, Section 5.3.3].
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Remark 0.2. Because the methods of ACSV hold in any dimension, our requirement
that F (z) be rational is less restrictive than it may seem. For instance, the r-diagonal of
an algebraic function in d variables can be represented [17, Section 3.2.2] as the diagonal
of a rational function in 2d variables (and a ‘skew-diagonal’ of a rational function in d+1
variables). The theoretical results discussed here also hold for meromorphic functions,
when F (z) is (locally) the ratio of analytic functions, however our restriction to rational
functions allows us to stay in the realm of algebraic quantities and polynomial systems,
which we use for our explicit algorithms.

There are many factors making ACSV more complicated than its univariate counter-
part. Although a univariate rational function has a finite number of singularities, meaning
one can determine the ‘asymptotic contribution’ of each and simply sum those with the
fastest growth, any (non-polynomial) rational function in at least two variables must have
an infinite number of singularities. In addition to obscuring which singularities contribute
to asymptotics, this also means that the singular set can have non-trivial geometry, for
instance by self-intersecting. The difficulties that arise mean that unlike the univariate
case, which relies on standard complex-analytic results going back hundreds of years, the
most advanced ACSV results rely on advanced techniques from areas of mathematics as
diverse as complex analysis in several variables, the study of singular integrals, algebraic
geometry, differential geometry, and topology.

The starting point of an ACSV analysis expresses the r-diagonal of F (z) as a d-
dimensional complex integral. In the simplest cases, asymptotic behaviour is determined
by the behaviour of F near two types of points: critical points, defined by an explicit
polynomial system, and minimal points, which are singularities that are coordinate-wise
closest to the origin. Critical points satisfy a square polynomial system, and generically
form a finite set that can be manipulated in a computer algebra system. In contrast, there
are always an infinite number of minimal points, which are defined by inequalities involv-
ing the moduli of coordinates and are thus trickier and more expensive to manipulate in
computations.

0.1. Previous Work and Our Contributions. From the beginning of its modern pe-
riod in work of Pemantle and Wilson [21], the goal of ACSV has always been to develop
methods explicit enough to be implemented in a computer algebra system. The ‘surgery’
approach of [21], which applies to generating functions with smooth singular sets that form
manifolds, essentially computes a residue in one variable to obtain a (d−1)-dimensional in-
tegral that is approximated using the saddle-point method. Although this surgery method
does not require much theory beyond univariate analytic combinatorics, it requires strong
conditions on the locations of minimal points that can be computationally expensive to
verify. Later techniques, using cones of hyperbolicity [3] and multivariate residue and
homology computations [2], rely on more advanced theory but simplify the assumptions
that need to be verified for the results to hold. In the simplest cases, which hold for the
majority of examples encountered in combinatorial applications, it suffices to determine
which of the critical points are minimal and then add explicit asymptotic contributions
corresponding to the (finite number of) minimal critical points. The most expensive step
in such an analysis is almost always checking minimality.

The first systematic algorithmic study of ACSV methods was conducted by Melczer and
Salvy [18], who encoded critical points using a symbolic-numeric data structure known as
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a Kronecker or rational univariate representation and then reduced checking minimality
to rigorously approximating the roots of certain univariate polynomials to sufficiently high
accuracy. Those authors created a preliminary implementation of their work, which does
not certify numeric computations to provide rigorous proofs and requires combinatorial
rational functions, in the Maple computer algebra system. A rational function F (z) is
combinatorial if all of its power series coefficients are non-negative: although this condition
is satisfied for any multivariate generating function, in many combinatorial examples only
one diagonal of F enumerates a combinatorial class and the non-diagonal entries have
negative coefficients. It is an open problem, even in the univariate case, whether it
is decidable to detect when a rational function is combinatorial (see [20] for some open
problems in this area). Although Melczer and Salvy [18] detail a method that, in principle,
yields an algorithm for asymptotics that does not require combinatorality, in practice an
implementation in Maple would not halt in reasonable time beyond low degree examples
in two or three variables.

Instead of continuing with the Kronecker representation approach of Melczer and Salvy,
in this paper we exploit homotopy continuation methods to certify minimality of critical
points, and ultimately determine asymptotics of r-diagonals of rational functions. Using
the HomotopyContinuation.jl Julia package [7] for polynomial system solving, we
provide the first implementation of ACSV methods under assumptions that often hold in
practice. Our implementation is efficient enough to work even without the assumption of
combinatorality, although when the user knows a priori that their input rational function
is combinatorial then the computation is greatly reduced. In addition, we describe two
heuristic methods to classify minimal critical points using numerical approximations that
are extremely efficient, and are the only implemented algorithms we currently know of
that can aid in the search for minimal points in more than three variables.

Example 0.3. The main diagonal of the power series expansion of

F (x, y, z) =
1

1− (1 + z)(x+ y − xy)

is related to a result of Apéry [1] on the irrationality measure of ζ(2). After importing
our package we define the denominator polynomial in Julia using
✄ �

@polyvar x y z

H =1-(1+z)*(x+y-x*y)
✂ ✁

If we know that this power series expansion is combinatorial, then we can get the (trun-
cated for clarity) minimal critical point
✄ �

min_cp =find_min_crits_comb(H)
✂ ✁
✄ �

Out: 1-element Vector{Vector{ComplexF64}}:

[0.38 +e-39im,0.38 +e-38im,0.61 -e-38im]
✂ ✁

and print out the leading asymptotic term of the diagonal with
✄ �

leading_asymptotics(1,H,min_cp)
✂ ✁
✄ �

Out: "(0.09+6.2e-39im)^(-n)n^(-1)(0.47-5.7e-40im)"
✂ ✁
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It is not obvious from the definition that F is combinatorial. If we don’t know our func-
tion is combinatorial then we can determine minimality by running find_min_crits(H),
which returns the same point but requires approximately 15 minutes of computation.
If we want to heuristically check for minimal critical points, but don’t know that F
is combinatorial and don’t want to wait for the full algorithm, we can run the algo-
rithms find_min_crits(H; approx_crit=true) or find_min_crits(H; monodromy=true), de-
scribed below, which also find the correct point and finish in seconds.

Remark 0.4. Because we use numeric methods, asymptotic behaviour is returned with
numeric approximations of constants. If the user wants to determine the algebraic quan-
tities involved exactly, we recommend solving for the critical points (a relatively cheap
operation) symbolically using another computer algebra system like Sage or Maple and
then using the results of this package to filter out the minimal ones (the most expensive
operation).

The rest of this paper proceeds as follows. Section 1 gives a quick recap of the methods
of ACSV and the high-level problems that need to be decided to find asymptotics, with a
description of numerical algebraic geometry methods for polynomial system solving given
in Section 2. Section 3 uses this background material to detail our ACSVHomotopy.jl

Julia package, while Section 4 illustrates the package on a wide variety of combinatorial
examples, including benchmarks between different algorithms. Although our algorithms
always terminate, due to the nature of homotopy continuation methods they may not
always provide a rigorous proof of asymptotics – Section 5 discusses this issue and describes
situations in which the algorithms do give rigorous proofs. Finally, Section 6 concludes
with some extensions that we believe should be addressed next.

1. Smooth ACSV

From now on, F (z) = G(z)/H(z) denotes a ratio of d-variate coprime polynomials
G,H ∈ Z[z] with power series expansion F (z) =

∑

i∈Nd fiz
i converging around the origin,

and r ∈ Zd
>0 is a fixed direction vector.

Definition 1.1 (minimal critical points). A point w ∈ Cd
∗ is a (simple) smooth critical

point of F if (∇H)(w) 6= 0 and

(1)

{

H(w) = 0
rkz1Hz1(w)− r1zkHzk(w) = 0 (2 ≤ k ≤ d).

We call w ∈ Cd
∗ a minimal point if H(w) = 0 and there does not exist y ∈ Cd such that

H(y) = 0 and |yj| < |wj| for all j = 1, . . . , d.

Remark 1.2. If (∇H)(w) = 0 then (1) is trivially satisfied. If the gradient vanishes
because H has a higher-order pole (for instance, if H = P 2 for some polynomial P ) then
our analysis of minimal critical points can be performed on the square-free part of H (the
product of its irreducible factors) to obtain an asymptotic expansion of fnr with minor
modifications. On the other hand, if the gradient vanishes because the zero set of H
self-intersects then more advanced techniques are required [17, Part III].

We will be able to determine asymptotics in the presence of smooth minimal critical
points, assuming a nondegeneracy condition on the zero set of H .
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Definition 1.3 (phase Hessian matrix). If w is a smooth critical point then the phase
Hessian matrix H at w is the (d− 1)× (d− 1) matrix defined by

Hi,j =







ViVj + Ui,j − VjUi,d − ViUj,d + ViVjUd,d : i 6= j

Vi + V 2
i + Ui,i − 2ViUi,d + V 2

i Ud,d : i = j

where

Ui,j =
wiwjHzizj (w)

wdHzd(w)
and Vi =

ri
rd
.

Theorem 1.4 (Melczer [17, Theorem 5.1]). Suppose that the system of polynomial equa-
tions (1) admits a finite number of solutions, exactly one of which, w ∈ Cd

∗, is minimal.
Suppose further that Hzd(w) 6= 0, that the phase Hessian matrix H at w has non-zero
determinant, and that G(w) 6= 0. Then, as n → ∞,

fnr = w
−nrn(1−d)/2 (2πrd)

(1−d)/2

√

det(H)

−G(w)

wd Hzd(w)

(

1 +O

(

1

n

))

.

When the zero set of H contains a finite number of points with the same coordinate-
wise modulus as w, all of which satisfy the same conditions as w, then an asymptotic
expansion of fnr is obtained by summing the right hand side of this expansion at each
point.

Remark 1.5. The condition that G(w) 6= 0 means that the leading asymptotic term in
Theorem 1.4 doesn’t vanish. When G(w) = 0 asymptotics can usually still be determined
by computing higher-order terms using (increasingly complicated) explicit formulas.

1.1. Minimality Tests. The hardest work in applying Theorem 1.4 is computing the
critical points, defined implicitly by (1), and determining which, if any, are minimal.

(Combinatorial Case) Recall that a function is called combinatorial if its power series
expansion contains only a finite number of negative coefficients. When F is combinatorial
there is a simple test for minimal critical points.

Lemma 1.6 (Melczer and Salvy [18]). Suppose F has only a finite number of negative
power series coefficients fi. If y ∈ Cd

∗ is a minimal critical point then so is (|y1|, . . . , |yd|).
Furthermore, w ∈ Rd

>0 is a minimal critical point if and only if the system

H(z) = H(tz1, . . . , tzd) = 0

z1Hz1(z)− r1λ = · · · = zdHzd(z)− rdλ = 0
(2)

has a solution (z, λ, t) ∈ Rd+2 with z = w and t = 1 and no solution with z = w and
0 < t < 1.

In the combinatorial case we firstly use Lemma 1.6 to characterize the minimal crit-
ical points with positive coordinates by studying the solutions to (2). From them, find
the solutions to (1) with the same coordinate-wise modulus. The following algorithm
summarizes this approach.
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Algorithm 1 Minimal Critical Points in the Combinatorial Case

(1) Determine the set S of zeros of the polynomial system (2) in the variables z, λ, t.
If S is not finite, FAIL.

(2) Find ζ ∈ Rd
>0 such that there exists (ζ, λ, t) ∈ S and for all such triples, t 6∈ (0, 1).

If the number of such ζ’s is not exactly 1 or if there are such points with λ = 0,
FAIL.

(3) Identify ζ among the elements of the set C of zeros to (1).
(4) Return

{z ∈ Cd | ∃(z, λ) ∈ C, |z1| = |ζ1|, · · · , |zd| = |ζd|}.

(General Case) If F is not combinatorial, or if we don’t know a priori that F is
combinatorial, then it is no longer sufficient to consider only the critical points with
positive real coordinates to check minimality. In order to express the moduli of coordinates
as algebraic equations, we write H(x + iy) = HR(x,y) + iHI(x,y) for real variables
x,y ∈ Rd and polynomials HR, HI ∈ R[x,y]. Translating the smooth critical point
equations (1) into these new coordinates gives that z = a + ib with a,b ∈ Rd is critical
if and only if

HR(a,b) = HI(a,b) = 0(3)

ajH
R

xj
(a,b) + bjH

R

yj
(a,b)− rjλR = 0(4)

ajH
I

xj
(a,b) + bjH

I

yj
(a,b)− rjλI = 0(5)

for some λR, λI ∈ R, where 1 ≤ j ≤ d in each equation. To test minimality of these
critical points we add the equations

HR(x,y) = HI(x,y) = 0(6)

x2
j + y2j − t(a2j + b2j ) = 0(7)

for 1 ≤ j ≤ d, and verify there is no real solution to (3)-(7) with 0 < t < 1. Generically (3)-
(7) have a finite set of real solutions, corresponding to the generically finite number of
critical points of F , but because this system contains 3d+4 equations in 4d+3 variables
it will never have a (non-zero) finite number of solutions over the complex numbers.
By considering critical values of the projection map onto the t coordinate, Melczer and
Salvy [18] proved that minimality can be tested by adding the additional equations

(ν1yj − ν2xj)H
R

xj
(x,y)− (ν1xj + ν2yj)H

R

yj
(x,y) = 0

for 1 ≤ j ≤ d. When ν1 6= 0 then we can scale by ν1 and introduce the equations

(8) (yj − νxj)H
R

xj
(x,y)− (xj + νyj)H

R

yj
(x,y) = 0

to (3)-(7), resulting in a square system with 4d + 4 variables and equations. The case
when ν1 = 0 is dealt with separately by adding the equations

−xjH
R

xj
(x,y)− yjH

R

yj
(x,y) = 0 (8′)

for 1 ≤ j ≤ d. We determine the minimal critical points by finding p + iq such that
equations (3)-(5) have a real solution with (a,b) = (p,q) but neither (3)-(8) nor (3)-
(8’) have a real solution with (a,b) = (p,q) and 0 < t < 1. This process provides the
following algorithm.
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Minimal Critical Points in the Non-Combinatorial Case

(1) Determine the set S of zeros of the polynomial system (3)-(8) in the variables
a,b,x,y, λR, λI , ν, t. If S is not finite, FAIL.

(2) Construct a set U of minimal critical points a + ib ∈ Cd such that there exists
(a,b,x,y, λR, λI , ν, t) ∈ S ∩R4d+4 and for all such tuples, t 6∈ (0, 1). If either U is
empty or one of its elements has λI = λR = 0, or if the elements of U do not all
belong to the same torus, FAIL.

(3) Identify the elements of U within the set C of zeros to (1) and return them.
(4) Do the same for the polynomial system (3)-(8’) in the variables a,b,x,y, λR, λI , t.

Unfortunately, to moving 4d+4 variables makes verifying minimality much less practical
than the combinatorial case. In essence, Lemma 1.6 states that to prove minimality in
the combinatorial case it is sufficient to consider specific line segments in Rd, while to
prove minimality in the general case one must consider a much larger set of points in Cd

whose coordinate-wise moduli lie on specific line segments in Rd.

Remark 1.7. Melczer and Salvy [18] incorrectly state that ν1 and ν2 must both be
non-zero: at least one is non-zero at the solutions of interest, but the other may vanish.
This is why we introduce (8’). Melczer and Salvy [18] also require an extra condition
that a certain Jacobian matrix is non-singular, however this is mainly required for their
complexity analysis. If this condition fails then the system (3)-(8) can have extra solutions
that are irrelevant to detecting minimality, but the presence of such solutions does not
affect correctness of the minimality test.

2. Numerical Algebraic Geometry

Having reduced the ACSV analysis to questions about polynomial systems, we now
recall some methods in computational algebraic geometry for the study of such systems.
Although the theory of Gröbner bases is, by now, the basis of much work in this area,
more recently numerical algebraic geometry has emerged as a practical alternative. In
this section, we discuss several topics in numerical algebraic geometry that will be used
for our techniques.

2.1. Homotopy Continuation. Homotopy continuation is one method to find numeri-
cal approximations of solutions to an n×n square system F = (f1, . . . , fn) of polynomial
equations with n variables. From the system F we construct an n × n polynomial sys-
tem G whose solutions are known a priori. The system G is called a start system and
the system F is called the target system: connecting F and G using a homotopy H(x, t)
such that H(x, 0) = G and H(x, 1) = F , we obtain solutions of F by tracking homotopy
paths from t = 0 to t = 1. To track the homotopy paths, a numerical ordinary differen-
tial equation solving technique called the Davidenko equation and Newton iteration are
used. These tracking techniques are typically referred to as predictor-corrector methods.
For details, see [24, Chapter 2]. Homotopy continuation is implemented in Bertini [4],
HomotopyContinuation.jl [7], and NAG4M2 [16].
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2.2. Polyhedral Homotopy Continuation. The complexity of solving a polynomial
system using homotopy continuation is determined by the number of homotopy paths
to track. It is thus important to track a number of paths that are at least as large
as the number of solutions of the system (so that all solutions can be found) but is
not too much larger (to save computation). For polytopes Q1, . . . , Qn the Euclidean
volume Vol(a1Q1+ · · ·+anQn) of the Minkowski sum a1Q1+ · · ·+anQn is a homogeneous
polynomial in the n variables a1, . . . , an, whose coefficient of a1a2 · · · an is the mixed volume
MVol(Q1, . . . , Qn) of Q1, . . . , Qn.

Theorem 2.1 (Bernstein’s theorem [5, Theorem A]). Let F be a system of polynomials
f1, . . . , fn in C[x1, . . . , xn]. The number of isolated solutions of F over Cn

∗ is at most
MVol(Qf1 , . . . , Qfn), where Qfi is the Newton polytope of fi. Furthermore, for polynomials
f1, . . . , fn with generic coefficients, the number of solutions for F over the torus is exactly
MVol(Qf1 , . . . , Qfn).

The polyhedral homotopy continuation method established by Huber and Sturmfels [13]
is one common way to construct a start system whose solutions form a set with the size
of the mixed volume of a system. Consider a polynomial

f(x) =
∑

a∈A

cax
a ∈ C[x1, . . . , xn]

where A is a collection of integer lattice points. Multiplying each monomial xa of f by
some term tw(a) for a lifting function w : A → Z, we obtain the lifted polynomial

f(x, t) =
∑

a∈A

cax
atw(a).

Suppose that a target system F consists of polynomials f1, . . . , fn supported on Af1 , . . . , Afn ,
respectively. Lifting all polynomials f1, . . . , fn in F gives a lifted system F(x, t) sat-
isfying F(x, 1) = F . The solutions of F can be expressed by Puiseux series x(t) =
(x1(t), . . . , xn(t)) where

xi(t) = tαiyi + higher order terms

for some αi ∈ Q and nonzero constant yi, and substituting x(t) back into our polynomials
gives

f j(x(t), t) =
∑

a∈Afj

cay
at〈a,α〉+w(a) + higher order terms.

For a suitable choice of w, the constants y and exponents a can be computed at each
branch of F , ultimately describing a start system G = F(x, 0) with the right number
of solutions. The polyhedral homotopy continuation is implemented in HOM4PS2 [15],
HomotopyContinuation.jl [7], and PHCpack [26].

2.3. Monodromy. As seen in Section 1, we typically have some solutions of a polynomial
system representing critical points and want to determine additional solutions to rule out
those that are non-minimal. This ‘bootstrapping’ can be accomplished by monodromy.

For m,n ∈ N, consider the complex linear space of n × n square systems Fp =
(f 1

p , . . . , f
n
p ) depending on some coefficient parameters p ∈ Cm, where the monomial

support for each polynomial f i
p is fixed. If we consider an affine linear map ϕ : p 7→ Fp

for p ∈ Cm then we can write ϕ(Cm) = B, where B is a parametrized linear variety of
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systems, and we define the solution variety V = {(Fp, x) ∈ B × Cn | Fp(x) = 0} and
projection map π : V → B.

Assume that the fiber π−1(Fp) only has finitely many points for a generic choice of
p. The set D of systems in B with non-generic fiber is called the branch locus of π.
Each element in the fundamental group π1(B \ D) of loops in B \ D modulo homotopy
equivalence induces a permutation on the fiber π−1(Fp), which is called a monodromy
action. To find all solutions of a system Fp ∈ π(V ) with generic p, one can first find
a seed solution (p0, x0) ∈ V and numerically compute the monodromy action to find all
solutions of Fp. When the solution variety V is irreducible then the monodromy action
is transitive. This method for finding solutions of polynomial systems is studied and
implemented in [7, 9].

2.4. Certification. By construction, numerical methods return approximations, so some
kind of certification is necessary for rigorous results. Specifically, a user needs a certificate
that an approximation obtained by the homotopy method is properly approximating a
solution of a system. A numerical approximation is called certified if it can be refined to
an actual solution of the system to an arbitrary precision by applying iterative operators
(such as Newton iteration). Software providing such certification includes alphaCerti-

fied [12], the function certify implemented in HomotopyContinuation.jl [6] and
NumericalCertification [14]. In our implementation, we use the function certify

in HomotopyContinuation.jl exploiting the Krawczyk’s method via interval arith-
metic [19, Chapter 8].

3. The ACSVHomotopy Package

We now combine the theory of ACSV presented in Section 1 with the techniques de-
scribed in Section 2 to create effective and practical algorithms for the asymptotics of
multivariate rational functions. Our algorithms are implemented in the Julia package
ACSVHomotopy.jl, using the HomotopyContinuation.jl package for our homo-
topy and monodromy computations.

The package is available at

github.com/ACSVMath/ACSVHomotopy

and our example worksheet can be viewed at

github.com/ACSVMath/ACSVHomotopy/blob/main/ExampleWorksheet.ipynb

3.1. Combinatorial Case. For the combinatorial case we first compute the distinct
solutions to (1) using a polyhedral homotopy with certification by Krawczyk’s method.
We then solve and certify (2) with the added equation (1 − t)µ − 1 = 0 to eliminate
all solutions with t = 1 (there are never any solutions with t = 0 as this would imply
H(0) = 0, contradicting F having a power series expansion). Since we no longer have
solutions where t = 1, by refining the solutions to sufficient precision we can determine
the solutions with positive real coordinates where 0 < t < 1, match the projection onto
the z variables of each to a distinct solution of (1), and thus rule out all non-minimal
critical points with positive coordinates. We then find all critical points with the same
coordinate-wise moduli and return that set.

Example 3.1. As a simple example, we can find the minimal critical point
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✄ �

@polyvar x y

find_min_crits_comb(1-x-y)
✂ ✁
✄ �

Out:1-element Vector{Vector{ComplexF64}}:

[0.5 +0.0im, 0.5 +0.0im]
✂ ✁

controlling asymptotics for the central binomial coefficient
(

2n
n

)

which forms the main
diagonal sequence of

F (x, y) =
1

1− x− y
.

Similarly, we can compute the approximations
✄ �

@polyvar x y z

find_min_crits_comb(1-z*(xˆ2*y+y+x*yˆ2+x))
✂ ✁
✄ �

Out:2-element Vector{Vector{ComplexF64}}:

[1.0 +e-35im, 1.0 -e-35im, 0.25 -e-37im]

[-1.0 -e-36im, -1.0 +e-36im, -0.25 -e-36im]
✂ ✁

for the two minimal critical points ±(1, 1, 1/4) determining asymptotics for the main
diagonal of

F (x, y, z) =
(1 + x)(1 + y)

1− zxy(x+ 1/x+ y + 1/y)
.

This diagonal enumerates walks on the cardinal directions {N, S,E,W} = {(±1, 0), (0,±1)}
that start at the origin and stay in N2.

As in the work of Melczer and Salvy, the most expensive operation occurs when trying
to group roots with the same coordinate-wise modulus as a known minimal critical point
(step (4) in Algorithm 1). When using a symbolic-numeric method it is possible to com-
pute minimal polynomials for the values of the coordinates and use this to identify points
with the same coordinate-modulus by computing numerically to O(hδ3d) bits of precision,
where h is a bound on the bitsize of the coefficients of the denominator H and δ is the
degree of H (see [18, Corollary 54]). Combining past bounds in the literature [8,23] allows
us to identify an explicit precision such that if two solutions have coordinate-wise moduli
agreeing to this precision then their coordinate-wise moduli are exactly equal. Our bound
is also of O(hδ3d) bits, however the constant in front is worse than that when using mini-
mal polynomials. After a minimal critical point is identified, our code continually refines
precision using Newton iteration until any points with the same coordinate-wise moduli
are found. In practice, any points with different coordinate-wise moduli are identified at
precision much lower than the worst case bound, but we must compute up to the bound
when there are points with the same coordinate-wise moduli. Unfortunately, the extreme
precision involved with a large number of variables means that we cannot always rigor-
ously check to the required accuracy, and the code returns a warning to the user with its
output when this occurs.

3.2. General Case. In general we must consider the extended systems (3)-(8) and (3)-
(8’), which essentially doubles the number of variables under consideration. Mirroring the
combinatorial case, we can solve (3)-(8) and (3)-(8’) using a polyhedral homotopy, certify
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the results using Krawczyk’s method, and refine to a sufficient precision to determine
when 0 < t < 1 to rule out non-minimal points.

Remark 3.2. The system (3)-(8’) is over determined, with 4d+ 4 equations and 4d + 3
variables. In order to use HomotopyContinuation.jl we drop one of the equations
in (8’) to obtain a square system: this can introduce additional solutions which are ir-
relevant to determining minimality, but does not affect the correctness of our test for
minimality.

Example 3.3. Straub and Zudilin [25], following Gillis, Reznick, and Zeilberger [11],
study families of rational functions connected to special function theory. For instance, in
three dimensions they study the constants c for which

Fc(x, y, z) =
1

1− (x+ y + z) + cxyz

has non-negative power series coefficients on its main diagonal (which turns out to imply
non-negativity of all power series coefficients). Running the code (for c = 5)
✄ �

@polyvar x y z

find_min_crits(1 -(x+y+z) +5*x*y*z)
✂ ✁
✄ �

Out:2-element Vector{Vector{ComplexF64}}:

[0.45 -0.12im, 0.45 -0.12im, 0.45 -0.12im]

[0.45 +0.12im, 0.45 +0.12im, 0.45 +0.12im]
✂ ✁

gives the minimal critical points controlling asymptotics of the main diagonal. Since this
is a complex conjugate pair, the resulting asymptotic expansion implies that Fc has an
infinite number of negative coefficients on its main diagonal when c = 5 (in fact, it has
an infinite number of negative coefficients whenever c > 4).

3.3. Faster Heuristics. As seen in the examples of Section 4, the high number of vari-
ables in the extended system even in low dimensional examples means it does not ter-
minate within reasonable time for polynomials with four or more variables. In order to
speed up our solvers, we can numerically approximate the distinct solutions to the small
system (3)-(5) and then substitute each of these solutions as parameters into the extended
equations (6)-(8) and (6)-(8’). In the implementation, it is done by running the function
find_min_critswith the flag approx_crit = true.

Remark 3.4. This approach approximates the solutions to the extended system (3)-(8) if
the solutions vary smoothly with a and b, which happens whenever the Jacobian of (6)-(8)
with respect to a and b is full rank at all values of a and b solving (3)-(5). Unfortunately,
verifying this condition is usually about as costly as solving the extended system, so we
do not do this in our computations and refer to this method only as an efficient heuristic
that correctly identifies minimal critical points in a large variety of cases.

Example 3.5. To stress-test our algorithms we generate a random polynomial p(x, y, z)
with six terms in four variables having coefficients in {1, . . . , 100} and then set H(x, y, z) =
1− p(x, y, z). Running
✄ �

@polyvar x y z
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H=1-(72*xˆ3*z+97*y*zˆ3+53*x*zˆ2+47*x*y+39*zˆ2+71*x)

find_min_crits(H; approx_crit =true)
✂ ✁
✄ �

Out:1-element Vector{Vector{ComplexF64}}:

[0.001+5.5e-40im, 6.2-7.5e-37im, 0.06+0.0im]
✂ ✁

returns the unique minimal critical point in about three minutes. This example does not
terminate without the approx_crit = true flag.

It is also possible to use the approximations to the critical points as a start system to
solve (6)-(8) using the monodromy method. More precisely, for any (a,b) solving (3)-(5)
we set (x,y) = (a,b) and t = 1 in (6)-(8) and then compute a corresponding start value of
ν by computing the left kernel of the Jacobian matrix of (6)-(7) with respect to variables
x,y and t. From a given parameter value (a,b) and the initial solution (x,y, ν, t), we
collect real solutions from the monodromy method and check if t ∈ (0, 1): if it is then
we remove the parameter value (a,b) as it is non-minimal. Interestingly, it appears that
monodromy cannot detect solutions where ν = 0 when starting with a non-zero value of ν,
and vice-versa, suggesting that solution variety is the union of components corresponding
to these cases. We thus repeat this process separately for the cases where ν = 0 and
when (8’) replaces (8). Finally, we return the values of (a,b) that are not disregarded.

Example 3.6. Melczer and Salvy [18] introduce the rational function

F (x, y) =
1

(1− x− y)(20− x− 40y)− 1

because it has two critical points with positive coordinates, one of which is smaller in the
first coordinate and the other of which is smaller in the second coordinate (so it is not
clear which, if any, should be minimal). Running
✄ �

@polyvar x y

H =(1-x-y)*(20-x-40*y)-1

find_min_crits(H; monodromy=true)
✂ ✁
✄ �

Out:1-element Vector{Vector{ComplexF64}}:

[0.54 -9.18e-41im, 0.31 +1.83e-40im]
✂ ✁

returns the correct minimal critical point.

We believe that further study of the geometric properties of the extended system (6)-(8)
could help make this monodromy approach a powerful tool for ACSV analysis.

4. Examples and Benchmarks

Tables 1 and 2 list benchmarks of our implementation against a selection of combina-
torial and algebraic examples, executed on a Macbook pro, 2 GHz Quad-Core Intel Core
i5, 16 GB RAM. The package supports arbitrary r-diagonal sequences, but examples in
this section were done with r = 1. See our supplementary notebook for the full details on
the rational functions involved.



HOMOTOPY TECHNIQUES FOR ANALYTIC COMBINATORICS IN SEVERAL VARIABLES 13

Example Comb. Maple Comb.
1− x− y 0.0052 0.143

Two positive CPs 0.029 0.292
square-root 0.01 0.06
Apéry ζ(2) 0.025 0.06
Apéry ζ(3) 0.7 0.3

random poly 0.9 840
2D Walk 0.03 0.06
3D Walk 0.08 2.7

1− x− y2 − w3 − z4 0.06 509

Table 1. Time, in seconds, of running our Julia implementations in the
combinatorial case, compared to the Kronecker representation approach of
Melczer and Salvy. The time to compile Julia functions is not included.

Example HSolve HSolve Approx Monodromy
1− x− y 0.04 0.02 2.3

Two positive CPs 4.1 0.33 2.84
Apéry ζ(2) 670 3.8 8.5
square-root 29.5 0.72 14.9
random poly INC 189.4 583.1

2D Walk INC 15.3 31.9
GRZ 236 3.6 3.8

Table 2. Time, in seconds, of running our Julia implementations that
do not assume combinatorality. The first column is the time to solve the
extended critical point systems, the second column is the time to solve the
smaller systems after solving the critical point system separately, and the
final column is the time to run the monodromy method. INC indicates the
code did not complete after running for an hour.

Remark 4.1. The HomotopyContinuation.jl package converts input polynomials
into compiled straight-line programs for fast evaluation. In order to better see the differ-
ences between examples as they grow in degree and dimension, we have removed compi-
lation time from our benchmarks (compilation time takes the majority of the runtime for
small examples but is a small part of larger examples). This results in several seconds on
small examples, and up to tens of seconds on larger examples, that are not included in the
reported timings. In particular, the (non-certified) package of Melczer and Salvy beats
our package in the combinatorial case on most examples in Table 1 when compilation time
is added (except for the two high degree examples where the Maple package takes much
longer).

5. Rigor of Results

Because we certify our solutions, we never attempt to approximate a point that is
not actually a solution of the polynomial systems under consideration. However, by the
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Example Mixed volume # Solutions found
1− x− y 1 1

1− xy − xy2 − 2x2y 9 9
1− x− y2 − w3 − z4 96 96

Table 3. Mixed volume for the system (2) and the actual number of solu-
tions found for several combinatorial examples

Example (3)-(8) # Sols (3)-(8’) # Sols
1− x− y 4 1 2 0

1− xy − xy2 − 2x2y 3276 99 1638 126
1− (x+ y + z) + 81

8
xyz 13068 162 4356 216

1− x− y2 − w3 − z4 FAIL N/A 442368 442368

Table 4. Mixed volumes for the systems (3)-(8) and (3)-(8’) and the num-
ber of solutions found for several examples. FAIL means that the code did
not compute the mixed volume due to an out of memory error.

way they are designed, it is possible for homotopy computations to miss solutions, which
could result in a point being deemed minimal when it is not. There are some exceptions:
when the number of solutions found matches the upper bound on the number of solutions
given by the mixed volume, for instance, then we can be sure we have found all solutions.
Tables 3 and 4 show a comparison between the mixed volumes of several systems studied
here, compared to the actual number of solutions found. It can be observed that we often
reach the upper bound in the combinatorial case, but this usually does not happen in the
non-combinatorial case.

We can also conclude we know minimality rigorously when there is another way to
determine that a minimal critical point must exist, and all but one point is ruled out by our
algorithms. For instance, in the combinatorial case it can be shown that any polynomial
whose support contains the terms 1, z1, z2, . . . , zd must have at least one minimal critical
point with positive coordinates.

6. Conclusion

Despite the high computational cost associated to many of computations required to
determine asymptotics using the methods of ACSV, the continued development of efficient
computer algebra packages in Julia and other languages has made it feasible to automate
the analysis beyond the simplest cases. There are many natural extensions still to be
made, perhaps chiefly among them extending to the non-smooth case by incorporating
algorithms for the Whitney stratification of algebraic varieties. Other interesting avenues
for exploration include the development of better start systems for homotopy computa-
tions, to better match the number of critical points, and a theoretical study of the solution
variety and its irreducible components for the monodromy approach (which could help
the monodromy approach be competitive with or even surpass the polyhedral homotopy
approach).
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Finally, as already mentioned, in the combinatorial case the precision required to certify
all minimal critical points with the same coordinate-wise modulus may not be practical.
Our algorithm returns a warning with its output when it cannot verify equality between
moduli to the precision required for rigorous certification.
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