

Newcastle University ePrints - eprint.ncl.ac.uk

Ingram C, Payne R, Perry S, Holt J, Hansen FO, Couto LD.

Modelling Patterns for Systems of Systems Architectures.

In: International Systems Conference (SysCon2014).

2014, Ottawa, Canada: IEEE.

Copyright:

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising

or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

DOI link to paper:

http://dx.doi.org/10.1109/SysCon.2014.6819249

Date deposited:

02/07/2014

http://eprint.ncl.ac.uk/
javascript:ViewPublication(197625);
http://dx.doi.org/10.1109/SysCon.2014.6819249

Modelling Patterns for Systems of Systems
Architectures

Claire Ingram, Richard Payne
Newcastle University

Newcastle upon Tyne, UK
firstname.lastname@ncl.ac.uk

Simon Perry, Jon Holt
Atego, UK

firstname.lastname@atego.com

Finn Overgaard Hansen, Luı́s Diogo Couto
Department of Engineering,
Aarhus University, Denmark
foh@iha.dk, ldc@eng.au.dk

Abstract—This paper presents an initial report on modelling
patterns and architectures for system of systems (SoSs) and their
constituent systems (CSs). Fundamental architectural principles
for systems and SoSs and relevant work published so far are
discussed and summarised. We introduce an initial set of five
architectural patterns suitable for SoS design, illustrating each
pattern with an SoS example and identifying how it meet some
basic SoS aims. Finally, we summarise our plans for developing
these ideas in the future.

I. INTRODUCTION

The concept of an architecture is fundamental to any
systems engineering undertaking, and the same principle can
be extended to systems of systems (SoS) engineering. The
‘Systems Engineering Guide for Systems of Systems’ pub-
lished by the Department of Defense, for example, considers
that ‘the design of an SoS consists of the architecture of the
SoS together with changes to the designs of the constituent
systems that enable them to work together according to the
architecture.’ [1]. Whilst patterns and architectural styles have
been explored thoroughly for single system engineering, little
comparative work so far has been published on styles and
patterns applicable for SoS.

There is not yet a widely accepted single definition for SoS.
The most well-known [2] describes five properties associated
with SoSs: operational and managerial independence; evolu-
tionary development; emergence (the SoS performs functions
that do not reside in any individual constituent system); and
distribution. The general concepts of independence, evolution
and emergence have been quite widely adopted, and variations
of these properties feature in subsequent definitions of SoS
(e.g., Fisher [3], Boardman & Sauser [4] and Baldwin &
Sauser [5]) The latter two also emphasise the diversity typ-
ically seen between constituent systems (CSs) within an SoS
and that that a CS must accept the need to adapt. Abbott [6]
emphasises the changeable architectural features of an SoS,
suggesting that an SoS is ‘open at the top’ (there is no ‘top
level’ system, new CSs may be added continually) and ‘open
at the bottom’ (‘the lowest level of a system of systems may be
changed out from under it at any time’). Cocks [7] argues that
an SoS ‘...contains one or more systems for which significant
aspects of the integration and life cycle development of the
component system(s) are beyond the managerial control or
influence of the larger system.’ For our work, we assume that

for the SoS architect, the independence, challenging environ-
ment, lack of overall control, continued evolution, distribution
and emergent behaviour are the key (although not the only)
characteristics that an SoS architecture must support.

Architectural reuse ‘allows projects to quickly identify con-
ceptually similar existing architectures and quickly interpret
them to the chosen application’ [8]. We intend to build on this
principle to develop an initial set of patterns for architectures
suitable for SoS development. The rest of this paper is laid out
as follows: in Section II we discuss the requirements for an
SoS architectural pattern. In Section III we summarise some
relevant literature and in Section IV we introduce our approach
to modelling patterns. Section V describes the initial set of
patterns we have identified. Section VI outlines our initial
conclusions and our future plans for extending and developing
the initial collection.

This paper presents a subset of research carried out on the
COMPASS1 project into model-based techniques suitable for
SoSE. Further details of architectural patterns can be found
in [9].

II. ARCHITECTURAL PRINCIPLES FOR SOS

There are many definitions and uses of the term architecture
in the relevant literature. We define architecture as ‘the struc-
ture of components, their relationships, and the principles and
guidelines governing their design evolution over time’ (taken
from IEEE Std 610.12 and DoDAF2).

The characteristics of SoSs described in Section I create
challenges for the SoS architect, including:

• Accurately predicting and accounting for all the possible
emergent behaviours is prohibitively time-consuming, or
is not possible due to lack of information disclosure by
CSs.

• There are very long lifecycles and the presence of legacy
or COTS components that cannot be adapted to enable
optimal solutions.

• CSs have other pressures to evolve outside the SoS.
• There is a high degree of technical and managerial

complexity.
• There is often no central decision-making authority.

1http://www.compass-research.eu/
2http://dodcio.defense.gov/dodaf20.aspx

• SoS boundaries are blurred. The SoS tolerates the inclu-
sion of third-party, independent CSs, and in some cases it
is not clear which systems can be considered constituents
and which are environment; for many SoSs this will vary
depending on the current viewpoint.

• SoSs inhabit a multi-disciplinary, cross-domain world,
which makes misunderstandings and functional gaps
more likely.

• Socio-technical issues can complicate the system. The
(unpredictable) users interacting within an SoS may be
playing the role of the ‘glue’ enabling CSs to interoperate.

• There are commonly commercial restrictions that often
impede full information disclosure between CSs.

A full collection of architectural patterns suitable for SoS
should support strategies for coping with these issues.

III. RELATED WORK

In this section we introduce some relevant research in a
variety of areas.

A. Architectural styles

An architectural style ‘defines a family of such systems
in terms of a pattern of structural organization’ [10]. This
facilitates reasoning and understanding about a system’s de-
sign [11]. Systems can benefit from ‘lessons learned’ on
previous systems with similar architectural properties [12],
and standard architectural frameworks can be leveraged, thus
increasing interoperability [13]. A range of architectural styles
have been suggested for distributed systems (for example,
see [14]). Many of these could be adapted for SoS engineering
(SoSE). We build on the principle to develop the notion of
architectural patterns for SoS in Section V.

B. Architectural description languages

An architecture description language (ADL) provides a
notation or vocabulary for describing system structure and
architecture [15]. A wide range of ADLs are available [12],
each designed to describe different architectural concerns
and/or problem domains. A single SoS is likely to see variety
between the CSs, each with a different preferred ADLs. For
SoS modelling, it is useful to be able to support a wide
variety of concerns and/or domains. Recently there has been an
interest in ADLs which support diverse semantics (i.e., which
support analysis and/or code generation from descriptions
in different languages). Examples include ACME [16]–[18];
xADL [16], [19] [17], [18]; and a toolset proposed by [17].

C. Architectural frameworks and component-based software
engineering

Within SoSE, constituent independence, lack of central
authority, long lifecycles, complexity and constant evolution
create a demand for standards and/or frameworks [20] as a
coping strategy. Many CSs within one SoS will already have
developed their own architectural models and styles, so a
framework must cope with heterogeneity. Experience from the
component-based software engineering (CBSE) community

can be helpful here. Although most research into CBSE so
far concentrates on single systems, the CBSE field emphasises
standards and frameworks to enable disparate components to
communicate, and the easy substitution of one component for
another [21], [22]. For example, a reference framework for
Component-Based SoS is proposed by [18], supporting het-
erogeneous architecture, whilst [23] have proposed a domain-
specific development infrastructure that supports heterogene-
ity.

Development and design of a component-based system is
complex, and the capabilities to be supplied by legacy com-
ponents or by commercial off-the-shelf (COTS) components
must be taken into account alongside conventional consider-
ations [24]. A significant source of problems in CBSE are
due to ‘architectural mismatches’ [25], which are incorrect
architectural assumptions made by CSs. This can be a problem
for SoSs, where full information is often not disclosed, some
CSs may be unaware of the SoS or even competing with
each other, and CSs interact with legacy systems designed for
outmoded architectures.

D. Enterprise architectural techniques

Enterprise architectural techniques merge systems engi-
neering and enterprise engineering practices. Enterprise en-
gineering has been defined as ‘applying holistic thinking to
conceptually design, evaluate and select a preferred structure
for a future state enterprise to realise its value proposition and
desired behaviours’ [26]. Some key SoS challenges in enter-
prise architectures are: adding or removing CSs; changes in the
socio-technical environment; and shifts in the enterprise pro-
file [27]. An epoch-based analysis method has been proposed
by [27], for evaluating enterprise architectures in a changing
environment. A series of ‘epochs’ represents the system, each
defining a period in time. Epoch-based architecture approaches
encourage thinking about the environments of the SoS and do
not focus on a single vision of the future.

E. Dynamic reconfiguration techniques

The scale and complexity of an SoS, constituent indepen-
dence, constant evolution, distribution and lack of trust leads to
challenging operating environments, and an SoS typically can-
not be rebooted easily if there are problems. Instead, dynamic
reconfiguration is one option that can be employed to cope
with problems. This requires that compromised CSs can be
readily substituted; a key challenge is to ensure that dynamic
reconfiguration does not compromise the system architectural
style (see, for example [28]). Dynamic reconfiguration is
related to ‘autonomic computing’, which describes a system
which can self-manage to some degree. Self-management
approaches vary; some may emphasise collaborative working
between components whilst others employ a central authority
to make decisions [29]. A major challenge is the co-ordination
of disparate types of system elements (e.g., databases, routers,
servers...) as they monitor themselves and their neighbours,
and select appropriate responses [29].

F. Design by contract
The ‘design by contract’ principle [30] formalises interac-

tions between components, with one providing a service to be
consumed by the other. The contract guarantees that, ‘given a
state and inputs which satisfy the precondition, the operation
will terminate and will return a result that satisfies the post-
condition and respects any required invariant properties’ [15].
Contract-based engineering is particularly useful for SoSE
because:

• CSs can easily be substituted, since any operation can be
replaced by a similar operation as long as it has weaker or
equivalent preconditions and stronger or equivalent post-
conditions [15].

• CSs are able to evaluate and make decisions about the
reliability of services before employing them, because
details are provided about what a service will do [31].

• Expectations about services are made clear to CS devel-
opers [15].

• Contracts can facilitate dynamic reconfiguration [31].
Beugnard et al [31] apply the design-by-contract principle

to architectures in which components provide services [15]
in a layered approach, formally specifying synchronisation
for operations and quality of service, which enables dynamic
adaptation [31]. Payne & Fitzgerald [32] extend SysML
into SysMLC, as a notation for specifying contract-based
interfaces, that supports integration of functional and non-
functional properties.

G. Summarising existing techniques
Whilst there has not been a lot of research in the area of

architectural patterns for SoS explicitly, there are many areas
where existing knowledge and techniques can be leveraged and
possibly adapted. Research in the field of software architec-
ture suggests that architectures are core to systems and SoS
engineering. Architecting takes place throughout the system
life cycle and resulting architectures must evolve over time -
particularly for SoS, where change is constant. Good practice
suggests that architectures be produced according to defined
architectural viewpoints and codified in an architectural frame-
work that includes consistency rules. Modelling is a key tool
for supporting the development of architectures; our current
and future work builds on this.

Architectural styles and patterns should be used whenever
possible and architectural reuse encouraged. This increases
system comprehension and allows ‘lessons learned’ from
previous systems. SoS architectures need to support specific
properties, including independence, heterogeneity, evolution
and a challenging environment. There are many techniques
which can be useful here. In our work on architectural patterns
for SoS, we intend to support design by contract, which we
believe offers an effective way to facilitate: substitution of
constituents (and therefore dynamic reconfiguration as a solu-
tion to environmental problems); and loose coupling (which
enables the independent constituents to evolve individually).
Future work on the COMPASS project will concentrate on
addressing heterogeneity in SoSE and architectural modelling.

IV. MODELLING PATTERNS

Patterns in architecture have been studied since the 1970s
(e.g., [33]). Subsequent work has led to the concept of a pattern
- ‘an idea that has been useful in one practical context and will
probably be useful in others’ [34] - being adopted in software
engineering and object-oriented programming (e.g., through
the work of [35]), analysis [34] and data modelling [36].
We use the term ‘modelling pattern’ to refer to a pattern
that can be applied to modelling aspects of a system, such
as its architecture or its interfaces. Following the example
of [35], we describe a pattern by identifying the following
basic properties: background; aims (or intent) of the pattern;
pattern structure; rationale; and finally an illustrative example.
We also indicate the type of SoS that we believe applies; SoS
types are described in [37].

Architectural styles, design and patterns overlap signifi-
cantly, but design patterns (e.g., see [35]) and architectural
styles are distinct. An architectural style provides a high-
level view that enables the analysis of ‘emergent system wide
properties’ [13], whilst design patterns are concerned much
more with lower-level questions. We focus on existing patterns
from literature, and consider how they may be applied in a
SoS.

V. INITIAL SOS ARCHITECTURAL MODELLING PATTERNS

We introduce in this section our initial collection of SoS
architectural modelling patterns.

A. Centralised Architecture Pattern

Background A centralised architecture (similar to the star
network pattern) has a central point of control. The central
CS (the ‘hub’) is connected to the other CSs and is respon-
sible for ensuring SoS behaviour. There may be degrees of
centralisation; e.g., a fully centralised SoS will connect all
CSs to a hub, whilst a partially-centralised SoS will see a hub
connected to a subset of CSs. Constituents are still capable of
exhibiting autonomy despite the centralisation. For example,
the hub can make decisions about functionality, whilst CSs
may be unaware of the SoS (e.g., they may be commercial
off-the-shelf systems) and their ability to make autonomous
decisions continues unabated.

Aims The main aims of this pattern are to support:
• Centralised control and management of SoS
• Reuse of pre-existing systems
Structure A single CS hub marshals the remaining CSs

to deliver SoS capability. The hub is typically developed
explicitly to achieve the SoS goals and so this is likely to be
a directed [2] or acknowledged [37] SoS. The remaining con-
stituents may be legacy or pre-existing systems, or purpose-
built. It is typically the responsibility of the central system to
ensure compatibility with the other CSs.

We distinguish between a centralised architecture with a
hub, and a CS which is commonly employed by several
other CSs to provide a service; the latter enacts no (or little)
control and does not address the SoS goals. When designing
a centralised SoS architecture, it should be made clear (e.g.,

through SysML behavioural models) that the hub provides this
control.

A hub may connect to a CS which is itself considered a
mini-hub in a sub-SoS, controlling/managing another collec-
tion of constituents. In a hybrid centralised-distributed SoS,
the central hub may be distributed over several constituents.
This provides explicit management of the SoS, but lessens the
reliance placed on a single hub. The degree to which an SoS
may have a distributed ‘hub’ and still be considered centralised
is subtle; we will explore this in future work.

Rationale This pattern aims for control and management
of SoS, achieved through a bespoke hub; this also permits
verification in the early stages of SoS design. The pattern
leverages existing or third-party systems, as the non-hub CSs
can be existing or off-the-shelf systems.

Example Examples of a centralised SoS often inhabit a
domain with a strong requirement for ‘command and control’.
The anti-guerrilla operations SoS example, described in [38],
has a central ‘theatre command’ system (with a strong hu-
man aspect), a system comprised of UAV scouts, and CSs
including artillery, troops and the required communication in-
frastructures. The theatre command system makes operational
decisions based upon data sourced from UAV scouts and other
sources, to give commands to the various troops and artillery.
The goals of the SoS are achieved due to the commands of
the central hub, which takes responsibility for delivering SoS
functionality.

B. Service Oriented Architecture

Background Employing a Service Oriented Architecture
(SOA), applications are constructed through the use of third-
party services. Services are stateless from the point of view of
the application (i.e., they have internal state, but do not share
it), behaving like functions acting on supplied parameters.
Applications are constructed by selecting services from their
service description. Service providers may develop systems in
any way as long as they provide standardised descriptions and
expose a means for provision of the service. An SOA may be
a specialisation of centralised architecture (see Section V-A).

Aims The main aims of this pattern are to support:
• Analysis of SoS emergent behaviour
• SoS/CS evolution
• Central SoS authority
• Enable cross-domain SoS development
• Long SoS lifecycle
Structure A service provider is a CS providing one or

more services. Each service may be provided by one or more
different providers. The SoS CSs expose interfaces, which act
as points of interactions between constituents, and conform
to a specified protocol, subject to a security policy. Services
publish a service contract constituting a service description and
a service-level agreement. The service description provides
details of the service interface, in particular the offered func-
tionality, and is used for service discovery. The service-level
agreement details a set of quality of service (QoS) guarantees.

A service client uses a service, through the service interface
subject to the service-level agreement.

In applying SOA to SoS, we propose a similar relationship
between services in SOA, and components in component-
based systems (see Section III). The relationship between
SOA and component-based software architectures is subtle,
and often confused. In SOA, services are an abstract means to
consider the functionality provided by a system; definition of
the provider is the concern for software architects. Applying
SOA to the SoS level, we suggest that collections of CSs may
be combined to provide services3.

When designing an SoS with the SOA pattern, we would
require two separate notions of an interface: a CS interface and
a service interface. The design process should first consider
only services (i.e., which services are required to provide
the requisite SoS functionality), not the individual CSs. An
SoS designed with the SOA pattern therefore is centralized in
nature, and can be considered to be directed [2] or acknowl-
edged [37]. This is because there will be a system involved
with the selection of services.

The service interfaces define the functionality provided by
services. The relationship between the CS interfaces and the
service interfaces is important and is the focus of further
work. Each service must define a service contract. The con-
tract should include a description of the service functionality,
reflecting the service interface definition. The contract should
also define a service-level agreement defining QoS guaran-
tees. It is possible, therefore, for a service to have several
service contracts for the same service interface. The contracts
may differ by their service-level agreements. For example, a
mapping service may have two contracts: one for civilian use
and another for industry. The contracts may describe the same
functionality, but vary by providing different image resolutions
or response times.

Rationale As a type of centralised pattern, the SOA pattern
provides a central system, which composes services to achieve
the SoS goals and functionality. This satisfies the aim of
central SoS authority. SoS evolution is enabled through the
loose coupling of SoS management; service providers need
not know how a service is being used, only that they must
meet the guarantees made in the service contract. This allows
the SoS to evolve through dynamic binding of services.

Through the separation of the service contract (and in
particular the service interface) and the underlying service
implementation, the pattern achieves the aims of CS evolution
and cross-domain SoS development. A service consumer may
use a service without requiring knowledge of the service logic
or implementation. This enables evolution of the architecture
of the CSs providing the service without requiring a change
of service contract.

The analysis of SoS emergent behaviour may be achieved
through the analysis of the service descriptions - both the
functional and non-functional aspects. However this requires

3There are several areas of research in the application of SOA to SoS,
including the IMC-AESOP project: http://www.imc-aesop.eu

Travel'Service'Discovery'Agent''

'
Hotel'

Provider'
Service'

'

H1_Serv_IF'

'
Airline'
Provider'
Service'1'

'

A1_Serv_IF'

Travel'Service'Front'End'

'
Airline'
Provider'
Service'2'

'

A2_Serv_IF'

Travel'Agent'SoS'

Trip_Serv_IF'

'
Hotel'

Provider'
Service'2'

'

H2_Serv_IF'

'
Airline'
Provider'
Service'3'

'

A3_Serv_IF'

Environment'

service'contracts'

Fig. 1. Travel agency SoS implementing an SOA architectural pattern

further effort in understanding the relationships between sys-
tem and service interfaces, as described earlier. Finally, the
SOA pattern supports a long SoS lifecycle through the use of
explicit separation of service interface and service implementa-
tion, allowing CS developers to apply different methodologies
and development processes.

Example A travel agent booking SoS has a central front-
end system that receives requests from its environment (ei-
ther a consumer or travel agent) to book a trip consisting
of a hotel, flight, etc (shown in Figure 1). The front-end
system is responsible for delivering the SoS functionality of
receiving trip requests and responding with trip details, in
the process employing those services provided by other third-
party systems. A discovery system retrieves service contracts
from service providers and ensures that the front end system
employs the most suitable services. The front end may change
service providers dynamically by selecting different suppliers
to fulfil requests. The loose coupling of the SOA pattern
ensures that the SoS is amenable to such reconfigurations4.

C. Publish-Subscribe Architecture Pattern

Background This communication paradigm was developed
for dissemination of information between distributed software-
centric systems. The pattern can be divided in two different
subgroups: an Event-Based Publish-Subscribe pattern (EBPS)
and a Data-Centric Publish-Subscribe (DCPS) pattern. We
introduce the event-based publish-subscribe version here, but
currently focus on the data-centric publish-subscribe version.

The Publish-Subscribe pattern has been widely used in
industrial systems and recently the DCPS paradigm has been
standardized by OMG as the ‘Data Distribution Service for

4Reconfiguration challenges are still present, such as quiescence (the
systems should be in a state such that transactions are not currently taking
place). This is an issue beyond the scope of our current work, and not restricted
to the SOA pattern.

Domain 1 Domain 2

CS2

CS3

CS6

CS7

SoS

CS1

CS5

CS8

CS4

Fig. 2. Example of a publish-subscribe model with two domains

Real-Time Systems’ (DDS) standard [39]. DDS is a standard
for a data-centric architecture for dissemination of information
between heterogeneous distributed systems. DDS specifies a
Data-Centric Publish-Subscribe (DCPS) model, where DCPS
provides the functionality required for an application to pub-
lish and subscribe to the values of data objects of given types.

Aims The main aims of this (DCPS) pattern are to support:

• Loose coupling between publisher and subscriber CSs in
the SoS with time, flow and space decoupling between
the CSs

• One to many and many to many communications between
the CSs in the SoS

Structure In the EBPS pattern events are exchanged be-
tween Publishers and Subscribers based on service-oriented
publish and subscribe interfaces. The Publisher is responsible
for publishing an event via an event channel to the associated
Subscribers who have registered for the actual event type.
A Subscriber receives the published events from the event
channel, which handles registration of Subscribers and actual
dissemination of a given event.

In the Data-Centric Publish-Subscribe (DCPS) pattern, a
Topic describes a Data-Object with a unique name in the
given domain, a data-type and a set of Quality of Services
(QoS) related to the data. A Publisher is responsible for data
distribution to a set of registered Subscribers and publishes
data on one or more Topics. A DataWriter is used by the
Publisher to publish data associated with a unique Topic.
A Subscriber receives published data on Topics and makes
these available to the application at the Subscriber site. A
DataReader is used to access the received data from the
attached Subscriber. Both a DataWriter and a DataReader have
typed interfaces for a given topic, acting as a mediator on the
publishing site to the publisher and on the receiver site to
the subscriber. A Publisher, Subscriber, Topic, DataWriter or
DataReader can each have an associated set of QoSPolicy.
Each CS in this type of SoS can play the role of a Publisher,
a Subscriber, or both, on one or more Topics. A given SoS
can be defined as one or more communication domains each
with its own set of CSs, as indicated on Figure 2. In this

example, constituents CS1-CS5 participate in domain 1 and
constituents CS4-CS8 in domain 2. CS4 and CS5 participate
in both domains; CS5 provides a potential gateway between
the two domains if needed, whilst CS4 participates in the
two domains without interactions between the domains. This
pattern can be useful for a collaborative [2] SoS; each CS
agrees on a common data model, comprising a set of topics for
exchanging data. There is no central hub. If a CS Subscriber
wants to join or leave a given communication domain, it can
register or de-register on a given Topic in the domain.

Rationale We consider here how the solution structure
addresses the aims of the DCPS pattern. Time decoupling is
achieved: the Publisher and Subscribers do not need to be
online at the same time (the middleware system can store
data). Flow decoupling is achieved, as a publisher can publish
its data asynchronously without waiting for a subscriber to
receive it, whilst a subscriber does not need to wait but can
be notified asynchronously when a change in subscribed data
occurs. Space decoupling is achieved as neither the publisher
or the subscriber needs to know each other’s identity. The
second aim, one-to-many and many-to-many communication,
is also achieved; there can be one or more publishers on the
same topic and one to many subscribers on the same topic.

Example A Medicine Card topic contains the actual
medicine prescriptions for a given citizen along with the
history of prescriptions. Several CSs can update this infor-
mation as Publishers to the Medicine Card information whilst
other CSs subscribe to the Medicine Card information and
receive updates when the medicine prescription changes for
a specific citizen. The underlying interaction mechanism is
a push-mechanism, where changed information is pushed to
all the registered subscribers. This pattern has a very loose
coupling between publishers and subscribers, where it is very
simple to add new publishers or subscribers.

D. Pipes and Filters Architecture Pattern

Background The pipes and filters patterns is described
in [40] as an architecture style and in [41] as an architectural
pattern.

Aims The main aims of this pattern are to support:
• Data or material flow oriented systems
• Independent processing steps on a flow
• Configurable transmission of the flow between processing

elements
• Dynamic change of processing steps and connectors
Structure Filters represents the processing steps, where e.g.

data or materials are processed from one input form to an
output form. Pipes represents connections between Filters for
transferring the data. The Input Source represents the first step
where data enters the SoS and the Output Sink indicates where
data exits. Filters are independent and do not share state or
know each other’s identities.

This pattern can be applied for either directed [2] or
acknowledged [37] SoS, and in principle could also be used
for collaborative [2] SoS if a CS voluntarily joins a processing
chain to provide additional services. Each CS can act as a

SoS-Control &
Configuration CS

1
Pipe-CS Filter-CS

Input Source
CS

Output Sink
CS

1..*

Pipe-CS
1

1

1

SoS

Fig. 3. Modified SoS pipe and filter pattern with control & configuration

filter-CS (processing), a pipe-CS (storage or communication),
an input-source-CS or an output-sink-CS. The complete SoS
is described by the set of CS connected as: input-source-CS,
{pipe-CS, filter-CS}*, pipe-CS, output-source-CS. The sets
{pipe-CS, filter-CS} can be dynamically changed during the
system lifetime. A modified pipes and filters system (inspired
by the Modified Pipes and Filters Model [40]) is shown in
Figure 3. This allows configuration of filters and/or as an
alternative addition of materials to the processing steps. The
SoS-Control & Configuration-CS can be used to implement
either a directed or acknowledged SoS, where this CS can
enforce global control over how the Filter-CS processing is
performed. Another modification to the basic pattern may
permit a filter to have either more than one input pipe or
output pipe. This pattern modification could be combined with
the control & configuration possibility, with the SoS-Control
& Configuration CS deciding upon the number of input and
output channels.

Rationale Independent processing steps on a flow is realized
as a series of independent CSs. The aim of configurable
transmission of the flow is realized by the pipe CSs. The aim of
supporting dynamic change of processing steps and connectors
is also fulfilled, as both filters and pipes can be exchanged at
design time, or sometimes dynamically during runtime.

Example A Local Monitoring system monitors a patient’s
vital signs in a local setting, with the possibility of storing
and/or displaying results and giving local alarms. The signals
monitored are forwarded through a Pipe constituent system
to a Central Monitoring system, for further analysis (e.g.,
monitoring by a doctor). The Central Monitoring CS receives
inputs from many other CSs. The processed signals can
be forwarded to another CS performing the role of a Pipe
for Central Storage. In some situations Pipe CSs could be
implemented by standard middleware, thus disappearing as
independent CSs. This architecture ensures that the CS are
decoupled, as the receivers of a given flow can be redirected
dynamically to another Filter component.

E. Blackboard Architecture Pattern

Background The Blackboard architecture pattern is de-
scribed by [40] as an architectural style for data-centred

Systems and in [41] as an architectural pattern. It is suitable
for SoSs solving problems with a certain degree of uncertainty,
e.g. in expert based or fuzzy logic based systems. The pattern
can also be applied in SoS where central knowledge is
obtained by several sources.

Aims The main aims of this pattern are to support:

• Development of expert or knowledge based systems
• Loose coupling
• Separation of concerns

Structure The components are the Knowledge Sources,
a Blackboard data structure and a Control component. The
Blackboard component is a central data store, where elements
of the solution space are stored together with control data.
The Blackboard provides an interface for reading and writing
data. Elements of the solution space are written to (or removed
from) the Blackboard by the Knowledge Source components;
the elements are called Hypotheses. Knowledge Source CSs
are specialized for either solving a part of the overall problem
or delivering input data; they work independently and usually
in parallel. Each has a condition part, that evaluates the
Blackboard state to see if it can make a contribution, and an
action part, that produces a result and updates the blackboard
state.

The Control component evaluates the current state of the
blackboard and uses this data to coordinate the Knowledge
Sources. The Control component searches for a possible
solution to the problem, which cannot always be guaranteed.
This pattern is applicable for directed [2], acknowledged [37]
and possibly also for collaborative [2] SoSs. Each CS acts as
a Knowledge Source, generating information which is stored
in the Blackboard CS. Application of this pattern requires one
or two CSs acting as the repository (Blackboard) and control
system, with a specification of the interaction between them.

Rationale The Blackboard component houses the ‘expert’
constituent system, where the information and hypotheses are
stored and modified by the Knowledge Source constituent sys-
tems. Loose coupling is achieved, through the independence
of the Knowledge Sources, which may be unaware of the exis-
tence of other sources (the SoS-Control constituent is coupled
with the Blackboard and Knowledge Source constituents). The
aim of separation of concerns is achieved through the use of
three different system roles. A Knowledge Source is free to
pursue its own goals outside the SoS, including in other SoSs.

Example RadarSat-1 (based on a real-life example called
RadarSat-1 [42]) is an earth-observation satellite (shown in
Figure 4), equipped with an aperture radar to allow end users to
connect, submit requests and receive the results. A blackboard
is used to realize an advanced planning component, which
controls the radar measurements. This system has over 140
constraints, which makes the planning process very complex.
The SoS-RadarSat-CS is a CS and controls the access and
use of the satellite radar, which is a shared resource in the
community of RadarSat users. Each Client-CS in this SoS is
an independent system with its own purpose that participates
in the SoS as a Knowledge Source. RadarSat SoS allows each

:SoS-Radarsat
Blackboard

:Client CS1

:SoS-RadarSat
Control

:Client CS2

:Client CS3

:RadarSat

:SoS-RadarSat-CS

Fig. 4. A satellite SoS implementing a blackboard pattern

Client CS to perform its own measurements and experiments
with the possibility of sharing the results in the community.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an initial set of patterns
for architectures suitable for SoSs. We suggest that better
understanding of SoS patterns supports architectural reuse,
increasing system comprehension and leverage of ‘lessons
learned’ for SoS engineers.

A key feature for SoS architectural modelling is causal or
timed sequences. These are important for SoS modelling, to
illustrate how:

• The architectural pattern of an SoS may evolve over a
long period of time (e.g., CSs added to or removed from
the SoS, or changes to dependencies between CSs).

• The SoS responds to events by reconfiguring the archi-
tecture dynamically, taking advantage of new services, or
replacing unavailable CSs. This includes consideration of:

– New emergent properties at the SoS boundary
– Dynamic contract negotiations. During this process

third-party agents acting on behalf of CSs may
make dynamic changes to the SoS contracts, relating
to CSs’ functionality or the related non-functional
properties.

– Control structures required for enacting system
changes (either behavioural or structural) based on
the state of the SoS and its environment.

In future work we intend to consider causal and timed
sequences in architectural modelling for SoSs, taking into
account the issues described above, as well considering meth-
ods for coping with heterogeneity and/or methods for iden-
tifying the events that trigger a transition between different
architectural patterns. Published case studies that implement
recognisable SoS patterns are needed, so our planned future
work also includes analysis of SoS case studies, expanding our
initial collection with additional patterns where appropriate.
Finally, based on case study analysis, we should also like to

develop practical guidance for use of possible patterns based
on the characteristics of specific SoSs.

ACKNOWLEDGMENT

The work presented here is supported by the EU Framework
7 Integrated Project ‘Comprehensive Modelling for Advanced
Systems of Systems’ (COMPASS, Grant Agreement 287829).
For more information see http://www.compass-research.eu.

REFERENCES

[1] OUSD(AT&L), DoD, “Systems and Software Engineering. Systems
Engineering Guide for Systems of Systems,” Office of the Deputy Under
Secretary of Defense for Acquisition and Technology, Department of
Defense, Washington DC, Tech. Rep. Version 1.0., August 2008.

[2] M. W. Maier, “Architecting Principles for Systems-of-Systems,” Systems
Engineering, vol. 1, no. 4, pp. 267–284, 1998.

[3] D. A. Fisher, “An Emergent Perspective on Interoperation in Systems of
Systems,” Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, Tech. Rep., March 2006, cMU/SEI-2006-TR-003.

[4] J. Boardman and B. Sauser, “System of Systems – the meaning of
“of”,” in Proceedings of the 2006 IEEE/SMC International Conference
on System of Systems Engineering. Los Angeles, CA: IEEE, April
2006, pp. 118–123.

[5] W. Baldwin and B. Sauser, “Modeling the Characteristics of System of
Systems,” in System of Systems Engineering, 2009. SoSE 2009. IEEE
International Conference on. IEEE, 2009, pp. 1–6.

[6] R. Abbott, “Open at the Top; Open at the Bottom; and Continually (but
slowly) Evolving,” in System of Systems Engineering, 2006 IEEE/SMC
International Conference on. IEEE, April 2006.

[7] D. Cocks, “How Should We Use the Term “System of Systems”
and Why Should We Care?” in Proceedings of the 16th INCOSE
International Symposium 2006. INCOSE, July 2006.

[8] C. Dickerson and D. N. Mavris, Architecture and Principles of Systems
Engineering. CRC Press, 2009.

[9] S. Perry, J. Holt, R. Payne, C. Ingram, A. Miyazawa, F. O.
Hansen, L. D. Couto, S. Hallersteded, A. K. Malmos, J. Iyoda,
M. Cornelio, and J. Peleska, “Report on modelling patterns for sos
architectures,” COMPASS Deliverable, D22.3, Tech. Rep. [Online].
Available: http://www.compass-research.eu/deliverables.html

[10] D. Garlan and M. Shaw, “An introduction to software architecture.
Technical report: CMU/SEI-94-TR-21,” Software Engineering Institute,
Carnegie Mellon University, Tech. Rep., 1994.

[11] D. Garlan, “Software architecture: a roadmap,” in In Proceedings of the
Conference on the Future of Software Engineering: ICSE00, 2000, pp.
pp91–101.

[12] M. Shaw, “The coming-of-age of software architecture research,” in In
Proceedings of the 23rd International Conference on Software Engineer-
ing (ICSE), 2001, pp. 656–664a.

[13] R. Monroe, A. Kompanek, R. Metlon, and D. Garlan, “Architectural
styles, design patterns, and objects,” IEEE Software, vol. 14, no. 1, pp.
43–52, 1997.

[14] C. Weir, “Architectural styles for distribution: Using macro-patterns
for system design,” in In Proceedings of the 1997 European Pattern
Languages of Programming Conference, Irsee. Available as Siemens
Technical Report 120/SW1/FB, 1997.

[15] R. J. Payne and J. S. Fitzgerald, “Evaluation of Architectural Frame-
works Supporting Contract-based Specification,” School of Computing
Science, Newcastle University, Tech. Rep. CS-TR-1233, December
2010.

[16] E. M. Dashofy, A. van der Hoek, and R. N. Taylor, “A comprehen-
sive approach for the development of modular software architecture
description languages,” ACM Transactions on Software Engineering and
Methodology, vol. 14, no. 2, 2005.

[17] M. Leclercq, A. E. Ozcan, V. Quema, and J. Stefani, “Supporting
heterogeneous architecture descriptions in an extensible toolset,” in In
Proceedings of the International Conference on Software Engineering:
ICSE, 2007, pp. 209–219.

[18] L. S. Frederic Loiret, Romain Rouvoy and P. Merle, “Software Engineer-
ing of Component-based System-of-Systems: A Reference Framework,”
in CBSE ’11 14th international ACM Sigsoft symposium on Component
based software engineering. ACM, 2011, pp. 61–65.

[19] E. M. Dashofy, A. van der Hoek, and R. N. Taylor, “An infrastruc-
ture for the rapid development of XML-based architecture description
languages,” in Proceedings of the 24th International Conference on
Software Engineering (ICSE), 2002.

[20] S. A. Selberg and M. A. Austin, “Toward an evolutionary system of
systems architecture,” in In Proceedings of the 18th Annual Interna-
tional Symposium of The International Council on Systems Engineering
(INCOSE), June 2008.

[21] W. Kozaczynski and G. Booch, “Component-based software engineer-
ing,” IEEE Software, vol. 15, no. 5, pp. 34–26, 1998.

[22] H. Jifeng, X. Li, and Z. Liu, “Component-based software engineering:
The need to link methods and their theories,” in ICTAC 2005, ser. LNCS
3722, D. V. Hung and M. Wirsing, Eds., 2005, pp. 70–95.

[23] G. Edwards and N. Medvidovic, “A methodology and framework for
creating domain-specific development infrastructures,” in In Proceedings
of the 23rd IEEE/ACM International Conference on Automated Software
Engineering: ASE, 2008, pp. 168–177.

[24] W. Hasselbring, Component-based software engineering. World Scien-
tific Publishing, 2002, vol. 2, pp. 289–305.

[25] D. Garlan, R. Allen, and J. Ockerbloom, “Architectural mismatch or
why its hard to build systems out of existing parts,” in Proceedings of
the 17th International Conference of Software Engineering (ICSE 95),
1995.

[26] D. Nightingale and D. Rhodes, “Enterprise architecting: Course notes.
MIT ESD-38J,” Massachussetts Institute of Technology, Tech. Rep.,
2007.

[27] D. Rhodes, A. Ross, and D. Nightingale, “Architecting the system of
systems enterprise: Enabling constructs and methods from the field of
engineering systems,” in Systems Conference, 2009 3rd Annual IEEE,
march 2009, pp. 190 –195.

[28] I. Georgiadis, J. Magee, and J. Kramer, “Self-organising software
architectures for distributed systems,” in In Proceedings of the first
workshop on Self-healing systems (WOSS 02), 2002, pp. 33–28.

[29] J. O. Kephart, “Research challenges of autonomic computing,” in In Pro-
ceedings of the 27th International Conference on Software Engineering
(ICSE), 2005, pp. 15–22.

[30] B. Meyer, “Applying ‘design by contract’,” Computer, vol. 25, no. 10,
pp. 40–51, 1992.

[31] A. Beugnard, J.-M. Jezequel, N. Plouzeau, and D. Watkins, “Making
Components Contract Aware,” IEEE Computer, vol. 32, no. 7, pp. 38–
45, July 1999.

[32] R. J. Payne and J. S. Fitzgerald, “Contract-based interface specification
language for functional and non-functional properties,” School of Com-
puting Science, Newcastle University, Tech. Rep. CS-TR-1250, May
2011.

[33] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language:
Towns, Buildings, Construction. New York: Oxford University Press,
1977.

[34] M. Fowler, Analysis Patterns: Reusable Object Models. Addison-
Wesley, 1997.

[35] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns
Elements of Reusable Object Oriented Software. Addison Wesley, 1995.

[36] D. Hay, Data Model Patterns: Conventions of Thought. Dorset House,
1996.

[37] J. Dahmann and K. Baldwin, “Understanding the Current State of
US Defense Systems of Systems and the Implications for Systems
Engineering,” in IEEE Systems Conference. IEEE, April 2008.

[38] M. Hall-May and T. P. Kelly, “Using agent-based modelling approaches
to support the development of safety policy for systems of systems,” in
Proceedings of the 25th International Conference on Computer Safety,
Reliability and Security (SAFECOMP 06), ser. LNCS, J. Gorski, Ed.,
vol. 4166, Sep 2006, pp. 330–343.

[39] OMG, “Data distribution service for real time systems, specification,
version 1.2,” http://www.omg.org/spec/DDS/1.2 (Accessed November
2012), January 2007.

[40] M. Shaw and G. Garlan, Software Architecture Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

[41] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture a system of patterns. John
Wiley & Sons, 1996, vol. 1.

[42] D. D. Corkill, “Countdown to success: Dynamic objects, GBB, and
RADARSAT-1,” Communication of the ACM, vol. 40, no. 5, May 1997.

