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Abstract—Scalable communication is of utmost importance for
reliable dissemination of time-sensitive information in cooperative
vehicular ad-hoc networks (VANETs), which is, in turn, an
essential prerequisite for the proper operation of the critical
cooperative safety applications. The model-based communication
(MBC) is a recently-explored scalability solution proposed in the
literature, which has shown a promising potential to reduce the
channel congestion to a great extent. In this work, based on the
MBC notion, a technology-agnostic hybrid model selection pol-
icy for Vehicle-to-Everything (V2X) communication is proposed
which benefits from the characteristics of the non-parametric
Bayesian inference techniques, specifically Gaussian Processes.
The results show the effectiveness of the proposed communication
architecture on both reducing the required message exchange rate
and increasing the remote agent tracking precision.

Index Terms—Vehicular ad-hoc network, scalable V2X
communication, model-based communication, non-parametric
Bayesian inference, Gaussian processes.

I. INTRODUCTION

In 1999, the Federal Communication Commission (FCC)

allocated 75 MHz of spectrum at the 5.9 GHz frequency

for the emerging field of Intelligent Transportation Systems

(ITS). Different vehicular communication solutions such as

Dedicated Short-Range Communication (DSRC) [1], [2], [3]

and Cellular Vehicle-to-Everything (C-V2X) [4], [5] have been

introduced and developed afterwards, aiming at facilitating the

establishment of critical cooperative safety applications, e.g.,

Forward Collision Warning/Avoidance (FCW/A) [6], Coopera-

tive Adaptive Cruise Control (CACC) [7], [8], and Intersection

Management.

The fundamental role of the V2X communications is

enabling every vehicle in a Vehicular Ad-hoc NETwork

(VANET) to frequently inform the surrounding nodes about its

most recent dynamic states. In general, the V2X architecture

could be broken down into three main categories, i.e., com-

munication among vehicles (V2V), communication between

vehicles and infrastructure (V2I), and communication between

vehicles and Vulnerable Road Users (VRUs), e.g. V2P [9].

The concept of information sharing among nodes results

in a level of situational awareness for any vehicle/VRU and

makes it aware of its surrounding environment, which is super

crucial for the cooperative safety applications to function

This material is based on work supported in part by the National Science
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properly. The Society of Automotive Engineers (SAE), as the

main vehicular regulatory organization in US, has proposed

a specific framework through a set of standards in order

to realize the notion of situational awareness in vehicular

networks. The content of the Basic Safety Message (BSM),

which conveys the situational awareness information, has been

specified by SAE J2735 standard [10]. However, vehicular net-

works can potentially experience very dense scenarios which

result in a congested communication channel and impose

severe performance degradation to the network. Therefore,

part of another standard by SAE, i.e. SAE system requirement

standard or SAE J2945/1 [11], explores different congestion

control mechanisms such as BSM transmission power and

rate control in order to manage the generated load from the

information beaconing and mitigate the congestion imposed

on the communication channel. It is noteworthy that the con-

gestion control algorithms defined by SAE J2945/1 standard

do not impose any restrictions on the BSM content or size

since these parameters are defined through SAE J2735. In the

current SAE framework, the message content remains intact

for all broadcast packets1 and every BSM is filled out with

raw information directly captured from CAN-bus or received

from GPS, according to the J2735 dictionary.

The congestion control section of the SAE system require-

ments standard [11], is the current state-of-the-art congestion

control solution accepted by the US vehicular research com-

munity as well as US automotive industry. This standard has

been developed based on several congestion control algorithms

proposed in the literature, among which one can refer to [12]

and [13]. In a nutshell, the rate and power control algorithms

defined in this standard allow vehicles to broadcast their

messages at the rate of ∼1.5–10 Hz. and the power in the

range of 10 – 20 dBm, based on their individual network

performance evaluation .

In order to improve the performance of the architecture

proposed by SAE, a new scheme called Model-Based Com-

munication (MBC) has been recently introduced by the author

in [14] and more investigated in [15], [16], and, [17]. The

fundamental intention behind the MBC paradigm is utilizing

a more flexible content structure for the broadcast packets

based on the joint vehicle-driver predictive behavioral models

1The terms “BSM” and “packet” are sometimes used interchangeably in
this paper
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in comparison with the BSM content structure defined by

J2735 standard. This paper, utilizing non-parametric Bayesian

modeling schemes, proposes a hybrid model structure within

the MBC framework and integrates it with the congestion

control communication policy proposed in J2945/1 standard.

The notion of MBC and our proposed communication policy

will be explored in more details in the subsequent sections.

The rest of this paper is organized as follows. In Section II,

an overview of the MBC is presented. Section III is devoted

to the system-level architecture design of our proposed model-

based communication policy. In this section the proposed

hybrid model architecture in addition to the details of our

model update policy are thoroughly explained. In section IV,

the analysis and evaluation results of the proposed method is

presented before the concluding remarks and future research

directions stated in Section V.

II. MODEL-BASED COMMUNICATION OVERVIEW

One of the main catalysts behind the MBC framework

is pursuing a new solution perspective to alleviate the net-

work congestion by re-designing the content structure of

the broadcast messages. As stated earlier, the currently stan-

dardized dictionary set stipulates the core content of the

broadcast messages to be directly filled out with the raw

vehicle position and dynamic state update data. Therefore, it

does not explicitly reflect the inherent characteristics of the

maneuver in which the vehicle is currently involved. However,

considering these conceptual characteristics while a vehicle

generates its messages could be beneficial for optimizing its

scheduled transmission moments. These characteristics could

be implicitly utilized to determine the moments at which

the instant updates are critical and should be transmitted

by the maneuvering vehicle, as well as the moments when

transmitting a new packet does not worth. More specifically,

in some scenarios, such as abrupt and harsh lane changes

or hard brakes an instant update is very critical and highly

demanded for the other vehicles’ safety applications. On the

other hand, multiple redundant transmissions by a vehicle

are over-occupying the communication channel if the vehicle,

for instance, is cruising in a steady state. In the latter case,

transmitting consecutive BSMs not only do not provide its

neighbors with any higher degree of situational awareness,

but also cause more channel congestion, or equivalently an

increase in the number of collided packets, which in turn

results in the lower level of situational awareness finally

achieved by the neighbouring nodes. From this point of view,

the MBC scheme could potentially be capable of improving

the communication scalability by scheduling the transmission

times at more optimized moments, even if its criteria for this

scheduling follows the footsteps of the J2945/1 standard.

The transmission rate calculation mechanism in J2945/1 is

basically based on the transmitter estimation of its surrounding

network density, in addition to its estimation of the position

tracking accuracy which could be achieved by the information

included in its last transmitted BSM. The transmitter keeps

track of this tracking precision using an Error-Driven com-

munication mechanism. More precisely, at any GPS update

after each BSM transmission, the transmitter calculates the

difference between the constant-speed coasting of its position

derived from the contents of its last transmitted BSM and

its current actual position received via GPS. This difference

defines the position tracking error of the transmitter location

at this time instance for an arbitrary node which has received

the latest transmitted packet. Then, transmitter performs a

comparison between this error with a predefined threshold

and decides to transmit a new packet if the error exceeds the

threshold. Obviously, this mechanism reduces the transmission

rate compared to the baseline 10 Hz transmission.

Now if the transmitted message contains a predictive model

with high precision for longer prediction time-horizons, pre-

dictions made based upon it at the receiver vehicles could less

frequently reach the same position tracking error threshold

defined in J2975/1 in comparison with the case of constant

speed coasting prediction from raw information received via

J2735 BSMs. This explanation clarifies the core idea behind

the MBC scheme.

The maneuver characteristics, or equivalently driver behav-

ioral models, are themselves functions of different factors such

as the driver’s personal driving style, his current mental state,

the environmental inputs affecting the driver behavior, e.g.

road traffic, other vehicles’ maneuvers, weather condition, etc.

Considering these factors and reflecting them into the contents

of the generated packets by any vehicle is the fundamental idea

behind the MBC notion. More specifically, the MBC tries to

generate a mathematical model based on the available noise-

free CAN-bus information at the transmitter side which be

able to explain and predict the driver actions in the future.

Assuming these models give notable higher prediction accu-

racy compared to the constant speed coasting scheme, which

is the current default method in the standard, then MBC would

be able to avoid several redundant information transmissions.

Therefore, the MBC has a two-fold advantage; first it can

potentially shrink the payload size by extracting an abstract

representation of the vehicle’s state. In addition, it reduces

the transmission rate by enabling the recipient vehicles to

predict their neighbors mobility more accurately in farther time

horizons ahead. The former could be achieved through various

abstraction and dimensionality reduction methods and the

latter would be attained through utilizing different supervised

learning algorithms. In this work we have explored the latter

case, i.e. the MBC effect on the transmission rate compared to

the raw information communication, while the reduced packet

size effect is part of our future research directions.

The initial MBC architecture, illustrated by the author in

[14], proposes a stochastic hybrid automata modeling scheme

and evaluates its performance on a standard FCW algorithm,

known as CAMPLinear [18]. Authors in [15] use hidden

Markov models (HMMs) to derive an adaptive stochastic

hybrid system (SHS) in order to capture the non-deterministic

nature of driving scenarios. Further enhancements in the

modeling approach are presented by authors in [16] and [17]



which include non-parametric Bayesian inference methods

such as Gaussian processes (GPs) with linear kernels and

hierarchical Dirichlet process-hidden Markov models (HDP-

HMMs). Results in [14]- [17] demonstrate the significant

improvements in communication rate and tracking accuracy

metrics utilizing the MBC approach.

Analysis in our previous works in [16] and [17] demonstrate

that the highly dynamic and diverse driving behaviors add

more complexity to the modeling process. As an illustration,

for the case of a vehicle cruising on a highway, the simplistic

constant speed (CS) model will provide an excellent prediction

capability. On the contrary, if the vehicle is navigating through

a Manhattan-grid urban area, the CS model will be totally

obsolete.

The above-mentioned phenomena (Figure 1 and Figure 2)

gives an intuition of the core idea in this work; we propose a

hybrid modeling architecture which switches between different

(here two) modeling sub-systems in order to adapt to the

vehicle’s dynamic state. Our proposed architecture benefits

from a CV modeling sub-system alongside with a GP sub-

system with a compound kernel, each of which has shown

significant prediction performance in specific scenarios. In

addition, since the change points in the high-level driving

behaviors on average occur much less frequently compared

to the normal message broadcast rates of the state-of-the-art

methods in the literature, our hybrid-MBC method gives a

conspicuous reduction in required communication rate. The

details of our proposed architecture is presented in the next

section.

III. HYBRID GP-BASED MBC ARCHITECTURE

This section provides the details of our proposed communi-

cation system architecture composed of the Gaussian process-

based modeling block and the error-driven communication

framework. In the first subsection, a brief explanation of the

Gaussian processes is presented, while combining the hybrid

model structures with error-driven communication policy is

illustrated in the subsequent subsection.

A. Gaussian Processes: A Fully Data Driven non-parametric

Bayesian Modeling Approach

The record of different vehicle dynamics could be regarded

as separate time-series which should be regressed using an

appropriate supervised learning method. The regression prob-

lem here is equivalent to inferring the characteristics of the

unknown target functions which have generated these time-

series through their available training sets, which are finite

sets of known function output realizations. In this work,

following our previous works in [16] [17], a non-parametric

Bayesian inference framework is proposed to find an appropri-

ate representation and abstraction of the driver behavior using

his observed actions through the recorded time-series of the

vehicle dynamics.
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Fig. 1: Performance of the proposed hybrid modeling scheme

in different driving scenarios. Setting a threshold on the track-

ing error and utilizing a two-state hybrid modeling scheme,

compromised of GP (with RBF + Linear kernel) and CV

components, this figure (using different colors) shows the

moments when each sub-model satisfies the tracking accuracy

constraint while the other one fails and exceeds the threshold.

In general, the main advantage of any non-parametric infer-

ence method is relaxing the function-specific characteristics

during the learning process and letting the model complexity

to be derived from and adapted to the available training set. In

other words, a non-parametric inference method finds the best

function representation of the observed data without imposing

any prior assumption on the form of the underlying function.

Gaussian process (GP), as one of the most powerful non-

parametric learning methods, puts the Bayesian prior directly

on the function space rather than parameterizing the function

and then putting the priors on the parameters space. This trick

makes the modeling method capable of capturing different

possible patterns which might occasionally be observed in the

training data. It is worth mentioning that we use the Gaussian

process regression to derive the model of the remote vehicle

and its driver as a unique object. The outcome is a set of

functions describing the underlying modes which represent the

behavior of this object for a notable time ahead.

The formal definition of the Gaussian process is as follows:

A Gaussian process defines a distribution over function values

f(t) at any arbitrary point within the function input range, such

that any finite subset of the drawn function values from this

distribution form a multivariate Gaussian random vector (have

joint Gaussian distribution). [19]

Posterior distribution is inferred by conditioning the prob-

lem on a set of noisy observations as the training data. Gaus-

sian process regression model assumes each observed value

as a draw from a normal random variable. Therefore, the set

of m observations form an m-dimensional multivariate normal

random vector. This multivariate random vector is defined by



Fig. 2: Comparison of the prediction precision for GP and

CS sub-models. Here, GP outperforms CS because of the

maneuver non-linearity. (Courtesy of Google Earth Inc.)

a mean vector of length m plus an m-by-m covariance matrix,

also called as kernel within the Gaussian process context.

The following equations describe the mathematical repre-

sentation of GP framework. For more details one can refer to

[19].

f(t) ∼ gp(m(t), k(t, t′)) (1)

{Xi}i=1,2,...,m = {f(ti)}i=1,2,...,m ∼ N (µ, Σ) (2)

µ = m(ti); Σi,j = k(ti, tj) ∀i, j ∈ {1, 2, ...,m} (3)

The kernel matrix defines the correlation between the ele-

ments of the marginal distribution. Capturing different patterns

(a) Hybrid Gaussian Process architecture

(b) Communication system architecture of a host and remote vehicle

Fig. 3: Systems Design Illustration

is achievable in GP framework by utilizing different types of

kernels. In this work a compound kernel of RBF and linear has

shown the best performance in examined specific non-linear

scenarios.

B. An Error-Driven Communication Architecture for Hybrid

Model Structures

As mentioned in the introduction section, inter-vehicle com-

munication in VANETs is our core interest in this work. As-

suming a given cooperative vehicular scenario, e.g., a platoon

or an intersection, in which each vehicle is equipped with

V2X communication devices and interacts with neighboring

vehicles, we use the host and remote vehicle naming conven-

tions as it is common in the vehicular literature. By definition,

the host vehicle (HV) receives situational awareness messages



from the remote vehicle(s) (RVs) and runs cooperative safety

applications locally in order to potentially react to the remote

vehicles’ actions and maneuvers. From the networking point-

of-view, each network node, i.e., each vehicle, can be modeled

as a multi-layer stack. The application layer runs on top of

the lower layers which together enable vehicles to commu-

nicate over the air-interface. Considering a RV-HV pair in

a network of vehicles, the HV receives multiple situational

awareness messages from vehicles in its communication range.

As mentioned above, these messages contain dynamical state

information which give the HV an insight to create a real-time

map of it’s surrounding. This map then could potentially be

used by the safety applications to avoid collisions or hazardous

situations for both HV and RV(s).

Our communication technology-agnostic MBC architecture,

as illustrated in Figure 3, takes place in the application layer

and is able to operate independent of the lower network, data-

link, and physical layers. Figure 3b illustrates the network

protocol stack and information flow for an arbitrary HV-RV

pair. On the RV side, the Controller Area Network (CAN) bus

feeds the application layer with vehicle’s local and sensory

information. The GP-based MBC module then trains the GP

based on the last received information. Afterwards, the MBC

module keeps track of the prediction accuracy of the latest

learned GP model at any new GPS update and compares

it with a certain threshold. Whenever the difference of the

latest learned GP prediction and the actual GPS information

exceeds this threshold MBC module trains a new GP based

on the latest set of sensory inputs. This procedure results

in generating a new situational awareness messages which

carry the last updated abstract model of the vehicle’s state.

Lower layers schedule and broadcast the message over the air-

interface, i.e., communication channel. The corresponding HV

node receives situational awareness messages from all vehicles

in its communication range. The MBC module in HV side

reconstructs the state of the neighboring vehicles and creates

a real-time predictive map of the surrounding nodes.

In our settings, GPS latitude, longitude and elevation have

been converted into ENU co-ordinations, then X-ENU and Y-

ENU are treated as two separate time-series which should be

learned from their own histories. Training window size has

been set to 10 latest equally spaced received GPS samples

in time (last 1 second) and a compound kernel type, com-

posed of a linear and an RBF kernel, is selected due to our

observations. Four different position tracking error thresholds,

i.e. 20 cm, 30 cm, 40 cm, and 50 cm, are investigated in

this work. These values cover the range between minimum

and maximum thresholds specified by SAE J2945\1, i.e 20

and 50 cm, respectively. The schematic representation of the

proposed hybrid model communication policy is presented in

Figure 4 and the pseudo-code of our algorithm is illustrated

in Algorithm 1. The evaluation results for the proposed

framework are presented in the next section.

Algorithm 1 Model-based Communication Algorithm

Require: Read CAN-bus at time i: Si = {x1,i, ..., xn,i}
T0 ← Tstart ; i = 0
while T0 < Tend do

while (PTEmin < th) or (i = 0) do

i← i+ 1;

Tnext ← T0 + i

for kernels ∈HTnext
i do

PTEi = getPTE(kernel, Si);
end for

PTEmin = min(PTEi)
end while

update T0;
update Si;
PTEmin ←∞, i← 0;

end while

IV. EVALUATION

System level performance gain of the MBC architecture

stems from its two core components; model-based information

exchange scheme and error-driven message transmit policy. In

this section we first evaluate the performance gain originating

from the communication policy in terms of offered channel

load. Tracking accuracy of MBC is then compared against

an error-driven raw information (conventional BSM) exchange

policy (baseline) to further demonstrate its efficacy.

Since the error-driven model update is an integral part of the

MBC, we evaluated the same message scheduling policy for

our baseline sensor-generated data exchange scheme which

uses constant-speed for position estimation. As mentioned

earlier, the message scheduling rate in error-driven exchange

depends on the selected tracking error threshold. This thresh-

old may vary depending on the application requirements. We

experimented with four different thresholds to determine the

resulting message generation rate for MBC and baseline, as

illustrated in Figure 5. As the tracking error threshold gets

stricter the message generation rate increases for both baseline

and MBC. However, as the rate is significantly lower in

Fig. 4: Gaussian Process-based hybrid model update scheme



Fig. 5: Message scheduling rate for different choices of

tracking error thresholds. For MBC, the total effective rate

is shown here by summing the model update rate and the sub-

model identification rate.

MBC, it can accommodate higher number of transmitting

entities compared to baseline, assuming over-the-air packet

lengths of MBC and baseline are similar. Moreover, MBC

experiences lower rate of packet collision comparing to its

baseline counterpart in different traffic densities.

Now that the efficacy of MBC is established in terms of

offered channel load, we seek to determine its tracking per-

formance gain. Tracking performance of the MBC architecture

is evaluated for the above mentioned vehicle trip which is

carefully selected from the SPMD data-set [20] on the merit

of maneuver counts over the entire trip duration. To ensure

fair comparison, message generation rate in baseline is chosen

to be equal to the average model update rate computed in

MBC. Tracking accuracy is determined in terms of position

tracking error (PTE) which is defined as the 2D Euclidean

distance between the actual and estimated vehicle position.

Actual position at a given time instant is obtained from

GPS logs and position estimation is calculated from received

message information. Since PTE sampling is dependent on

the availability of actual position updates, it can be done at

most at the sampling rate of GPS updates, which is 10 Hz

for SPMD dataset. For position estimation, MBC uses the

most recent model parameters and associated model relevancy

updates. In contrast, baseline vehicle position estimates are

computed by coasting a vehicle’s last received position update

from the BSM to the error sampling instant (i.e., the GPS

update instant), using a constant velocity mobility model.

We measured tracking errors for different packet error ratio

(PER) levels. PER is indicative of the communication channel

quality and is defined as the ratio of the missed packets to

the transmitted packets. The PER metric can be interpreted

from different perspectives. For a given traffic density, PER is

typically an increasing function of sender-receiver separation

distance. Conversely, for a given sender-receiver range, PER

Fig. 6: Tracking error comparison for packet loss ratio of

40%. Stricter (smaller) tracking error threshold translates to

higher message transmit rate which eventually helps lowering

the tracking error.

is an increasing function of traffic density. The “range”

interpretation is useful for assessing tracking performance at

different ranges, while the “density” interpretation is useful

to evaluate range-specific system performance in different

driving scenarios such as freeway with peak and off-peak hour

traffic. Another way to interpret PER is based on line-of-sight

conditions of sender-receiver pairs where links with dominant

LOS results in low PER. This interpretation is applicable for

performance evaluation in different driving environments such

freeway and urban intersections.

90-th percentile position tracking error (PTE), shown in

Fig 6, evidently suggests that MBC predicts positions more

accurately than baseline. The higher tracking accuracy of MBC

can be attributed to its capability of capturing higher order

vehicle dynamics resulting from hard brakes and lane change

maneuvers.

V. CONCLUDING REMARKS

The notable differences in tracking accuracy of different

driving maneuvers, resulted from different modeling schemes

motivates us to incorporate more complex model structures

in comparison with what is the current state-of-the-art in

vehicular society. More specifically, non-parametric Bayesian

methods with different kernels, which are capable of being

adapted to different maneuvers are potentially promising can-

didates for this purpose. Therefore, in this work we have

proposed a Hybrid GP-based modeling scheme in combination

with an error-driven model communication policy and investi-

gated its performance against the same error-driven method

of raw-information dissemination. A notable improvement

is observed using our scheme against the base-line method

through reduction of the required communication load as well

as better tracking precision.
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