
Titre:
Title:

High latency cause detection using multilevel dynamic analysis

Auteurs:
Authors:

Naser Ezzati-Jivan, Geneviève Bastien, & Michel Dagenais

Date: 2018

Type: Communication de conférence / Conference or Workshop Item

Référence:
Citation:

Ezzati-Jivan, N., Bastien, G., & Dagenais, M. (avril 2018). High latency cause
detection using multilevel dynamic analysis [Communication écrite]. Annual IEEE
International Systems Conference (SysCon 2018), Vancouver, Canada (8 pages).
https://doi.org/10.1109/syscon.2018.8369613

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/4203/

Version: Version finale avant publication / Accepted version
Révisé par les pairs / Refereed

Conditions d’utilisation:
Terms of Use:

Tous droits réservés / All rights reserved

Document publié chez l’éditeur officiel
Document issued by the official publisher

Nom de la conférence:
Conference Name:

Annual IEEE International Systems Conference (SysCon 2018)

Date et lieu:
Date and Location:

2018-04-23 - 2018-04-26, Vancouver, Canada

Maison d’édition:
Publisher:

IEEE

URL officiel:
Official URL:

https://doi.org/10.1109/syscon.2018.8369613

Mention légale:
Legal notice:

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://doi.org/10.1109/syscon.2018.8369613
https://publications.polymtl.ca/4203/
https://doi.org/10.1109/syscon.2018.8369613

High Latency Cause Detection using Multilevel Dynamic Analysis

Naser Ezzati-Jivan

Ecole Polytechnique Montreal

Montreal, Quebec H3T 1J4

n.ezzati@polymtl.ca

Genevieve Bastien

Ecole Polytechnique Montreal

Montreal, Quebec H3T 1J4

genevieve.bastien@polymtl.ca

Michel R. Dagenais

Ecole Polytechnique Montreal

Montreal, Quebec H3T 1J4

michel.dagenais@polymtl.ca

Abstract—The performance of applications remains a major
concern to programmers. An unexpected latency can be caused
by a bug or a bad program design, but it can also be caused by
external factors such as resource contention or system overload.
There exist tools, program profilers, that are used to detect
latency. These tools, however, provide a limited view of a system’s
execution. For example, user space profilers can only detect slow
functions but are unable to pinpoint the root causes -whether
the problem comes from a slow I/O operation, interrupt, lock
contention, or other problems. Kernel tracers, on the other hand,
are able to collect detailed information about the operating
system execution at various levels from hardware counters to
system calls, disks, network I/O, etc, from which the main
performance problems can be detected. In this paper, we combine
user space and kernel space tracing data to understand and
diagnose system performance problems and to guide users to
identify the root causes. Our approach works by making a single
data model by synchronizing and correlating the data gathered
from different layers. We show the effectiveness of our approach
by applying it to understand the latency of PHP web applications
in handling web requests.

I. INTRODUCTION

A performance degradation in a software system many

be caused by several factors including insufficient system

resources, inefficient input/output operations, software bugs,

bad software design, database issues, or misconfiguration.

When performance degradation occurs, one needs to locate

the problem and determine the root causes. There exist many

debuggers and profilers that can pinpoint what went wrong.

They are good at locating the modules, functions, or lines

of code that do not work properly. But, they have shown

to be limited in determining the root causes [13]. This is

because they focus on a narrow view of the system. User

space profilers, for example, are commonly used to detect the

frequency and duration of (slow) function calls, but cannot

determine if this is caused by another thread, a slow I/O

operation, interrupt, lock contention, or other lower level

problems. Kernel tracers, on the other hand, provide detailed

information about an operating system’s execution but are

difficult to correlate with user space requests (e.g., a function

call, a web request, a database query, etc.). In other words,

using existing profilers, it is usually challenging to follow a

specific user request through the execution layers of a system

(user space and kernel space layers) in oder to understand the

causes of performance degradations.

In this paper, we present a multi-level trace-oriented analysis

approach to analyze causes of latency problems in software

systems. It is multi-level because it analyzes and correlates

data gathered from various layers of the computer stack

including the application layer, system call layer, and the

operating system layer. The proposed solution uses LTTng, a

low-overhead Linux kernel and user space tracer [4] to collect

execution traces. The trace data, collected from the different

components of the system, are correlated, analyzed, and the

extracted information is grouped in a unified data model by

using some synchronization primitives, namely timestamps,

thread id, process id, so that in the analysis phase, all data

belonging to a specific request/task (which may come from

different tracers) are investigated and visualized together.

Our approach is generic and can be used to analyze different

software systems. However, the use cases presented in this

paper focus on PHP web applications. We instrument the PHP

core and its different modules and provide tracing probes to

collect runtime information to understand and analyze the

whole PHP/web request chain, from the early time when a

request arrives in the server and goes through the database

server(s) to the time the request is fully handled, and the

response is returned to the user.

The main contributions of the paper are:

• A generic multi-level analysis solution to root cause

investigation of performance bottlenecks of software sys-

tems.

• An optimized data model to work with information

gathered from different sources and layers, making the

multi-level analysis possible and interactive.

• An instrumentation approach, tailored to the PHP lan-

guage, to collect efficiently the required runtime execu-

tion data for the entire PHP web chain, required for the

analysis of PHP applications.

The remainder of the paper is organized as follows: After

discussing the related work in Section 2, the architecture of

our multi-level trace modeling and its formal definition is

proposed. Three use cases are presented to show the usability

and usefulness of the proposed approach. This is followed with

the threats to validity. The conclusion and future work are then

presented.

II. RELATED WORK

Tracing consists of collecting execution events from a

system at runtime [9]. A trace event can be a function call, a

system call, a file open, etc. The payload of a trace event

usually contains the event name, processor id, thread id,

timestamp, file descriptor (fd), and any other data of interest.

Unlike debugging where the program is executed step by step

to get its current state, tracing collects data during execution

and the trace file is usually analyzed offline. The overhead

of tracing should be minimal in order to preserve the normal

behavior of the system.

LTTng [7] is an open source Linux tracing tool first de-

veloped at DORSAL1 to provide very low overhead tracing

capabilities. It is packaged as an out-of-tree kernel module

and it is available in all major Linux distributions. LTTng

supports kernel and user space tracing, which is useful to

correlate high-level application events with low-level kernel

events. Kernel tracing can be performed dynamically using

Kprobes or statically using the TRACE EVENT macro.

System analysis through execution trace data can be used

to study the runtime behavior of software systems. Surveys

of dynamic analysis techniques are presented in [13] and

[5]. The surveyed studies discuss analysis of traces, gathered

from a single layer (usually user space) only. A comparison

of using user space and kernel space trace data in software

anomaly detection is presented in [19]. The separate analysis

of different layers of kernel data is studied in [15], while the

processing of system call traces are studied in [10], [11], [17].

Disk usage analysis is proposed by Daoud el al. [6], in which

a comprehensive Linux tool that uses a general purpose tracer

to recover high-level storage metrics from low level trace

events collected from the storage subsystem. Similar tools such

as Oracle ZFS Storage Software[16] and IBM XIV [20] are

available in other operating systems. The visibility of this work

is however limited to only one layer and does not include data

from the other layers of the system.

Biancheri et al. [3] proposed a solution to analyze the host

applications and contained virtual machine(s) at the same time.

In their work [3], a fused view is proposed to display the

executions of host applications and virtual machine(s) in a

unified framework. A similar idea, but to study the kernel

and user space level executions, is presented by Wininger et

al.[21] and [18], which are an extension of a previous study on

multilevel trace abstraction and analysis, presented by Ezzati

et.al [11], [12]. Although their work is interesting in terms

of performing useful trace-based analysis tasks, their solution

lacks a unified data model for the collected data, hindering the

ability to move one layer to another effectively, an issue that

we address in this paper.

All the above studies review different aspects of trace-based

analysis of software systems. However, they lack a unified

way of analyzing multi-level trace data, i.e., traces that are

generated from different layers of a computer stack. The main

objective of this paper is to propose a solution to gather the

data from different layers of a computer stack, process them,

extract the required data and place them in a correlated data

model. The data is then used for performance diagnosis as a

posteriori analysis phase. The analysis synchronizes the data

between from different layers using common various features

such as clock time, process names, etc.

1Distributed Open Reliable Systems Analysis Lab (DORSAL)
http://www.dorsal.polymtl.ca

III. MULTI-LEVEL TRACE-BASED ANALYSIS APPROACH

Figure 1 shows the overall architecture of our proposed

approach for understanding the causes of performance degra-

dation using a multi-level trace-based analysis technique. We

Fig. 1. General architecture of the proposed multilevel analysis

first start by collecting trace data from different layers. The

data is then correlated, modeled, and stored in the appropriate

data structures. Then the analyzer part reads the generated

models and present the results in various views. We discuss

each component in more detail in the subsequent sections.

A. Data Collection

To collect data, we instrument the core of the application

by inserting tracepoints (macros) in different modules, so that

users do not need to change their source code. Whenever

the executions reaches a tracepoint, the tracing macros are

executed and the data log is generated, and stored in the

corresponding CPU buffers.

Kernel tracers usually work by instrumenting the different

modules of the operating system. The instrumentation can by

accomplished dynamically (e.g., using Kprobes) or statically

in the kernel. LTTng tracer [8], which is used in this work,

supports both ways. LTTng provides data in the different

modules of the operating system layer, including system

calls, processes, file system, disk accesses, memory accesses,

network layer, interrupts, timers, etc.

User space tracers, on the other hand, typically work by

instrumenting the source code. However, it is also possible

to trace a user space application without changing the source

code. To do so, the core libraries are replaced with wrapper

libraries, and therefore the program calls the functions from

the new wrapper using LD PRELOAD or other interception

techniques. The wrapper library in turn calls the functions

from the original library but includes some tracing before

and/or after.

In this paper, to collect user space traces, we have developed

a PHP extension module that intercepts the core PHP function

calls and wraps them by adding tracing macros before and

after each function. This dynamic instrumentation method has

the advantage of not modifying the PHP code. The injected

tracepoints make it possible to locate functions that cause

delays in processing user requests. Table I shows the important

events that the PHP tracer collects. This PHP extension is

open-source and available for public use 2.

For the operating system level, we use LTTng kernel tracer

to gather system calls, and other events needed to reason at

the level of process execution (i.e., CPU scheduling events,

wakeup events, interrupts and system calls).

User space and kernel space tracers run simultaneously, and

collect separately their own data. The correlation of this data

is explained in the next subsection.

TABLE I
PHP TRACING EVENTS

Trace Event Layer Description

request start PHP Fires when a new PHP request
is arrived. It includes information
about time, client ip and port,
method (get,post, etc.), file re-
quested, etc.

request exit PHP Fires when the handing of the PHP
request is completed. It includes
timestamp and the status of the
request.

function start PHP Fires when a function is called. It
includes file name, function name,
class name.

function exit PHP Fires when a function exits. It in-
cludes status of the function execu-
tion.

execution start PHP Fires when a code line is executing.
It includes the line number and file
and function names.

execution exit PHP Fires when a execution of a line is
finished. It includes the line num-
ber and execution status.

compile file entry PHP Fires when a file compilation starts.
It includes the file name and file
path.

compile file exit PHP Fires when a file compilation ends.
It includes the status of t he com-
pilation.

B. Data Model

A trace event, EV, represents an interaction between a

set of system resources (processors, files, disks, processes,

network sockets, etc.) in a specific timestamp ti and one or

more output values like vi. For example, the event EV1 =
(t1, p1, read, fd1, cpu0, 100) shows that at time t1, process p1

reads 100 bytes from a file indicated with the file descriptor

fd1, running running on cpu0. More formally, an EVi that

appears at timestamp ti and which involves n resource and m

values can be represented as follows:

EVi = (ti, r1, . . . , rn, v1, . . . , vm) (1)

2URL is not provided to respect the blind review process

A trace TR of size S is a set of ordered events. Events in

a trace are ordered by their timestamps and no two distinct

events have the same time values:

TR = {EV0, EV1, EV2...., EVs} (2)

Trace events usually include very detailed information about

a system’s execution. However, the volume of the collected

data can be quite large, making it challenging to analyze

their content. Different trace data reduction and abstraction

approaches have been proposed. Ezzati el al. [10] proposed

an approach to abstract out raw traces by grouping low-level

events into compound events, enhancing the readability of

traces. These techniques, however, reduce the precision of

the analysis, which can make the detection of some problems

impossible. But the idea behind that helped us in this work to

reduce the trace data by making higher-level information out

of the raw input data.

To reduce the size of traces, we introduce the concept

of abstract events. Abstract events are used to denote high-

level concepts such as an active network connection, process

blocked, process running, CPU preempted, etc. A high-level

event is constructed by grouping some raw level events. This

grouping is done semi-automatically by providing the ability

to software developers to define patterns depending on the

objective of the analysis. This is described further in the next

subsection.

A trace can be represented as a sequence of abstract events.

We refer to the transition from one abstract event to another as

a state change. Each state has a duration, a key, and a value.

For example, the state ”an active network connection” includes

a key (i.e., the network connection socket id or ip addresses)

and a value (i.e., active), and a time duration (e.g., t1 to t2) in

which the state value is valid for the key. This is represented

in Equations (3).











TD = {[ti, tj]|ti, tj ∈ N, ti < tj}

SV = {(tdi, ati, vi)|tdi ∈ TD, ati ∈ Attributes, vi ∈ N}

State Database SD = {svi|svi ∈ SV }
(3)

As shown in the above equations, each state value svi
includes a time range tdi ∈ TD, an attribute ati, and a value

vi. The attribute describes an aspect of a system resource. For

example, an attribute fd refers to file descriptor, which is an

aspect of a file. Other examples of attributes are process id,

CPU number, socket address, parent pid of a process, and so

on.

C. Analysis

The analysis of trace content is reduced to the problem of

identifying parts of the trace that can help software developers

achieve a given task. Each task may require a different view

point of the trace. For example, an analysis view can be built

specifically for measuring the CPU utilization of each process

in the system. Another example would be to construct an

analysis view to understand disk I/O failures.

Each type of analysis requires a set of mapping rules to

specify what and how to extract the required data from the in-

put trace. By using these rules, we can read the corresponding

trace events, process them, and generate high-level views as

shown in Figure 2.

Fig. 2. Analysis converts a part of trace data to high level abstract data

We developed a powerful framework in which software

developers can define these rules depending on their needs.

The rules can be hard coded in JAVA or specified using XML.

The framework can be used to define complex transitions from

trace events to high-level states. It is also extensible to support

the requirements of multiple use cases. For example, Listing

2 shows a set of rules, expressed in XML, on how to convert

trace events into a set of state and the transition between these

states. Once these rules are specified, we can apply them to

the input trace, extracted the required information, and convert

them into state values, which can later be viewed by one of

the views, supported by our framework, and used for analysis.

We also group the analysis rules that relate to the same host

into a model to allow software developers reason about the

underlying system from different point of views (see Figure

3).

Furthermore, we introduce the concept of a model cloud,

which contains all models pertaining to a system with multiple

hosts. A grouping of models is necessarily when users want to

trace distributed systems that involve different host machines.

The traces generated from the various machines and the

analysis rules can be stored into a model cloud as shown in

Figure 4.

The concept of View is used to display the output of the

application of mapping rules. A view is independent from

analysis models as shown in Figure 3. A view can be built

in a way to use data from a model. The type of analyses that

a model provides constitutes the model API.

A view can be rendered using visualization techniques such

as time-lines, bar charts, tables, heat-maps, etc. Views can

be either predefined or specified in XML. XML views are

derived from existing base views and can define several new

instances of the base views. For example, a XML view can

define a specific time-line for process executions, a time-line

for futex analysis, a bar chart for I/O usage, a heat-map for

disk utilization, and so on.

It is important to note that if the input traces come from dif-

ferent tracers with different formats, they have to be converted

into the same format. In our case, since we use LTTng and

LTTng-UST as our tracer, we support CTF (Common Trace

Format) [1].

The whole proposed method is implemented in Trace-

Compass, an open source project [2](an open source trace

viewing and analyzing tool), under the name of TraceCompass

Incubator and is available to public 3.

IV. EVALUATION

In this section, we discuss two use cases based on the pro-

posed analysis approach. Both use cases use traces collected

from two levels: kernel and user spaces. For the kernel level,

we use LTTng kernel tracer and for the user space we use

LTTng-UST tracer. The first use case studies the compilation

time of a PHP script and the second use case focuses on

the identification of the root causes of periodic performance

latency in a real website. Both user space and kernel space

traces are from the same host and use the same clock.

A. Environment

The tests are executed in a machine with the following

configuration.

Hardware configuration:

• Intel i7-4790 CPU @ 3.60GHz

• 16 GB RAM

Software configuration:

• Linux Kernel version 4.14.12

• LTTng 2.10

• Apache 2.4.23, PHP 7.0 and MariaDB 10.2

B. Use Case 1: PHP compile time analysis

The PHP language is interpreted using the PHP runtime

engine (e.g, the Zend Engine). The PHP compiler reads the

source code, produces an abstract syntax tree (AST), and

then translates it into bytecode, that is then executed by the

PHP runtime engine. The problem is that PHP recompiles the

source code for every request, which may cause latency. In

this use case, we want to understand the whole compilation

process and the steps that may be bottleneck. More specially,

we address the following questions: What is the performance

cost when PHP recompiles the source code for every request?

what is the percentage of the request handling time dedicated

to the compilation step versus the time for the real execution?

To answer these questions, we collect traces from user and

kernel spaces. The user space trace includes details about PHP

code compilation and execution. On the other hand, the kernel

space trace contains data on the real execution of the PHP code

in the kernel layer including process scheduling, interrupts, file

accesses, system calls, etc.

To conduct this analysis, we run the simple PHP code shown

in Listing 1. It includes the opening of three PHP files. Our

objective is to investigate what happens in the system during

opening and running these files.

1 <?php /*example.php*/

2 $x = rand(0,1000);

3 include ’folder1/’.$x.’.php’;

4 include ’folder2/’.$x.’.php’;

3https://git.eclipse.org/c/tracecompass.incubator/org.eclipse.tracecompass.incubator.git/

Fig. 3. Trace events to Analysis to Model to Model Cloud

Fig. 4. Trace events generated for different modules of the LAMP stack

5 include ’folder3/’.$x.’.php’;

6 ?>

Listing 1. Sample PHP source code

For the user space trace, we define a call stack analysis, which

converts the input trace events to finite state machines (FSM),

enabling the visualization of the execution call stack to show

active subroutines of a PHP execution over time. The XML

mapping rules to generate the FSM is shown in Listing 2. The

rules contain transitions that show how to interpret the trace

events and how to change the state machine for each event.

For each state transition, the corresponding state changes are

made and stored to construct the output view. For instance, for

transition in line 14 of Listing 2, a state value named ”Compile

File” is generated with the time range from the corresponding

compile entry event to the compile exit and stored in the state

data store. Figure 5 shows the events and the generated state

value.

We first start by looking at only the user space trace. The

Fig. 5. State change corresponding to the XML call stack analysis shown in
Listing 2.

call stack view and the execution times are shown in Figure

6. The view shows that the time required to compile all the

PHP files (the main script and the three PHP files that the

main script opens) is 1/10 of the whole request time, which is

somehow acceptable ((27.4 + 13.3 + 11.2 + 9.7)/592 ≈ 1/10

).

But when adding the kernel trace and analyzing both traces

at the same time, we see a different diagnosis. Figure 7 shows

the output of the combined call stack view. The first line shows

the kernel execution and the other lines are for the user space

call stack of the PHP execution. Using the kernel trace we

1<fsm id="PhpCallStack" initial="Wait_start">

2 <state id="Wait_start">

3 <!-- The state will stay here until we have a new php request event -->

4 <transition event="request_entry" target="in_thread" action="entering_request:push_uri"/>

5 </state>

6 <state id="in_thread" >

7 <transition event="function_entry" cond="same_thread" target="in_thread" action="push_event_type"/>

8 <transition event="function_exit" cond="same_thread" target="in_thread" action="pop_event_type"/>

9

10 <transition event="execute_entry" cond="same_thread" target="in_thread" action="push_execute"/>

11 <transition event="execute_exit" cond="same_thread" target="in_thread" action="pop_event_name"/>

12

13 <transition event="compile_entry" cond="same_thread" target="in_thread" action="push_compile"/>

14 <transition event="compile_exit" cond="same_thread" target="in_thread" action="pop_event_name"/>

15

16 <transition event="request_exit" cond="same_thread" target="in_thread" action="pop_uri"/>

17 </state>

18 <final id="end_thread"/>

19</fsm>

Listing 2. XML to generate call stack state machine data from trace

can obtain information about when a PHP script opens the

file to be compiled and when the PHP closes the file. The

PHP engine does the compilation, optimization, and possibly,

the writing into the cache between these two times. This is

repeated for every other request. Therefore if we consider this

time as the new compile time (compilation and optimization

time together) we can see that it takes around 90% of the

execution time (55us/60.2us ≈ 90%), which is quite high.

Our investigation shows that, in some cases, PHP compile-

time can be much more than the time required to execute

the script. To solve this problem PHP introduced OPcache

(Opcode Cache) to store the compiled and optimized bytecode

into a cache and reuse that for subsequent uses. The result

of executing the same code with having OPcache enabled is

shown in Figure 8.

Fig. 6. Call Stack view of sample PHP code execution

Fig. 7. Multilevel call stack view using the kernel and user space trace events

It is important to note that this analysis is not possible (or

may yield different results) if one uses traces from one space

only. Integrating the data from user and kernel spaces makes

this analysis possible.

Fig. 8. Execution of the sample PHP script with having OPcache enabled

C. Use Case 2: Performance latency root causes

In collaboration with an industrial partners, we observed

that users of their web server were complaining about periodic

latency problems in their website. We copied the web server

files into our local machine and used the same configuration

(for example we enabled the OPcache as it was enabled in

the main server) and generated traffic with ApacheBench(ab)

tool. The response time pattern for a few minutes of execution

is shown in Figure 9. As the figure shows there are periodic

latency every few moments. At the beginning, we traced the

Fig. 9. Response time graph for our slow web server

user space with our PHP tracing extension and the analysis of

the output call stack confirmed the latency. We suspected the

compile-time to be the cause. Therefore, we added compile-

time to the graph shown in Figure 10. This revealed that the

compile times represent only a small portion of the response

time and, therefore, cannot be the reason of the latency. We

decided to add a kernel trace and enable multi-level analysis.

Fig. 10. Response time and compile time for our slow web server

Figure 11 shows the combined call stack of three concurrent

slow requests (which are handled by three separate threads).

The first line of each request (the kernel stack) shows that there

are blocking and waiting states in the two first threads, while

the third thread is running. This shows that the PHP threads

suffer from some contentions. A deeper analysis revealed that

when the scripts are not yet compiled and only existed in the

OPcache (e.g., when the web servers or OPcache are restarting

for some reasons), the contention on OPcache may occur. It

is mainly because of the contention over OPcache structure,

which is a shared memory between all running PHP threads.

When several scripts want to compile and write to the shared

memory at the same time, they need to exclusively lock the

whole shared memory and once one process takes the lock,

other processes have to wait until they can obtain access and

be able to write to the OPcache. This is actually the case for

our problem and we could see in the kernel trace that the PHP

threads are waiting for each other.

To confirm our findings, we tested our trace with Critical

Flow View ([14]), which is a tool that shows dependencies

among processes. The results showed that there are block-

waitings between the processes (shown in Figure 12). Running

with more concurrent requests yielded more apparent results

on block-waiting situation between the processes, which is

shown in Figure 13.

Fig. 11. Call Stack view of the concurrent PHP requests

D. Use Case 3: Examining the overhead of the approach

In this use case, we analyze the overhead added by our

approach. We use as a configuration an Apache Web server

and the PHP language installed as an Apache module. The

Fig. 12. Call Stack view of sample PHP code execution

Fig. 13. Call Stack view of sample PHP code execution

workloads applied are generated using ApacheBench (ab) to

simulate the behavior of concurrent clients navigating through-

out the server. The trace was collected using LTTng 2.10. The

experiment is performed using different numbers of clients

(between 1 and 1,000) with the following configurations:

• No tracing: The tracing is disabled.

• Required events: Only events required for analysis are

activated.

• All events in memory: All kernel and user space events

are activated and the trace is kept in memory.

• All events: All kernel and user space events are activated

and the trace is written to the disk.

The results of the experiment are presented in Figure 14.

Fig. 14. Comparison of kernel and user space tracing costs

The experiment is conducted on a Drupal website where

serving a web request requires executing 33k lines of code

in average. The graph shows that enabling the required user

space events does not have a significant impact on the website

performance. The server is able to process about 30,000

requests per second in both cases. The impact of tracing

becomes significant if all kernel tracepoints are activated.

Kernel tracing appends a lot of system details to the trace and

increases the overhead. In the case where the kernel tracing is

enabled, the processing speed goes down to 21,000 requests

per second if the trace is written in memory, and 19,000 if it is

written to the disk. Writing data to the disk does not add much

overhead, because it is done asynchronously using a separate

process.

In practice, we do not necessarily need to enable all kernel

tracepoints. Because in most cases, only a subset is required

to generate the required analysis views. For the evaluation,

we did another test in which instead of enabling all kernel

events, we only enabled those are enough to draw the control

flow of the kernel and extract block waiting states, i.e., system

call and process scheduling events. With this new minimum

configuration, the tracing impact became less than 7.5%.

V. THREATS TO VALIDITY

A threat to internal validity exists in the implementation

of our approach, especially the PHP instrumentation macros.

We developed this in C++ and it is possible that an incorrect

implementation may cause variation in results. However, we

have mitigated this threat by manually reviewing the code and

working through many examples.

A threat to external validity exists in generalization of our

approach to other systems. We only evaluated our approach

on a PHP applications, and further experiments to generalize

results on other systems are needed.

VI. CONCLUSION AND FUTURE WORK

In this work, a unified analysis method is proposed for

investigating trace data collected from the different layers and

sources. The objective is to combine user space and kernel

space traces for the analysis of performance latency problems.

We present a unified model that enables multi-level analysis

of traces. Our approach relies on mapping rules that can

be defined dynamically to convert raw trace data into more

meaningful abstract information that can later be viewed in

different views.

The proposed solution was used to study the handling of

PHP requests and also to evaluate a real web application

performance problem. When a web site is slow or there is

an unexpected latency, it can be difficult to find the problems

because it can have several different underlying causes. The

proposed solution investigates the problem using the data

gathered from the user space and kernel space and discovers

the root causes of the problem.

To build on this work, we will continue (a) to develop map-

ping rules for various types of analyses, (b) add new views,

and (c) leverage machine learning for predictive analytics.

VII. ACKNOWLEDGMENT

We would like to gratefully acknowledge the Natural Sci-

ences and Engineering Research Council of Canada (NSERC),

Ericsson, and EffciOS for funding this project.

REFERENCES

[1] Common trace format (ctf. Accessed: 2017-10-10. URL: https://www.
efficios.com/ctf.

[2] Eclipse trace compass, year = , url = https://www.tracecompass.org, note
= Accessed: 2017-10-10,.

[3] C. Biancheri, N. E. Jivan, and M. R. Dagenais. Multilayer virtualized
systems analysis with kernel tracing. In 2016 IEEE 4th International

Conference on Future Internet of Things and Cloud Workshops (Fi-

CloudW), pages 1–6, Aug 2016.
[4] Martin Bligh, Mathieu Desnoyers, and Rebecca Schultz. Linux kernel

debugging on google sized clusters. In OLS (Ottawa Linux Symposium)

2007, pages 29–40, 2007.
[5] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and

R. Koschke. A systematic survey of program comprehension through dy-
namic analysis. IEEE Transactions on Software Engineering, 35(5):684–
702, Sept 2009.

[6] Houssem Daoud and Michel Dagenais. Recovering disk storage metrics
from low-level trace events (under review).

[7] Mathieu Desnoyers. Low-impact operating system tracing. PhD thesis,
École Polytechnique de Montréal, 2009.

[8] Mathieu Desnoyers and Michel R Dagenais. Lttng, filling the gap
between kernel instrumentation and a widely usable kernel tracer. In
Linux Foundation Collaboration Summit, 2009.

[9] Mathieu Desnoyers and Michel R Dagenais. Lockless multi-core high-
throughput buffering scheme for kernel tracing. ACM SIGOPS Operating

Systems Review, 46(3):65–81, 2012.
[10] Naser Ezzati-Jivan and Michel R Dagenais. A stateful approach to

generate synthetic events from kernel traces. Advances in Software

Engineering, 2012:6, 2012.
[11] Naser Ezzati-Jivan and Michel R. Dagenais. Stateful synthetic event

generator from kernel trace events. Advances in Software Engineering,
January 2012.

[12] Naser Ezzati-Jivan and Michel R Dagenais. Cube data model for
multilevel statistics computation of live execution traces. accepted in

Concurrency and Computation: Practice and Experience, 2014.
[13] Naser Ezzati-Jivan and Michel R Dagenais. Multiscale abstraction and

visualization of large trace data: A survey. submitted to The VLDB

Journal, 2014.
[14] Francis Giraldeau and Michel Dagenais. Wait analysis of distributed

systems using kernel tracing. IEEE Transactions on Parallel and

Distributed Systems, 27(8):2450–2461, 2016.
[15] Francis Giraldeau, Julien Desfossez, David Goulet, Michel R. Dagenais,

and Mathieu Desnoyers. Recovering system metrics from kernel trace.
In OLS (Ottawa Linux Symposium) 2011, pages 109–116, June 2011.

[16] Brendan Gregg. Visualizing system latency. Communications of the

ACM, 53(7):48–54, 2010.
[17] Abdelwahab Hamou-Lhadj, Syed Shariyar Murtaza, Waseem Fadel, Ali

Mehrabian, Mario Couture, and Raphael Khoury. Software behaviour
correlation in a redundant and diverse environment using the concept of
trace abstraction. In Proceedings of the 2013 Research in Adaptive and

Convergent Systems, RACS ’13, pages 328–335, New York, NY, USA,
2013. ACM. URL: http://doi.acm.org/10.1145/2513228.2513305.

[18] K. Kouame, N. Ezzati-Jivan, and M. R. Dagenais. A flexible data-
driven approach for execution trace filtering. In 2015 IEEE International

Congress on Big Data, pages 698–703, June 2015.
[19] S. S. Murtaza, A. Sultana, A. Hamou-Lhadj, and M. Couture. On the

comparison of user space and kernel space traces in identification of
software anomalies. In 2012 16th European Conference on Software

Maintenance and Reengineering, pages 127–136, March 2012.
[20] Ohad Rodeh, Haim Helman, and David Chambliss. Visualizing block

io workloads. ACM Transactions on Storage (TOS), 11(2):6, 2015.
[21] Florian Wininger, Naser Ezzati-Jivan, and Michel R. Dagenais. A

declarative framework for stateful analysis of execution traces. Software

Quality Journal, pages 1–29, 2016. URL: http://dx.doi.org/10.1007/
s11219-016-9311-0.

