
IEEE Copyright Notice

This is an author version of the paper:

Levi, Meister, Rossum, Krajńık, Vonásek, Štěpán, Liu, Caparrelli:
A Cognitive Architecture for Modular and Self-Reconfigurable Robots,
In 8th Annual IEEE Systems Conference (SysCon), 2014,
doi: 10.1109/SysCon.2014.6819298.

The full version of the article is available on IEEE Xplore or on request.

Copyright 978-1-4799-2086-0/14/$31.00 c©2014 IEEE. Personal use of this
material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works, must be obtained from the IEEE.

http://ieeexplore.ieee.org

A Cognitive Architecture for Modular and
Self-Reconfigurable Robots

P. Levi∗, E. Meister∗, A.C. van Rossum†, T. Krajnı́k‡, V. Vonásek‡, P. Stepan‡, W. Liu§, F. Caparrelli¶

∗Institute of Parallel and Distributed Systems, University of Stuttgart, Universitätstr. 38, 70569 Stuttgart, Germany
† Almende B.V., Westerstraat 50, 3016 DJ Rotterdam, Netherlands

‡ Czech Technical University in Prague, Fac. of electrical eng., Technicka 2, 166 27, Prague, Czech Republic
§ University of the West England, Bristol, Coldharbour Lane BS16 1QY Bristol, UK

¶ Sheffield Hallam University, Sheffield, UK

Abstract—The field of reconfigurable swarms of modular
robots has achieved a current status of performance that allows
applications in diverse fields that are characterized by human
support (e.g. exploratory and rescue tasks) or even in human-less
environments. The main goal of the EC project REPLICATOR [1]
is the development and deployment of a heterogeneous swarm of
modular robots that are able to switch autonomously from a
swarm of robots, into different organism forms, to reconfigure
these forms, and finally to revert to the original swarm mode [2].
To achieve these goals three different types of robot modules have
been developed and an extensive suite of embodied distributed
cognition methods implemented [3]. Hereby the methodological
key aspects address principles of self-organization. In order to
tackle our ambitious approach a Grand Challenge has been
proposed of autonomous operation of 100 robots for 100 days
(100 days, 100 robots). Moreover, a framework coined the SOS-
cycle (SOS: Swarm-Organism-Swarm) is developed. It controls
the transitions between internal phases that enable the whole
system to alternate between different modes mentioned above.
This paper describes the vision of the Grand Challenge and the
implementation and the results of the different phases of the
SOS-cycle.

I. INTRODUCTION

Modular, reconfigurable robotics is a special branch of
robotics, that has been studied for over 25 years [4]. This
field has been continuously refined [5], [6]. Two different
approaches have been investigated. One direction of develop-
ment has been characterized by the extended use of technical
and physical phenomena. An excellent example of this kind
of efforts is the self-assembling M-cube robot developed by
Rus et. al. [7]. The other direction of development has been
geared towards behavioural aspects, such as distributed cogni-
tion and sustainable survivability. This contribution addresses
the behavioral, cognitive approach. Until now most of these
behavioural and cognitive aspects have been studied in isola-
tion. Only nowadays becomes it possible to cross-disciplinary
solve the wide diversity of problems at hand, such as, for
example, energy balancing in both body and swarm mode, a
range of controllers for different gaits distributed over robotic
modules, cognitive fusion of various sensor data in swarm
mode, etc. Adaptation of autonomous robots for industrial
purposes hinges on the level of their autonomy. Robots that
survive for 100 days (performing a diversity of tasks) would
demonstrate that an autonomous robotic system can operate

for a long time without any human intervention indeed. The
envisioned scenario of our Grand Challenge starts with a
swarm of 100 heterogeneous robot modules that are placed in
a previously unknown arena of which certain environmental
structures are slowly changing. Figure 1 demonstrates the
initial situation where all the different robot modules are in
swarm or previously assembled organism mode.

Figure 1: Start-up situation of modular, reconfigurable robots
to achieve different tasks of the Grand Challenge

The environmental restrictions are varying in an unpre-
dictable way. Thus, energy resources can change their position
and height; therefore if the power sockets are mounted too
high (e.g. for an organism to reach it), then the organism must
be reconfigured in order to reach the power source (transfer
from swarm mode to organism mode) or first to overcome an
obstacle. One additional big goal of this challenge is given by
the fact that the external conditions are so strong that the robots
can only survive when they are aggregated in an organism or
disaggregated in a swarm and newly shaped organisms. In this
way, we can achieve an enhanced distributed recognition, an
extended available affordance and actuation capabilities [8].

To achieve this challenge, robots must be capable to per-
form diverse important functionalities such as self-aggregation,
self-regulation, reconfiguration, energy regulation, self-repair
and autonomous locomotion capabilities. The realization of
this Grand Challenge has been manifested in a demonstration
in an arena with real robots. Therefore, the first task was to

design and produce such a high number of modular robots.

Figure 2: Modular robots: (a) Backbone [9]; (b) Scout [10];
(c) Active Wheel [11].

To achieve our goals, an heterogeneous swarm of robots has
been built. Figure 2 shows three different robotic platforms:
the Backbone, the Scout, and the Active Wheel, which are on
the one hand heterogeneous and differ in their mechanical and
electrical properties, however on the other hand are fully com-
patible through the common docking element, which enables
the robots to aggregate into different robot configurations.

The best way to integrate a continuous following of a
recurrent goal is to run a cyclic program. For this reason, a
survival cycle framework, named S-O-S (swarm - organism
-swarm) has been integrated, which controls the behavior of
individual robots in a swarm and also in an organism. Robots
run through different phases of the cycle and make decisions
either to target or to neglect the corresponding state. The SOS-
cycle is illustrated in Figure 3. Phases do not necessarily need
to be run in a sequential way but rather can dynamically be
changed by an active action selection mechanism explained
in Section III. This framework allows reactive and adaptive
behavior of robots dependent on environmental changes.

The objectives of this paper are first of all to present
the developed architecture, which reflects the survival strategy
for modular and self-reconfigurable robots, and secondly to
explain used technologies and the achieved results. The paper
is organized in the following way: In Section II, we introduce
the SOS cycle with its individual phases. In Section III, we
introduce the individual methodologies and the implementation
strategies with results, which helps to achieve the desired
degree of autonomy. Finally, Section IV concludes the work.

II. THE SOS CYCLE

The key difference between reconfigurable and self-
reconfigurable robots is the ability to operate fully au-
tonomously without human intervention. A modular robot
should be able to operate as a stand-alone robot in a swarm of

Figure 3: Swarm-Organisms-Swarm (SOS): Phase Transition
Diagram of Cognitive Framework in Autonomy Cycle.

homogeneous or heterogeneous robots and should be capable
to operate in a collective manner when assembled into a robot
organism. The complexity for such a framework rely mainly in
the software and the electronics design of a robot. Cognition
can be achieved when data from different sensors are fused
together enabling transitions from one state to another. In
this paper, the realization of such framework has been done
using two different software and control modes, namely the
swarm and the organism mode. When robots act in a swarm,
they use random walk, collision avoidance and are collecting
information by exploring the environment. In organism mode,
robots start to cooperate and need a guiding framework, which
can handle the complexity of the state transitions. In this paper,
we present a cycle-based cognitive framework, which enables
to switch between swarm and the organism mode in alternating
manner.

We distinguish between intrinsic and extrinsic goals of
the robots. The major intrinsic task robots are trying to
fulfill is to stay alive, e.g. to find power sources and to
share this information among the swarm. Only when intrinsic
goals are guaranteed, robots should focus on extrinsic tasks,
which depend on the applied scenario. One typical scenario
to illustrate both modes is the foraging scenario where swarm
robots try to detect power sources, however can reach them
only when assembling into a three dimensional robot organism.
This scenario becomes a part of the Grand Challenge.

In the rest of this section, the main objectives of different
phases in the SOS cycle are introduced. The implementation
details of those phases are then explained in the following
section.

Swarm Phase
In the Swarm Phase modular robots perform random walk with
collision avoidance.

Exploration Phase
In the Exploration Phase, robots explore the environment using
different sensors such as IR distance sensors, ambient light
sensors, laser and camera. These sensors allow to recognize
objects in the arena, to distinguish between robots and obsta-
cles and, most importantly, to detect power sources. Robots
also perform mapping and navigation tasks. Distributed sensor
information is collected and merged by the robots to get the
whole map of the operating environment. Navigation system

helps to store the positions of the recognized objects, which
are shared between the robots.

Energy Homeostasis Phase
In the Energy Homeostasis Phase of the SOS cycle, the robots
are searching for available power sources in the environment.
Here, robots develop strategies how to share available power
sources between the robots in order to get maximum runtimes
of the robots.

Decision Making Phase
After power sources are localized, robots try to balance be-
tween intristic and extrinsic activities continuing searching for
further energy harvesting or to fulfill the actual goal. In this
stage of the survival cycle, robots decide either to stay in
swarm mode or, when the power sources are unreachable or
the number is limited, to assemble into a robot organism.

Aggregation Phase
When the shape of desired robot organism is determined by
self-assembling algorithms, robots start the corresponding self-
assembly process aggregating into 3D configuration.

Locomotion Phase
In the Locomotion Phase, robots are planning and generating
locomotion gaits or joint trajectories in order to navigate
and move towards the desired direction. Robots are able to
perform either 2D, 2,5D or 3D locomotion dependent on
robot types assembled in the robot organism. Organisms with
docked Active Wheels are able to perform energy efficient
2D locomotion even on rough terrains, while robot organisms
assembled of Backbones and Scouts are capable to move in
3D by using legged robot structures.

Sustainability Phase
In this phase, robots discover survival strategies for a certain
period of time. Dependent on the achieved results, robots
decide either to stay in the organism mode or, when they
fail to reach the power sources, to re-assemble into another
configuration.

Disaggregation Phase
After achieving the goal, robots disaggregate and transit back
to the swarm mode giving again the possibility to explore the
environment or go into another transient state of the SOS cycle.

Action Selection
The whole framework is controlled by an action selection
mechanism, which gives a global control about the scenario. It
guides all individual robots as well as controls the data sharing
and synchronization activities.

III. IMPLEMENTATION OF SOS CYCLE

The cognitive framework explained above brings together
many different robotics research fields. Each phase of the
framework contains diverse strategies and technologies, which
together enable autonomous and adaptive robot behaviour. In
this section, we describe the technologies used to tackle the
complexity of such tasks that can be handled by the robots. The
SOS cycle can be split into two main parts: the environment-
driven tasks, which handle the subtasks for interaction with the
environment, and the goal-driven tasks, which relate to fulfill
the targetted goal.

A. Environment-Driven Tasks

At the beginning of every mission, the robots start as
a swarm collecting first of all the information about the
environment (Figure 4).

Figure 4: Swarm Phase: Robot performing collision avoidance
and random walk.

The capability of recognizing objects enables to determine
the current situation and helps to achieve the current goal
(Exploration Phase). In this stage, all possible sensors are
used in order to get the most reasonable information. Modular
robots, which have been developed in the Replicator project are
equipped with diverse optical sensors such as IR distance range
sensors, cameras and laser. For this reason, different object
recognition methods explained below have been developed
during the runtime of the project.

Laser-based Exploration

The line-laser on the robots can be mounted horizontally
or vertically. Horizontally, its reflections form a feature vector
that subsequently can be used in a supervised fashion to
classify a range of objects (Figure 5). For example, robots
can be distinguished from flat objects such as walls by a
large difference in the overall variance of the feature vector. If

(a) (b)

Figure 5: (a) Laser reflecting on another Replicator robot, (b)
Difference image of the red channel.

mounted vertically, the laser can be used to detect the height
and distance of objects (Figure 6). The horizontal distance
between the laser (mounted in the center of the front of
the robot) and the camera (mounted at the top-left) makes it
possible to detect the distance to an object. The further the
distance to the object, the larger the shift on the image sensor

through the pinhole camera. This shift in image coordinates is
translated into a distance in world coordinates by a truncated
polynomial.

Figure 6: The horizontal distance between laser and camera
makes depth perception possible.

The height of the vertical line can be used to detect the
height of the object encountered to distinguish walls (hard to
climb) from steps (easy to climb as an organism). A Hough
Transform [12] turns out to be too computationally demanding.
An efficient filter is used which removes the side margins and
implements a low-pass filter to remove noise. A smoothing
average across several image samples provides a reliable height
estimation of objects.

During laser-based exploration, the robots update the map
by sending the detected object description (such as a wall, or
a step) over ZigBee to the other robots. A robot knows its own
position through the UbiSense indoor positioning system and
corrects these absolute coordinates with its own distance and
orientation estimate to the object.

Camera Based Object Recognition
All robot platforms are equipped with one or two on-

board mobile phone style colour cameras that are connected
directly to the main on-board processor. The cameras can
acquire images with a resolution of 640x480 pixels (VGA)
and a frame rate of approximately 10 fps. For this task, we
are using feature extraction algorithms (running on the on-
board processor) to detect the presence of other objects or
robots in the scene, as well as power sockets, steps in the
arena and other features of interest. To detect other robots in
the scene at a sufficiently high frame rate, we are exploiting
the colour features generated by four LED’s that are located
on each side of the robots (Figure 7). By grabbing the images
in YUV format, we are able to easily separate luminance and
chrominance information, therefore identifying the position of
the four (switched on) LED’s in the image. As we only need
to identify the position of three LED’s to detect position and
orientation of the robot, this solution provides some degree of
robustness when one of the LED’s is not being recognised or
is not lit.

Based on the known geometrical information relative to
the position of the four LED’s on the robot board, we are able
to filter out clutter and other noise in the image (Figure 7)
and use the remaining four (or three) blobs to guide the robot
in the direction of the target robot up to a distance that is
dependent on the optical characteristics of the camera module
(i.e. minimum working distance). Below this distance, images
go out of focus, therefore LED localisation in the image
becomes unreliable.

(a) (b)

(c)

Figure 7: Detecting robot’s LEDs from on-board camera: (a)
Original image; (b) Image after segmentation ; (c) Image after
blobs removal

In a similar way, for power socket recognition, we attach
coloured markers next to the power socket and run a colour
blob detection algorithm to localise the position and orientation
of the power socket with respect to the observing robot.

Docking Approach

The ability to identify and reach a docking mechanism
of other robot or a charging station is crucial for both the
aggregation and the sustainability phases.

To achieve autonomous docking during the aggregation
phase, IR-based sensing - including proximity detection, dock-
ing alignment detection and local communications circuits -
has been developed for all REPLICATOR robots, see [13]
for detailed implementation. Figure 8(a) illustrates the average
density of an IR beacon measured using a Backbone robot.
The area surrounded by the white dashed line represents the
region that another robot can detect the signals and behave ac-
cordingly, given the triggering threshold value 8. This provides
a 90 cm long narrow region, with each side 15 cm from the
centre.

In general, the IR docking approach between two robots
can be divided into three stages:

1 Facing – when a robot exploring in the environment
detects beacon signals, i.e. at least one of its docking
alignment sensor readings reaches certain threshold.
It will first execute a manoeuvre to adjust its heading
until two docking sensors located on the Front side
can detect the signals.

2 Aligning – using two symmetrically placed Front
docking sensors, the robots try to move towards the
beacon along the central line of the IR beam. i.e.,
to minimise the difference of readings between two
sensors.

3 Tuning – When robots are getting closer, the docking

robot uses extra sensors, e.g. proximity sensor to
perform a fine adjustment on its pose. Once two
docking units are in good positions, robots initialise
the physical locking routine to finalise docking.

However, these three stages can not guarantee the success
of the docking due to the noise of sensor inputs or mechanical
interference. For instance, the locking bolts prevent two robots
moving closer if they are not perfectly aligned. An extra
behaviour is therefore added for robot to give up. Normally,
this is achieved by moving backward by some distance and
then transferring into stage 2 to resume the docking process.
The following two conditions decide when a robot needs to
give up: 1) the duration that robot enters into stage 3 exceeds
certain level and 2) the difference between two sensors value
exceeds some threshold. Figure 8(b) – 8(c) show some selected
trajectories of docking procedure for a Scout robot.

(a)

0

100

200

300

400

500

600

700

800

900

1000

y
(m

m
)

−250−200−150−100 −50 0 50 100 150 200 250

x (mm)

(b)

0

100

200

300

400

500

600

700

800

900

1000

y
(m

m
)

−250−200−150−100 −50 0 50 100 150 200 250

x (mm)

(c)

Figure 8: (a) Coverage of IR docking beacon. Beacon is located
at (0,0). White dashed line indicating the edge of detectable
region. (b),(c) Trajectory of IR Docking for Scout robot.

Unlike in the aggregation phase, where the recruited robot
actively indicates its position by turning on its IR beacon, the
charging dock is entirely passive. Therefore, the aforemen-
tioned IR-based approach cannot be used and we have decided
to base the docking to a charging station on a computer vision
technique. Each charging station is tagged with a black and
white elliptical pattern, which allows to determine its position
and orientation by means of a fast algorithm suitable for a low-
power processor [14]. The algorithm can process the image
with speeds exceeding the camera frame rate and calculate
the motor inputs solely from the information provided by the
robot’s on-board camera.

Once a robot decides that the charging station is reachable,
the relative position of the robot to the charging station is
determined and a sequence of controllers is executed. These
controllers first guide the robot close to the station, position it
in front of the docking mechanism and align the robot heading
with the dock orientation. After that, the actual docking is
performed by means of intuitive visual servoing technique
(Figure 9). Detailed information on the docking controller can
be found in [15].

Visual Based Navigation and Mapping

During the exploration phase, the robots can use the visual
dock-detection algorithm not only to estimate positions of

Figure 9: Replicator robot during visual docking

the charging stations, but also for their own self-localization.
This ability allows each robot to run an EKF-based SLAM
method and build a local map of the surrounding charging
stations [16]. This map can be later reused in case the robot
needs to reach a particular place in its operational environment.
Problems arising from poor EKF-SLAM scalability and low
computational power of the robots can be avoided by employ-
ing a computationally efficient bearing-only navigation method
proposed in [17].

B. Goal-Driven Tasks

The second part of the SOS cycle contains all tasks that
are related to the achievement of the goals of the presented
scenario. These tasks handle the challenges for navigation,
control and survival strategy for robot organisms.

3D Locomotion

Modular robot organisms benefit from a high number of
DOFs including at least one actuator in every module. This
feature makes the robot assembly flexible and adaptable to
uncertain terrains, however requires sophisticated and smart
control systems. There exist diverse methodologies of control
for hyper redundant systems following bio-inspired or classical
paradigms see e.g. [18], [19] or [20]. In both cases, the com-
plexity grows rapidly with the increased number of DOFs. In
this paper, we introduce a model based approach for generation
of motion equations followed and also model based control
strategies. The concept is illustrated in Figure 10 and has two
main branches: the gait generation and the model generation.

The adaptive gait generator is responsible for the generation
of trajectories of each individual module. Two different meth-
ods are used for serial and for branched multi-legged robot
organisms. Serial robot configurations are better controlled by
periodical gaits, whereas other configurations require more
sophisticated approaches. One possibility for complex robot
structures is to use self-organized pattern generators. Different
periodical and self-organized approaches for gait generation
are explained in detail in [22] and in [23].

The gait for locomotion is often not sufficient to move
a complex robot assembly in unpredictable and uncertain
environments because of high dynamic influences. To handle

Figure 10: Framework for 3D locomotion [21].

the dynamics, a geometrical modelling approach [24] is used
ending up with a set of motion equations of the form:

M(q)q̈+C(q, q̇)q̇+N(q) = τ (1)

where M(q) is the mass matrix; C(q, q̇) describes the Coriolis
and centrifugal accelerations and N(q) represents the gravita-
tional and external forces.

Once the motion equations are generated, diverse control
strategies known from the field of control theory can be
applied. In our approach, we use an exact linearization and

q̈ = M(q)�1(⌧ � C(q, q̇)q̇ � N(q))

Nonlinear System

⌧ = C(q, q̇)q̇ + N(q) + M(q)v

Feedback Linearisation
PID

⌧

Kalman filter

v+� +qd
e q

q̇

Measurement
Noise

Kk =
P�

k HT
k

HkP�
k HT

k +VkRkV T
k

x̂k = x̂�
k + Kk(yk � h(x̂�

k , 0))
Pk = (I � KkHk)P�

k

q

Figure 11: Schematic of system structure with computed
torque, EKF and PID control [24].

an Extended Kalman Filter (EKF) [25] as not all the states of
the robot can be measured but have to be estimated, instead.
Figure 11 shows the complete control strategy.

The proposed methods have been first developed and
evaluated in MATLAB and finally have been ported to a
C++ based framework running on the modular robots [26].
Figure 12 shows an example robot configuration, which was
used in the final demonstration of the Grand Challenge.

High-level motion planning

To achieve a desired goal, e.g. to approach a power socket,
pure locomotion generation cannot ensure reaching the goal, as
it does not consider the overall situation in the environment. In
such a case, motion planning of the robot is required. Motion
planning of such a system with many degrees of freedom can
be solved by sampling-based methods, that create a plan by

Figure 12: Implementation on modular robots using Back-
bones.

randomly sampling of robot’s configuration space. As the com-
plexity of the sampling-based planners can grow with the num-
ber of actuators in the organism, the naive implementations of
sampling-based planners cannot be utilized [27]. To decrease
the complexity of the planning task, we propose the concept of
motion planning with motion primitives [28]. In this approach,
a robot organism is equipped with several motion primitives,
such as ’move-forward’ or ’step-up’. These primitives can be
generated by many approaches like Central Pattern Generators
(CPGs) or the 3D locomotion generator described above. The
primitives are considered as atomic actions in a high-level
motion planner, which tries to combine the motion primitives
to achieve the goal. Therefore, the motion planner does not
need to handle all the actuators, which significantly reduces
the search space and, consequently, speeds up the planning
process. An example of a high-level motion plan is depicted
on Fig 13.

Left

Forward

init

Right

L

q

near
q
rand

q

R

R

L

L

F

R

init

Figure 13: Example of a motion plan built using RRT-MP
(Rapidly Exploring Random Tree with Motion Primitives) [28]
motion planner for a robot equipped with three motion primi-
tives (’go-left’, ’go-right’ and ’go-forward’). The green nodes
represent feasible configurations, the blue nodes are possible
actions to approach the red goal.

The sampling-based motion planning relies on a motion
model, that computes motion of a robot after a control signal
is applied. In the early version of our work, a physical

simulator [29] was used. The simulation can provide a detailed
motion model (it simulates motion of all modules), but it is
computationally demanding and it cannot be run on board.
Therefore, a Simplified Motion Model (SMM) can be used [30]
instead of the simulation. The idea of the SMM is to describe
only changes of the robot’s state after a motion primitive is
applied without computing intermediate states. This can be
described as a combination of two rotations and a translation.
Such a model has only three parameters, that can be easily
estimated from the simulations or even on-line based on the
robot’s real performance. The SMM can be easily programmed
and its evaluation is fast, which allows to run the whole motion
planning on board without the necessity to employ an external
computation facility. The motion planning in an arena of size
5x5m takes approx. 5 seconds running on board. The high-level

Figure 14: Navigation of a small Cross organism along a
planned path.

planner provides a plan as a sequence of motion primitives
together with their duration. Such a plan can be easily executed
by switching the locomotion generators used to model the
individual primitives. During the motion, the robot’s position is
tracked by the global localization. When a robot deviates from
the planned path or when the environment changes, a new plan
can be immediately generated. An example of a navigation
along a planned path is depicted on Figure 14.

Jockey Framework

The overall software framework has two main capabili-
ties. First, knowledge sharing between the robots in swarm,
organism mode, or any transition in between. Second, smooth
selection from one controller to the next depending on locally
or globally defined states.

One of the challenges in modular robotics is acquisition,
maintenance and usage of the knowledge of the operational
environment. The main issue is that the knowledge is dis-
tributed across the robotic swarm and it is unfeasible to
assume that the individual robots can possess the complete
information of the environment. Moreover, the sensor range
of the individual robots is limited and the environment might
lack features which allow reliable robot self-localization and
precise mapping. Therefore, representing the knowledge of the
environment in a form of a consistent metric map is unfeasible.

To deal with the above issues, we have proposed to
represent the environment in the form of a directed multigraph.
While the vertices of the multigraph represent certain salient
places (e.g. a charging station or a step), the edges represent
navigation algorithms that allow to move between these places.

The fact that switching an algorithm n0 at a place v0 brings
the robot to place v1 with probability p is represented by
an edge associated with the probability p and necessary
knowledge for the algorithm n0. The proposed framework does
not impose any restriction of this knowledge representation -
it can be a landmark map for a traditional navigation method,
configuration of a neural network which guides the robot
or a sensorymotor pattern indicating the correct direction of
movement. To emphasize that the controllers represented by
the edges actually drive the robot around, we have decided
to call them ‘jockeys’. Creation and maintenance of the above
environment representation is based on the notion of subjective
logic that allows for efficient reasoning about graphs repre-
senting uncertain spatial knowledge [31]. The aforementioned
reasoning allows to merge, distribute and compress the spatial
knowledge of any group of robots that can communicate with
each other. Therefore, if a group of robots aggregates to form
an organism, they not only increase their physical ability, but
also share the spatial knowledge they acquired so far.

The exact layout of all the different jockeys and their
interactions would take us too far. The most important facets
are visualized in Figure 15.

(a) (b)

Figure 15: (a) List of implemented jockeys, (b) Example of
Jockey dependencies of targeted Grand Challenge scenario.

The jockey framework is, on a technical level, quite ad-
vanced. Different from alternatives [32], [33] it is meant to run
embedded on the robot itself (and is hence very lightweight)
and is tailored to a decentralised setting: peer-to-peer commu-
nication is no problem. The jockeys communicate with each
other using multiple communication channels, Ethernet be-
tween connected robots, wireless Ethernet and ZigBee between
physically unconnected robots. Each robot runs a controller
that defines its local state and allows it to switch from one
type of behaviour to the next. When certain local conditions are
met, a robot can also switch to a behaviour that characterizes
another mode and, for example, starts recruiting other robots
for an assembly task. There is no global controller that defines
when the robot swarm as a whole switches its behaviour. This
is done on a local level. The jockey framework is one of the
first frameworks that allows for such a decentralised approach.

IV. CONCLUSION

The scientific impact of the set of one hundred robots
is not only their ability to react to changing environmental
conditions by a catalog of self-organization but also to be
completely aware for the reasons to change the global behavior
of the swarm, or to modify the organism shape or to repair
defect part by themselves. This ability is not achieved by
ingenious engineering of different mainly physical/chemical
operating components (like molecules) but by a deliberate use
of capabilities and restrictions. The technical impact of our
approach is the design of reliable and stable robots that can
operate over a long period without human support. In the
far future this might also revolutionize the design methods of
Mechanical Engineering.

ACKNOWLEDGMENT

The “REPLICATOR” project is funded by the European
Commission within the work programme “Cognitive Systems,
Interaction, Robotics” under the grant agreement no. 216240.
The authors would like to acknowledge the contribution of
all REPLICATOR partners. In particular, we are indebted to
Sergej Popesku, Florian Schlachter, Stefano Marrazza, Jens
Liedke and Timo Koch for the hardware and software design
of modular robots.

REFERENCES

[1] “REPLICATOR: Robotic Evolutionary Self-Programming and Self-
Assembling Organisms, 7th Framework Programme Project No FP7-
ICT-2007.2.1,” 2008-2013.

[2] P. Levi and S. Kernbach, Eds., Symbiotic Multi-Robot Organisms:
Reliability, Adaptability, Evolution. Springer-Verlag, 2010.

[3] R. Pfeifer and C. Scheier, Understanding Intelligence, ser.
Bradford Books. MIT Press, 2001. [Online]. Available:
http://books.google.de/books?id=iIv6-rxTCkoC

[4] T. Fukuda, H. Hosokai, Y. Kawauchi, and M. Buss, “Dynamically
Reconfigurable Robotic System (DRRS) (System Configuration and
Implementation as CEBOT),” in Proceedings of 5th Int’l Symp. of
Robotics Research, 1989.

[5] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson,
E. Klavins, and G. Chirikjian, “Modular Self-Reconfigurable Robot
Systems,” IEEE Robotics & Automation Magazine, Magazine, pp. 43–
52, 2007.

[6] R. Groß and M. Dorigo, “Self-Assembly at the Macroscopic Scale,” pp.
1490–52, 2008.

[7] J. Dorrier, “MITs M-Blocks: A New Class Of Robot Cubes That Self
Assemble,” IEEE Spectrum Magazine, Vol. October, pp. 43–53, 2013.

[8] S. Kernbach, O. Scholz, K. Harada, S. Popesku, J. Liedke, R. Humza,
W. Liu, F. Caparrelli, J. Jemai, J. Havlik, E. Meister, and P. Levi, “Multi-
Robot Organisms: State of the Art,” CoRR, Vol. abs/1108.5543, 2011.

[9] J. Liedke and R. Matthias and L. Winkler and H. Wörn, “The Collective
Self-Reconfigurable Modular Organism (CoSMO),” in Proceedings of
IEEE/ASME Inter- national Conference on Advanced Intelligent Mecha-
tronics (AIM2013), 2013.

[10] S. Russo, K. Harada, T. Ranzani, L. Manfredi, C. Stefanini, A. Men-
ciassi, and P. Dario, “Design of a Robotic Module for Autonomous
Exploration and Multimode Locomotion,” Mechatronics, IEEE/ASME
Transactions on, Vol. PP, No. 99, pp. 1–10, 2012.

[11] S. Popesku, E. Meister, F. Schlachter, and P. Levi, “Active Wheel - An
Autonomous Modular Robot.” in Proceedings of International Con-
ference on Robotics, Automation and Mechatronics (RAM) (accepted),
Manila, Philippines, 2013.

[12] D. H. Ballard, “Generalizing the Hough transform to detect arbitrary
shapes,” Pattern recognition, Vol. 13, No. 2, pp. 111–122, 1981.

[13] W. Liu and A. Winfield, “Implementation of an IR approach for
autonomous docking in a self-configurable robotics system,” in Pro-
ceedings of Towards Autonomous Robotic Systems., 2009, pp. 251–258.

[14] T. Krajnı́k, M. Nitsche, et al., “External Localization System for Mobile
Robotics,” in Proceedings of 2013 IEEE International Conference on
Advanced Robotic. Montevideo: IEEE, 2013, To appear.

[15] V. Šalanský and T. Krajnı́k, “Docking procedure for the Replicator
project,” Master’s thesis, Czech Technical University in Prague, 2013.

[16] R. Pěnička and T. Krajnı́k, “Acquisition and representation of spatial
knowledge in the REPLICATOR project,” Master’s thesis, Czech Tech-
nical University in Prague, 2013.

[17] T. Krajnı́k et al., “Simple yet stable bearing-only navigation,” Journal
of Field Robotics, Vol. 27, No. 5, pp. 511–533, 2010.

[18] A. J. Ijspeert, A. Crespi, D. Ryczko, and J.-M. Cabelguen, “From
swimming to walking with a salamander robot driven by a spinal cord
model,” Science, Vol. 315, No. 5817, pp. 1416–1420, 2007.

[19] C. Liu, Q. Chen, and D. Wang, “CPG-inspired workspace trajectory
generation and adaptive locomotion control for quadruped robots.” IEEE
Transaction on Systems, Man, and Cybernetics., Vol. 41, No. 3, pp.
867–80, 2011.

[20] J. Denavit and R. S. Hartenberg, “A Kinematic Notation for Lower Pair
Mechanisms Based on Matrices.” Trans. ASME J. Applied Mechanics,
Vol. 22, pp. 215–221, 1995.

[21] E. Meister, “Adaptive Locomotion of Modular Recofigurable Robotic
Systems,” Ph.D. dissertation, University of Stuttgart, Germany, 2013.

[22] E. Meister, S. Stepanenko, and S. Kernbach, “Adaptive Locomotion of
Multibody Snake-like Robot,” in Proceedings of Multibody Dynamics
2011, ECCOMAS Thematic Conference, P. F. J.C. Samin, Ed., Brussels,
Belgium, 2011.

[23] S. Kernbach, M. E., F. Schlachter, and O. Kernbach, “Adaptation and
Self-adaptation of Developmental Multi-Robot Systems,” International
Journal On Advances in Intelligent Systems, Vol. 3, pp. 121–140, 2010.

[24] E. Meister and A. Gutenkunst, “Dynamics and Control of Modular Self-
Reconfigurable Robotic Systems,” International Journal On Advances
in Intelligent Systems, Vol. 6, No. 1 & 2, pp. 121–140, June 2013.

[25] G. Welch and G. Bishop, “An Introduction to the Kalman Filter,” 1995.
[26] S. Kernbach, F. Schlachter, R. Humza, J. Liedke, S. Popesku, S. Russo,

R. Matthias, C. Schwarzer, B. Girault, and . P. Alschbach, “Heterogene-
ity for Increasing Performance and Reliability of Self-Reconfigurable
Multi-Robot Organisms.” in In Proceedings IROS-11, 2011.

[27] V. Vonásek, K. Košnar, and L. Přeučil, “Motion planning of self-
reconfigurable modular robots using Rapidly Exploring Random Trees,”
in TAROS, 2012.

[28] V. Vonásek, M. Saska, K. Košnar, and L. Přeučil, “Global motion
planning for modular robots with local motion primitives,” in ICRA,
2013.

[29] L. Winkler, V. Vonásek, H. Worn, and L. Přeučil, “Robot3D - A
Simulator for Mobile Modular Self-Reconfigurable Robots,” in IEEE
International Conference on Multisensor Fusion and Information Inte-
gration, 2012.

[30] V. Vonásek, L. Winkler, J. Liedke, M. Saska, K. Košnar, and L. Přeučil,
“Fast on-board motion planning for modular robots,” in ICRA, 2014,
Accepted.

[31] K. Košnar, T. Krajnı́k, V. Vonásek, and L. Přeučil, “LaMa - Large Maps
Framework,” in Proceedings of Workshop on Field Robotics, Civilian-
European Robot Trial 2009. Oulu: University of Oulu, 2009, pp. 9–16.

[32] G. Metta, P. Fitzpatrick, and L. Natale, “YARP: yet another robot
platform,” International Journal on Advanced Robotics Systems, Vol. 3,
No. 1, pp. 43–48, 2006.

[33] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA workshop on open source software, Vol. 3, No. 3.2,
2009.

