N
N

N

HAL

open science

Game network traffic simulation by a custom bot
Trevor Alstad, J. Riley Dunkin, Simon Detlor, Brad French, Heath Caswell,

Zane Ouimet, Youry Khmelevsky, Gaétan Hains

» To cite this version:

Trevor Alstad, J. Riley Dunkin, Simon Detlor, Brad French, Heath Caswell, et al.. Game network
traffic simulation by a custom bot. 2015 9th Annual IEEE International Systems Conference (SysCon),

Apr 2015, Vancouver, Canada. pp.675-680, 10.1109/SYSCON.2015.7116828 . hal-04047697

HAL Id: hal-04047697
https://hal.science/hal-04047697
Submitted on 19 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04047697
https://hal.archives-ouvertes.fr

2015 Annual IEEE Systems Conference (SysCon) Proceedings. IEEE, 2015. p. 675-680.

Game Network Traffic Simulation by a Custom Bot

Trevor Alstad, J. Riley Dunkin, Simon Detlor,
Brad French, Heath Caswell, Zane Ouimet,
and Youry Khmelevsky
Computer Science Department, Okanagan College
Kelowna, BC V1Y 9L2, Canada
Emails: trevor.alstad @myokanagan.bc.ca
john.dunkin13@gmail.com, simon.detlor@myokanagan.bc.ca
brad.french@myokanagan.bc.ca, heath.caswell @ gmail.com
zane.ouimet@outlook.com, and khmelevsky @ gmail.com

Abstract—Minecraft is a popular video game played world-
wide, and is built simply enough to be used for network analysis
and research. This paper describes an automated software agent
created to simulate player traffic within the game. Realistic
network traffic simulation was the goal that inspired the creation
of our ”Minecraft bot”: an automatic program or bot that could
act in similar ways to a real player, and be able to be mass
produced to saturate a local area network. This will facilitate
network research by allowing users to have a more scalable testing
environment and thus enable controlled laboratory experiments
that are impossible to set up in live online gaming environments.
The basic commands in Minecraft consist of moving, placing and
breaking blocks (pieces of environment) and a realistic bot needs
to replicate these actions. Another important objective was to
have the ability to create hundreds or thousands of bots doing
the same actions, to be able to create artificial latency on the
network. This paper will go through the entire lifecycle of our
project, starting with some information on existing research about
the subject, and how it relates to ours. Following that we describe
our bot requirements, the work that was done to find a pre-
built solution, the solution we ended up using and how it was
modified to fit our requirements. We then have a section showing
performance experiments we ran, which compared the packet
count and traffic volume between players and bots, as well as cpu
usage statistics as more connections were made to the server to
ensure that our server hardware was not a factor in our network
testing. The final section is the conclusion which talks about the
outcome of our project in relation to our original goals, and how
it will impact future research in this area.

I. INTRODUCTION

Minecraft is a popular video game played worldwide, and
is built simply enough to be used for network analysis and
research. This paper describes an automated software agent
created to simulate player traffic within the game, which was
developed to investigate a simulated virtual infrastructure of
the game private networks project.

The project was the first step in the design, construction
and test of a new layer of game server software than can
optimize and monitor in real-time game services. It stems
from the observation that game servers place demands on
computing resources - hardware and network - that can vary
with user behaviour and whose optimization is the key to cus-
tomer satisfaction. Virtualized servers provide new flexibility
in hardware reservation and allocation but their use can make
resource optimization difficult by making it context sensitive

Gaétan Hains™*
Lab. d’Algorithmique, Complexité et Logique
Université Paris-Est Créteil
Paris, France
Email: gaetan.hains@gmail.com
*Also Affiliated with LIFO, Université d’Orléans, France

i.e. dependent on the allocation of virtual machines (VMs) to
hardware.

The project’s objective was to study predictive monitoring
and optimization for game server clusters. The first phase of
the project was to gather performance data about game servers,
then analyze its time behaviour to allow the creation of a
performance-prediction software module. The initial module
version applied virtualized game servers in various configu-
rations, and later versions were tested with physical servers
as well as parallel (cluster) game servers. Later, the project
will investigate performance optimization based on short-term
predictions.

We have built an experimental setup to demonstrate the re-
production of realistic game network traffic by artificial players
called bots. The method was to first measure the effect of a few
human players, on traffic volume and number of packets. This
was tested under many controled situations and the resulting
data scritinized to extract and explain regular patterns. The
same controled situations were then systematically applied to
a growing number of bots, to verify that their behaviour was
similar to that of human players. The larger number of bots
served as extrapolations for as many human players, something
that is either too expensive or impractical to test in such a
rigorous environment. The main results of this work are a set
of detailed correlations between experiments and traffic, plus a
general confirmation that bots can be used to recreate realistic
game traffic. Future work will be able to use them is large
numbers and much more complex situations leading to finer
analyses.

Our main contributions are: (1) a unique network and
gaming servers infrastructure created for the simulation ex-
periments, which is also being used to perform stress testing
and data analysis of network game applications, as well as
to monitor the performance of game servers; (2) the sim-
ulation gaming bot that is described in this paper, which
was developed as a tool for use in our test infrastructure. It
allows the generation of game traffic for thousands of players
in a predictable and controllable way for our experiments,
without the need for recruiting that many actual people to play.
(3) Using this new tool we are able to design performance-
prediction models for game servers optimization as well as
for networking optimization research, and for use in industry
(this is our current ongoing research). This research potentially

has far reaching impacts not only in reducing game latency
but also in optimizing other types of network traffic via the
prioritizing of the most important data packets sent over the
network.

II. BACKGROUND AND THEORY

Predictable and sub-second response time has long been
a key concern for interactive computer systems [5]. For a
majority of video games this is an obvious requirement that
modern hardware has satisfied, despite a continuous rise in
graphics and interaction quality. A video game network is a
distributed set of “apparatus which are capable of exhibiting
an interactive single identity game”, as defined in a patent
dated 1986 [13]. The requirements for response time are even
more stringent in this context and in addition to inevitable
network latencies, ’the on-line service’s computers themselves
introduce latencies, typically increasing as the number of
active users increases” [12]. The work described here is an
experimental analysis of the conditions for satisfying this key
requirement, namely low and predictable response time for a
game network faced with a scalable number of players.

The last decade had seen a growing interest in tackling this
problem. Some researchers like [imura, Jardine and co-authors
have proposed peer-to-peer architectures for multiplayer online
video games [9], [10], this with the intention of reducing the
bandwidth and processing requirements on servers. This can in
theory provide better scaling but “opens the game to additional
cheating, since players are responsible for distributing events
and storing state”. Pellegrino et al. [11] have then proposed a
hybrid architecture called P2P with central arbiter. The band-
width requirements on the arbiter are lower than the server of
a centralized architecture. Like many non-functional properties
of online services (security, scalability, reliability etc.) the
choice between centralization and distribution is not one that
can be given a definitive answer. Our work concentrates on a
logically centralized architecture, its potential for predictability
and scalability of the server and router ("arbiter”’) performance.
Other work [7] has studied the same performance problems
in the presence of mobile player nodes. Despite its clear
importance for the future, this line of study appears even less
mature than the P2P approach.

Zhou, Miller, and Bassilious [15] have made the obvious
but central observation that ’Internet delay is important for FPS
games because it can determine who wins or loses a game.”
Many game mechanics are time sensitive, but it is the time the
information reaches the server that matters, not the time the
player actually pushes the button. Our experiments measure
packet size and inter-packet times or traffic volume as they
have in their statistical model. Those authors’ investigation
also took into account the effects of other Internet traffic. But
our study will exclude those effects precisely because we wish
to isolate the scalability and load-resistance of the server and
routing modules. Claypool and Claypool [3] have observed
that Internet latency’s effect is strongest for games with a
first-person perspective and a changing model. The work we
describe here takes this into account by experimenting with the
game Minecraft, which is first-person and has changing game
environments.

In a study of a different first-person game shows that
“client traffic is characterized by an almost constant packet

and data rate” [6]. The bot we developed for our experiments
(architecture of our simulation infrastructure is on Fig. 1)
follows this pattern, as it was shown in our initial experiments
[1]. Additionally, that study found the average interpacket
time for client to server traffic to be 51ms for the game
being studied. While this value is game dependant, it is more
beneficial for us to use a common value for our tests so that
the results are more generalizable. To that end, we designed
the bot to send its action packets at 50ms intervals.

More recent studies [2], [4] of first-person shooter games
have modeled time series behaviour of game traffic and tested
the model on up to eight different games. According to our
previous comment, such a comparative study would not have
allowed us to get very stable load measurements, hence our
choice of a single first-person game. Indeed the study of
Wu, Huang and Zhang [14] shows that “the server-generated
traffic has a tight relationship with specific game design”,
again from our point of view confirming the need for precise
measurements of a given architecture on a single game. Hariri
et al. go even further in this line of thought by designing a
model of the player’s activity to extract traffic patterns [8].
Such a representation is beyond the scope of this paper but
is certainly relevant and its combination with our conclusions
should be the object of future work.

ITII. RESULTS

We began our project with the search for an existing
program that would meet our criteria. We had access to a bot
that could simply connect to a server and send chat commands
from a previous project, but that no longer met our needs. In
order to accurately simulate a player we needed a bot that
would move in and interact with the game world. We found
one project, DarkBot [?], but it was not compatible with the
newest version of Minecraft, which we intended to use. No
bot was found that was suitable for our experiments so we
developed our own bot program. The solution we were able to
use for our project came out of a tool we found online called
MCProtocolLib [?].

A. The solution

MCProtocolLib is an open source library that was created
to allow simple communication between Minecraft clients and
servers. We were able to use this to replicate the creation
of player packets and communicate between our bot and a
server on our internal network. The program was written in
java, as is the Minecraft source code. We started with a test
program included within the library, and then expanded it to
create our fully functioning automaton. The code to connect
and disconnect from servers was provided as part of the library
as well. Bots are created through XML scripts, which are then
parsed, and the appropriate method is called based on the
action requested. That method then uses the MCProtocolLib
library to create packets in the same way that the Minecraft
code would, and then send them to the desired server. The
code that we had to create was the parsing of the script and
the gathering of the correct arguments to create each packet.
Once the program was able to duplicate the actions required,
it was refactored to allow for multiple bots to be created
simultaneously, and made into an executable jar file for ease
of use. Many scripts were created and used to test the different

«Routers
] ARD1WTFastC0S65-0

«Client Replay» i
—— (53192.168.10.40 ‘
]

] ARD1WTFastCOSC65-1

g 192.168.10.41
= 192.168.11.40
|

vian 10
| «Routers

«Client Replay» :
|] ARD1WTFastCOS65-11 £-] ARD1WTFastC0S65-10 |
| £3192168.10.50

5, 192.168.10.51 E—
] 55 192.168.11.50 —

vian 11

«Game Servers»
«Router»

|
] ARDIWTFastC0S65-2 | = ARD1WTFastC0S65-3
g 192.168.11.42 —— BRI

55 192.168.1242 -

«Routers
L] ARD1WTFastC0S65-12
g 192.168.11.52 ‘
55 192.168.12.52 -

«Game Servers»
=] ARD1WTFastC0S65-13

[Eg 192.168.12.53

|
|
il
|
|

«WTF Node»
] ARD1WTFastC0S65-4

5 192168.11.44

Fig. 1. Architecture of Our Simulation Infrastructure

Fig. 2.

Running simulation bots in a square

bot actions, and all were successful. A short video clip with
50 bots running in a square is published on YouTube for the
demonstration purposes only [?]. A screenshot of running bots
is shown on Fig. 2.

IV. VALIDATION

At the beginning of our project we were provided with
test results of the chat bot, which showed the difference in
packets created between real players and bots when running
idle on the server [1] namely that the bot only sent chat and
keepalive packets. We wanted to reproduce the same results for
a bot that did more complex actions, such as run in a pattern.
With our completed bot, we had the opportunity to do just
that. Experiments were all done using the original chat bot,
our newly created bot, and a real player. The experiments run
were as follows:

A. 1 min capture idle

The first test captured the packets created by each of the
2 bots and the player while sitting connected to the server but
without any movement or other actions. We performed separate
captures, each with only one connection. We expected that the
new bot will have closer results to the player than the old bot
did. In all cases, the traffic volume is heavily dependent on the

game state. A typical game world includes hills, trees, animals
and other environmental objects. To help narrow our focus to
the traffic related to player actions we used a much simpler
game environment for these experiments. We used a flat world
with no enemies, animals or even weather effects.

Hypothesis: We expect that the old idle bot and the new
idle bot will produce similar amounts of traffic, as there is very
little external interference. It is expected that an idle player will
produce more traffic than the bots due to overhead packets
being transmitted that is not done by the bot.

Observations: Reducing the complexity of the bot’s envi-
ronment resulted in a large decrease in the traffic generated
by the bot, from an average of 647 packets/min to 245 pack-
ets/min. Fig. 3 shows that both the old and new bot produce
much less traffic than the player under these circumstances, the
player however, still shows similar levels of traffic whether
the environment is simple or complex. We can see that the
player exchanges different packet types than the bot and this
is the reason for the discrepancy. Further research is planned
to identify the packets that the bot does not use and to add
methods of sending these packets to the bot program. For the
purpose of our experiments, the exact type of game packet is
not as important as the number of packets and the volume of
traffic. Unfortunately, the simplified environment changed the
traffic of the idle bot to the point where it cannot be used to
represent an idle player.

B. 1 min capture square

The next experiment utilizes the improvements made to
the bot since our previous work. Now that we have a bot that
can be active in the game world we can compare the traffic
generated by its actions to that of a real player taking similar
action. For this experiment the active bot and the player run
in a square pattern in the game world while we capture the
network traffic (two captures, one for each individually).

Hypothesis: Our new bot program should produce traffic
that is more similar to a real player than the previous idle bot
which produced between 70% and 180% as much traffic as a
player in our initial experiments with the chat bot (see Section
II).

Idle Packet Count
800
700 - s

400

e

200

o
I
o

100

Time (min)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

e | (1€ BOT e NEW Bot (IDLE) Player (IDLE)

Fig. 3. Packet count of idle connections over time (min)
Idle Volume
60000
% 50000 . i~ ~ - - -
£ 40000
E
= 30000
>
°
S 20000 SN D e
&
=
10000
0
Time (min)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
s (1€ BOt e New Bot (IDLE) Player (IDLE)
Fig. 4. Traffic volume of idle connections over time (min)
Square Pattern Packet Count
800
£ 600
= 500
I
8 300
100
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time (min)
— B0 c— P layer
Fig. 5. Square pattern experiment

Observations: Fig. 5 shows the comparison where the
bot produces approximately 114% the traffic the player does.
This confirms that the new bot does represent an active player
more accurately than our previous idle bot. Especially so since
the idle bot produces so much less traffic in the simplified
environment.

C. 1 minute square with surrounding bots

In a modified version of the last experiment we included
other bots running in a square along with the bot/player we
are analyzing.

Hypothesis: We expect that these nearby bots will increase
the amount of packets being sent across the network, due to
information updates about nearby entities.

Square Pattern Group Packet Count

Time (min)

B0t cm— Player

Fig. 6. Square pattern group experiment

Square Pattern Volume

— W\/\
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time (min)

— New Bot Player

Fig. 7. Square pattern volume experiment

Square Pattern Group Volume

TrafficVolume (bytes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time (min)

s P IS Bl e BOL

Fig. 8. Square pattern group experiment

Observations: Fig. 6 shows the comparison between
player and bot traffic, with both the bot and player traffic
having increased by an average of 266% for the player and
205% for the bot. The fact that adding the additional bots
decreases the difference between bot and player packet counts,
shows that as more bots are added, a single user being a bot
or a player becomes less distinguishable.

Fig. 7 and Fig. 8 show experimental results for the square
pattern running by the bot and the player, but represented by
volume of packets as opposed to number of packets. This was
done to show that packet size has little impact on the overall
analysis, and in this case actually makes for more stable data
points.

Comparison of Number of Bots

120

100

CPU Usage %
&5

Using 200 samples

——) BOTE e— Bots

— B BOts 16 Bots

Fig. 10. CPU usage of the game server with various numbers of bots connected over time

1 Bot

CPU Usage %

Using 200 samples

Fig. 9. CPU usage of the game server with 1 bot connected over time

D. CPU usage

In another experiment we measured the CPU usage of the
game server while under load from a varying number of bots.
This experiment shows the capacity of the game servers and
can be used to determine how many servers we would need in
future experiments in order to actually overload the network
software with game traffic.

Hypothesis: As the number of bots connected increases so
should the computer resources required to run the game server.
However the game itself requires some resources to run even
with no connections, so the CPU usage should not be strictly
proportional to the number of bots.

Observations: Fig. 9 shows spikes in the CPU usage that
are most likely related to saving the game state or some other
server-side game process, the spikes did not occur when testing
with other numbers of bots and overall are fairly rare. Tests in
future experiments covering an extended period of time should
provide more information about the cause of these spikes.

The CPU usage of the game server can be broken down
into three basic components. First, there is a base level of CPU
usage to run the server, even with no players connected. Next,
a small amount of extra processing is required for each player
that is connected. The third part is the processing related to
interactions between players. In terms of our experiments, this
interaction is simply the game server providing information
about each bot to the ones around it. These three factors fit
into a quadratic regression of the comparison in Fig. 10, which
yields the result CPU% =~ 0.0351n? + 3.2169n + 20.7962,
where n is the number of bots. The virtual machine hosting
the game server was not able to keep up with higher numbers
of bots, as it was designed as a scaled down version of a real
server machine.

V. FUTURE WORK

Our future research will be related to utilizing the in-
frastructure created in the first phase of the project as the
framework on which to test and build game server software that
can optimize and monitor WTFast game services in real time.
This infrastructure will allow new servers to be automatically
deployed and configured for use as private game servers, while

also monitoring their performance and usage statistics. By
using predictive models, new servers may be automatically
added when traffic levels require more resources to maintain
optimal performance.

Testing of the network infrastructure and the network
software will be done using a program that simulates many
players connecting to multiple game servers on several virtual
machines in the network. The goal of these network tests is
to identify the point at which the network software can no
longer keep up to the flow of traffic, i.e. the point where the
network software becomes a cause of latency. The tests will
also serve to identify the capacity of the game servers and their
host virtual machines in terms of the number of players they
can support. Initially the tests will be performed under ideal
conditions, that is, on a local network with almost no wire
latency. Later, network factors such as latency and jitter can
be artificially added to the network to simulate real conditions
of the game being played over the Internet on a geographically
remote server in order to confirm our tests in a more realistic
environment.

VI. CONCLUSION

Network analysis is a broad spectrum of research, that

can be studied in many different ways. Our focus on latency
within video games led us to experimentation with Minecraft
clients and servers. The need for a controlled environment to
ensure consistent and accurate results led to the requirement
of multiple automated bots that could interact with the servers
in a predictable way. This project was successful in creating
just that, meeting all originally set criteria. Although research
is not yet complete, we anticipate that the bot will greatly help
out future work in this field. Based on our experiments, the
bot accurately recreates real player traffic, which gives to us
a suitable tool for the network performance investigation and
to generate a stress test for the game servers.
Future research will investigate the performance of very large
bot populations, for example with parallel hardware, and
time-series models of such populations for ultra-large-scale
simulations of game environments. The resulting methods will
constitute a full laboratory toolbox to explore latency and
general online-gaming performance in an offline, controlled
environment. Such studies will then allow intelligent, dynamic
and online methods for game network optimization.

ACKNOWLEDGMENT

This work has been funded partially by NSERC’s College
and Community Innovation Program - Applied Research and
Development Grant Level-1 in 2014 (Canada): ”GPN-Perf:
Investigating performance of game private networks”.

The development of the bot program was done by computer
science students at Okanagan College as an XP Spike project
within COSC 470 SW Engineering Project course in 2014.
Thanks to Marc Schroth, Mike Adkins, Marc-Andrew Dunwell
for their work on the bot application.

REFERENCES

[1] Trevor Alstad, J. Riley Dunkin, Rob Bartlett, Alex Needham, Gaétan
Hains, and Youry Khmelevsky. Minecraft computer game simulation
and network performance analysis. In Second International Conferences

[2]

[3]

(4]

[5]

(6]

(71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

on Computer Graphics, Visualization, Computer Vision, and Game
Technology (VisioGame 2014), Bandung, Indonesia, November 2014.
Accepted for publication.

Philip A Branch, Antonio L Cricenti, and Grenville J Armitage. An
arma (1, 1) prediction model of first person shooter game traffic. In
Multimedia Signal Processing, 2008 IEEE 10th Workshop on, pages
736-741. IEEE, 2008.

Mark Claypool and Kajal Claypool. Latency and player actions in
online games. Commun. ACM, 49(11):40-45, November 2006.

Antonio L Cricenti and Philip A Branch. A generalised prediction
model of first person shooter game traffic. In Local Computer Networks,
2009. LCN 2009. IEEE 34th Conference on, pages 213-216. IEEE,
2009.

WIJ Doherty and AJ Thadhani. The economic value of rapid
response time (ibm technical report ge20-0752-0). Zugriff via
http://www.vm.ibm.com/devpages/jelliott, 1982.

Johannes Firber. Traffic modelling for fast action network games.
Multimedia Tools and Applications, 23(1):31-46, 2004.

Preetam Ghosh, Kalyan Basu, and Sajal K Das. Improving end-to-
end quality-of-service in online multi-player wireless gaming networks.
Computer Communications, 31(11):2685-2698, 2008.

Behnoosh Hariri, Shervin Shirmohammadi, and Mohammad Reza
Pakravan. A hierarchical HMM model for online gaming traffic
patterns. In Instrumentation and Measurement Technology Conference
Proceedings, 2008. IMTC 2008. IEEE, pages 2195-2200. IEEE, 2008.

Takuji limura, Hiroaki Hazeyama, and Youki Kadobayashi. Zoned
federation of game servers: A peer-to-peer approach to scalable multi-
player online games. In Proceedings of 3rd ACM SIGCOMM Workshop
on Network and System Support for Games, NetGames *04, pages 116—
120, New York, NY, USA, 2004. ACM.

Jared Jardine and Daniel Zappala. A hybrid architecture for massively
multiplayer online games. In Proceedings of the 7th ACM SIGCOMM
Workshop on Network and System Support for Games, NetGames *08,
pages 60-65, New York, NY, USA, 2008. ACM.

Joseph D. Pellegrino and Constantinos Dovrolis. Bandwidth require-
ment and state consistency in three multiplayer game architectures. In
Proceedings of the 2Nd Workshop on Network and System Support for
Games, NetGames ’03, pages 52-59, New York, NY, USA, 2003. ACM.

S. G. Perlman. Network architecture to support multiple site real-time
video games. United States Patent number 5,586,257, Dec. 17, 1996.

D. H. Sitrick. Video game network. United States Patent number
4,572,509, Feb. 25, 1986.

Yi Wu, Hui Huang, and Dongmei Zhang. Traffic modeling for
massive multiplayer on-line role playing game (mmorpg) in gprs access
network. In Communications, Circuits and Systems Proceedings, 2006
International Conference on, volume 3, pages 1811-1815, June 2006.

Qili Zhou, C.J. Miller, and Victor Bassilious. First person shooter
multiplayer game traffic analysis. In Object Oriented Real-Time Dis-
tributed Computing (ISORC), 2008 11th IEEE International Symposium
on, pages 195-200, May 2008.

