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Abstract—In this paper, we demonstrate the optimal power
allocation for QPSK, 16-QAM, and 64-QAM modulation sched-
ules and the role of channel quality indicator (CQI). We used
sigmoidal-like utility functions to represent the probability of
successful reception of packets at user equipment (UE). CQIas
a feedback to the base station (BS) indicates the data rate that a
downlink channel can support. With Levenberg-Marquardt (L M)
Optimization method, we present utility functions of different
CQI values for standardized 15 Modulation order and Coding
Scheme (MCS) in3rd Generation Partnership Project (3GPP).
Finally, we simulate and show the results of the optimal power
allocation algorithm.

Index Terms—Convex Optimization, Resource Allocation, CQI,
SNR, Parameter Identification

I. I NTRODUCTION

The research area of optimizing the resource allocation in
cellular networks has received significant attention. Due to an
increasing need for wireless adaptive real-time applications,
the current and merging standards are supporting various
higher modulation schemes. For example, long term evolution
(LTE), the fourth-generation (4G) wireless standard specified
by 3rd Generation Partnership Project (3GPP), supports higher
modulation schemes such as QPSK, 16-QAM, and 64-QAM
according to LTE-Advanced (LTE-A). The solution for an
optimal and fair resource allocation is demanded by users to
seek better quality of services (QoS), where QoS can be the
minimum successful transmission probability. For this reason,
numerous research efforts have been made to optimally allo-
cate power in order to achieve a better certain signal-to-noise
ratio (SNR), and guarantee minimum successful transmission
probability of packets.

The network utility maximization framework can be used to
improve power allocation and achieve better QoS. The utility
function is the probability of successful reception of packets
versus power. It is considered as a controlling parameter
through which a user’s QoS can be guaranteed. And it is a
representation of the QoS for a user. The goal of the network
utility maximization framework is, therefore, to allocatepower
in order to maximize network utility, which is defined as a
product of all users’ utilities. In [1], the authors defined utility
functions to maximize signal-to-interference-plus-noise ratio
(SINR), and it is represented by the sigmoidal-like function
that proposed in [2].

It is difficult to design resource allocation algorithms that
maximize system efficiency, ensure fairness, and meet the
QoS requirements of all users because of the randomness in

the wireless broadcast channel. Research work, for example
in [3], used opportunistic resource allocation algorithmsto
improve the system efficiency, but they failed to address the
QoS requirements of users and maintain a fair allocation of
resources among users.

The Channel Quality Indicator (CQI) is a feedback from UE
the BS and it indicates the data rate that can be supported by
the downlink channel. Thus, it can be used to deliver different
utility functions for different CQIs and, therefore, simulate the
optimal power allocation in the cellular network.

The main contributions of this paper are 1) we mapped the
standard LTE CQI values to utility functions and the corre-
sponding distances from the BS, 2) we used LM optimization
method to identify the parameters of the utility functions and
3) we simulated the optimal power allocation among 15 UEs
and each of them has a different CQI in the cellular network.

A. Related Work

The authors in [4] developed a utility-based optimal down-
link power allocation algorithm for multi-class wireless net-
works. Moreover, they used a numerical approach to show that
its performance is close to that of the global optimal power
allocation. However in theses two studies the fairness among
the users is not considered, e.g. the minimal quality of service
(QoS) is not guaranteed for all users.

In [5]-[6], the fairness in resource allocation is considered
as a more important issue. The fairness/QoS constraints have
been set in the optimal resource allocation in [5] and [6]. In
[5], the authors provided an opportunistic power scheduling
scheme for ”multi-server” wireless systems while meeting
the minimum QoS for each user. A stochastic process has
been used to present each user’s performance value in [7]
and they proposed an opportunistic transmission-scheduling
policy to maximize the average system performance. In [8],
Multi-channel Fair Scheduler (MFS) has been introduced and
analyzed to guarantees both long-term deterministic (MFS-
D) and probabilistic (MFSP) fairness over multiple wireless
channels. They provided a framework that maximizes total
system throughput for opportunistic scheduling over multiple
wireless channels.

Later in [9], the study introduced a novel approach for
power allocation in the cellular network where the user’s utility
function has been modeled as sigmoidal-like function. In this
work, the power allocation optimization problem is formulated
as a product of the utilities of all users with utility proportional
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fairness policy. A priority has been assigned to users with
lower modulation schemes, at the same time giving non-zero
power allocation to users using higher modulation schemes.
A similar method was used to allocate optimal rates in [10],
[11]

The MCS selection has been widely studied. Work in [12]-
[13] has proposed adaptive modulation and coding (AMC)
to enhance the system throughput according to the channel
quality. The CQI, the only feedback to BS, corresponds to a
resource block (RB) or multiple RB’s in the form of MCS
index [14]. And CQI value provides important information
in link adaption. The study in [14] developed several MCS
selection schemes for downlink transmission in LTE systems
by using the effective packed-level SINR. Thresholds were set
to the SINR values with the Block Error Rate (BLER) smaller
than 10% for the MCSs and mapping between SINR value,
and CQI were also provided. In [15], CQI values were derived
by calculating the post-detection SINR from the instantaneous
channel quality measured at the receiver side.

This paper is organized as follows. We first introduce the
system model set up in Section II. Then we review the CQI
with more details in Section III. In Section IV, we describe
the solution for mapping the CQI values to the utility function.
Section V that briefly describes the optimal power allocation
algorithm that was proposed in [9]. In Section VI, we discuss
the simulation set up and the results along with a discussion.
Finally, Section VII concludes this paper.

II. SYSTEM MODEL

In this paper, we consider a single cellular system consisting
of a single BS andM UEs. Each UE has a CQI based on its
location in the cell, where the UE closer to the BS has a higher
CQI. As shown in Table I, higher CQI corresponds to higher
modulation. Our goal is to generate different utility functions
with respect to CQI values to represent the QoS of users and
optimally allocate powers to UEs. The total power at BS is
PT .

III. C HANNEL QUALITY INDICATOR (CQI)

CQI is the feedback that the UE sends to indicate the data
rate which can be supported by the downlink channel. The
BS selects an appropriate modulation scheme and code rate
for downlink transmission based on CQI values.

In addition to indicating the downlink channel quality, CQI
also accounts for the capabilities of the UE’s receiver. Table I
[16], [17] shows the corresponding modulation scheme, code
rate and efficiency for different CQI values.

IV. M APPING CQI TO UTILITY FUNCTION

This section provides the method that we used to map the
CQI values to the utility function.

A. SNR Probability

With the efficiency values that correspond to different CQIs
in Table I, the probability of successful receiving packages
for different SNR values are calculated. The probability of

TABLE I
CQI OVERVIEW

CQI Index Modulation Code Rate X 1024 Efficiency

0 No transmission

1 QPSK 78 0.1523

2 QPSK 120 0.2344

3 QPSK 193 0.3880

4 QPSK 308 0.6016

5 QPSK 449 0.8770

6 QPSK 602 1.1758

7 16QAM 378 1.4766

8 16QAM 490 1.9141

9 16QAM 616 2.4063

10 64QAM 466 2.7305

11 64QAM 567 3.3223

12 64QAM 666 3.9023

13 64QAM 722 4.5234

14 64QAM 873 5.1152

15 64QAM 948 5.5547
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Fig. 1. Cumulative distribution function of successful packet transmission
for different modulation schemes with different CQIs.

successful packages transmission as a function of the receiver
power (dBm) is obtained in the Figure 1, where the receiver
power (dBm) is obtained by adding the downlink receiver
noise floor to the SNR.

B. Mapping CQI SNR with distance

In [18], a linear function (1) has been proposed to map SNR
to CQI. Then after flooring, the CQIs, obtained by the linear
function (1), over all resource blocks (RB) are reported back
to the BS.

CQI = 0.5223SNR+ 4.6176 (1)

C. Transmitter Power Utility function

Path-loss, known as the power reduction through space,
limits the power that a recipient can receive at a distance from



the BS. The further the UE is, the lower power it can receive.
UE power is limited by (2), wheref is the carrier frequency
andc is speed of the light. In urban environmentα is 3.5. The
UE power drops as distanced gets larger.

PUE =
PBSf

c(4πd)α
(2)

Our optimal power allocation method is to find the optimal
power at BS that can be distributed to the users. Therefore,
a conversion is needed to convert the receiver power to the
transmitter power. This conversion is done using Equation (2).

D. Parameterization Utility Function

In our model, we use the normalized sigmoidal-like utility
functions, as in [19] and [20], it can be expressed as

Ui(Pi) = ci(
1

1 + e−ai(Pi−bi)
− di) (3)

whereci = 1+eaibi

eaibi
anddi = 1

1+eaibi
.

We use the Levenberg-Marquardt (LM) Optimization
method to identify the parameters in the utility functions for
different CQIs. The LM algorithm uses the approximated Hes-
sian and the information in the gradient, taking into account
some regularization factors. We form the error functionE as

E(p) =

n∑

i=1

[Ui − f(Pi,p)]
2 (4)

wherep = [a, b]T andn is the number of data points.

The object is to minimize the error functionE with respect
to the vectorp. The optimal solution forp is searched by
iterations. The updated equation in LM is

[Jf (pi)
T Jf (pi + λI] = −Jf(pi)

T f(Pi,pi) (5)

whereλ is the damping parameter.
At the beginning of the iterations, a large value is set toλ, in

this way the robustness is manifested therefore the initialguess
can by chosen with less caution. For each iteration, ifE(pi+
∆pi) < E(pi−1 +∆pi−1), it speeds up the convergence by
decreasingλ to a certain amount, otherwise, it increasesλ to
enlarge the trust region [21].

V. OPTIMAL POWER ALLOCATION

In [9], the optimal utility proportional fairness power allo-
cation problem is formulated as

max
P

M∏

i=1

log(Ui(γi(Pi)))

subject to
M∑

i=1

Pi ≤ PT

Pi ≥ 0, for i = 1, 2, ...,M and PT ≥ 0.
(6)

wherePT is the total power of the BS,M is the number of
UEs andP = {P1, P2, ..., PM}.

The utility functions log(Ui(γi(Pi))) in the optimization
problem (6) are strictly concave functions and therefore there
exists a unique tractable global optimal solution. We used the
optimal power allocation algorithm in [9] and this algorithm is
divided into an UE algorithm shown in Algorithm (1) and an
BS algorithm shown in Algorithm (2). In this algorithm each
user starts with an initial bidwi(1) and transmits it to BS. The
BS initials wi(0) = 0 and compares the difference between
the current bidwi(n) and the previous bidwi(n− 1) with a
thresholdδ. If it is smaller thanδ, then it exits the process and
allocates the optimal powerP opt

i = wi(n)
p(n) to UE. Otherwise,

the BS calculates the shadow pricep(n) =
∑

M

i=1
wi(n)

R and
sends it back to the UEs. And after each UE receives the
shadow price, it calculates the powerPi that maximizes
(logUi(γi(Pi)) − p(n)Pi) and generates new bidswi(n) =
p(n)Pi(n). After that, each UE compares|wi(n)−wi(n− 1)|
to a pre-set threshold{∆w(n) = l1e

n/l2}. If the value is
greater than the threshold, then the UE recalculates a bit
wi,new(n) = wi(n− 1)+ sign(wi(n)−wi(n− 1))∆w(n) and
sends this new value to the BS, otherwise it will sendwi(n)
to the BS. This process repeats until|wi(n)−wi(n− 1)|< δ.

Algorithm 1 UE Algorithm [9]

Send initial bidwi(1) to BS
loop

Receive shadow pricep(n) from BS
if STOP from BSthen

Calculate allocated rateP opt
i = wi(n)

p(n)
STOP

else
SolvePi(n) = argmax

Pi

(logUi(γi(Pi))− p(n)Pi)

Calculate new bidwi(n) = p(n)Pi(n)
if |wi(n)− wi(n− 1)|> ∆w(n) then
wi(n) = wi(n−1)+sign(wi(n)−wi(n−1))∆w(n)

{∆w(n) = l1e
n/l2}

end if
Send new bidwi(n) to BS

end if
end loop

Algorithm 2 BS Algorithm [9]
loop

Receive bidswi(n) from UEs{Let wi(0) = 0 ∀i}
if |wi(n)− wi(n− 1)|< δ ∀i then

Allocate rates,P opt
i = wi(n)

p(n) to useri
STOP

else
Calculatep(n) =

∑
M

i=1
wi(n)

R
Send new shadow pricep(n) to all UEs

end if
end loop



Fig. 2. Simulation setup
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Fig. 3. Mapping CQI, SNR with distance to the BS

VI. SIMULATION RESULTS

We simulated the cell network with 1 BS andM UEs
whereM = 15. The total powerPT at the BS is 40W which
is a typical value for macro cell base station at the antenna
connector. 15 UEs are placed at different locations in the cell
and one UE in each CQI zone, as seen in Figure 2. The UEs
are placed at the further edge of each CQI zone, which is the
worst channel quality in each CQI zone.

The mapping among CQI, SNR and distance is plotted in
Figure 3. As the UE moves further away the CQI decreases
and so as SNR. The UEs, standing in the range between 1m
and 69.14m away from the BS, have the best channel quality
(CQI = 15) with 64-QAM. Whereas the CQI zone for the
worst channel quality (CQI = 1) is 355.5m to 403.2m away
from the BS.

The probabilities of the successful package, known as the
utility functions, for different CQIs, are shown in Figure 4.
It is a function of the transmitter power. It looks like the
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Fig. 4. Power Utility Function
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sigmoidal-like function, therefore we can use the method in
Section V. And as shown in Figure 4, we set the minimum QoS
requirement to be achieving at least a 95% successful packet
transmission. For UE with CQI 15, the power that required
to achieve the minimum QoS is about 5.22W whereas the UE
with CQI 1 needs 23.24W to have the minimum QoS. To curve
fit using the LM algorithm in section IV-D, the results are
shown in Figure 5 and the parameters of 15 utility functions
are displayed in Table II. The mean square error (MSE)s of
the parameterization are also shown in Table II.

Each UE sends out an initial bid of 10W to the BS, and after
applying the optimal power allocation algorithm [9], each user
is able to receive the optimized power after sending several
bids to the BS. The optimal power allocation is plotted in
Figure 6. And in Figure 7 the iterations of the bidding process
are plotted for all UEs.

VII. C ONCLUSION

In this paper, we mapped the standard 3GPP CQI values
to the sigmoidal-like utility functions, and found the parame-
ters that minimize the MSE. We applied the optimal power
allocation algorithm [9] for realistic cases. We also found
that the user with better channel quality would require less



TABLE II
UTILITY PARAMETERS

CQI Index Modulation a b MSE

1 QPSK 0.8676 6.2257 4.2188E-4

2 QPSK 0.8761 6.1657 3.8427E-4

3 QPSK 0.8466 6.3812 3.5274E-4

4 QPSK 0.8244 6.5526 3.2596E-4

5 QPSK 0.8789 6.1467 3.0182E-4

6 QPSK 1.0188 5.3029 2.8198E-4

7 16QAM 0.5077 9.8303 2.8698E-4

8 16QAM 0.6086 8.1999 2.7031E-4

9 16QAM 0.7524 6.6333 2.5546E-4

10 64QAM 0.3697 12.5005 2.5862E-4

11 64QAM 0.4722 9.7873 2.4527E-4

12 64QAM 0.6248 7.3974 2.3374E-4

13 64QAM 0.8376 5.5177 2.2324E-4

14 64QAM 1.1510 4.0153 2.1364E-4

15 64QAM 1.6471 2.8058 2.0938E-4
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Fig. 6. Power allocation to 15 different CQI users from BS power 40W
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Fig. 7. Bids sent by 15 different CQI users to BS power 40W

power to receive the minimum QoS. In addition, we mapped
the CQI and SNR with the distance from the BS. Finally,
we demonstrated that by using the optimal power allocation
algorithm [9], each user was allocated an optimal power.
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