
Automated Extraction and Classification of Slot

Machine Requirements from Gaming Regulations

Michael D. Prendergast

Colorado Springs, USA

mike.prendergast@ieee.org

Abstract—Analyzing stakeholder needs and transforming

them into requirements is an important early step in the systems

engineering lifecycle [1]. In regulated industries, important

technical requirements can be found in state and federal laws and

regulations. Casino gaming is one such industry. This paper

analyzes South Dakota and Nevada slot machine regulations and

applies automated natural language processing to extract and

analyze technical requirements derived from them. First, each

parts of speech (POS) in the regulations is identified. From this,

the important adjective and noun keywords and keyword

combinations are extracted using the Rapid Automatic Keyword

Extraction (RAKE) algorithm [2]. Next, slot machine

requirements are extracted from the gaming laws, many of which

lack a “shall” in them. To perform this, a 12-rule pattern

matching algorithm that applies phrase substitutions and

identifies leader-subordinate paragraph headings is applied to the

slot machine gaming rules. This approach successfully extracts

nearly all of the slot machine technical and operations

requirements, though fails to separate compound requirements

accounting for approximately 3% of the total. Then, after

stemming and stopping the regulations, a Naïve Bayes model for

identifying functional requirements is constructed from the South

Dakota regulations and applied to the Nevada regulations. This

model is able to predict the Nevada functional product

requirements from amongst the full set of extracted requirements

with 87.5% accuracy. Finally, using a modified version of the Dice

similarity metric where the word counts are weighted by the term

frequency-inverse document frequency (TF-IDF) scores, the

South Dakota requirements most similar to each of the Nevada

requirements is determined. The paired South Dakota and

Nevada requirements are then assessed using systems engineering

expertise for equivalency and relatedness. Using the geometric

mean of sensitivity and specificity as a scoring metric, the pairing

algorithm optimum performance is 96.1% accurate in identifying

equivalent requirements between the two sets of regulations, and

82.0% accurate in identifying related requirements.

Keywords—requirements analysis, similarity, natural language

processing, non-functional requirements, slot machines.

I. INTRODUCTION

Stakeholder requirements come from a variety of sources,
including contract requirements, market conditions, user
feedback, and sometimes, laws and regulations. Laws and
regulations are a particularly important source of requirements

within well-regulated industries such as aerospace and defense,
healthcare, finance, automotive and casino gaming.

This paper uses automated natural language processing
(NLP) techniques to extract key concepts and requirements in
slot machine gaming regulations, identify which of the extracted
requirements are functional (vs. non-functional or operations),
and compares slot machine requirements embedded in the
gaming laws of different states. An overview of this contribution
and previous relevant contributions is found in Section II.

Gaming statutes from South Dakota and Nevada are used for
this analysis. Section III summarizes the regulation contents and
provides examples. Section IV discusses the use of part of
speech (POS) tagging and the Rapid Automatic Keyword
Extraction (RAKE) algorithm [2] to identify the most important
words and phrases in the regulation sets, forming the basis for a
program glossary.

Preparing the data for requirements analysis is described in
section V. Not all requirements embedded in state laws have the
word “shall” embedded in them. Section V describes a simple
12-rule pattern matching algorithm which successfully extracted
over 99% of the requirements from the gaming regulations,
although these rules failed to separate out certain types of
compound requirements. Automated analyses of the
requirements to determine which requirements are functional
and which are not is described in section VI, and section VII
describes the use of similarity analysis to identify equivalent and
related requirements. A summary and opportunities for further
research are provided in section VIII.

II. CONTRIBUTION SUMMARY

A. Previous Contributions

The use of NLP for requirements engineering has been
around for some time. Reference [3] provides a good overview
of the state of the art for natural language requirements
engineering in 2001, and a more up-to-date (2018) overview can
be found in [4].

Many of the previous NLP approaches to organize
requirements included similarity analysis and/or classification
algorithms. Early examples of similarity analysis to group
requirements can be found in [5,6]. More recently, similarity
analysis has been used to link requirements to design documents

[7]. An application of similarity to derive and categorize app
requirements from user reviews can be found in [8,9]. A
description of the use of support vector machines to classify a
variety of NFR types in electronic health systems and
comparison of their performance to Bayesian analysis is found
in [10]. A succinct overview of recent work in NFR
requirements classification is described in [11], together with
examples for mathematical software systems.

Natural language similarity analysis tools useful for
requirements analysis are described in [12] and [10]. ORSIM
(OpenReq-SIMilarity), a tool that encapsulates several
similarity mechanisms, is described in [12], together with results
from its application to a test database under the European
Union’s OpenReq project. NFR locator is a tool that extracts
NFRs from free text documents. It and its application to health
record management is described in [10].

Previous authors have also used similarity measures to
compare requirements sets for reuse opportunities [13] and
product line development [14].

B. This Contribution

To date, however, none of these techniques have been
applied to the casino gaming industry in general, nor used to
extract and analyze requirements from gaming laws and
regulations in particular. The gaming industry is heavily
regulated, and legal statutes for slot machines are an important
source of many slot machine product and operations including
both functional and non-functional technical requirements.
This paper’s focus is the use of NLP to extract keywords and
requirements from state gaming regulations, characterize the
requirements as either functional or otherwise, and discover
equivalent and similar requirements between the Nevada and
South Dakota gaming regulations.

III. DATA DESCRIPTION AND PRE-PROCESSING

A. Data Description

South Dakota legal statues applying to slot machines are
found in South Dakota Codified Law (SDCL), Chapter
20:18:17, “Slot Machine Requirements” [15]. These regulations
include many mandated functional and non-functional
requirements for slot machines and slot machine networks, as
well as operations rules that casinos that offer slot machines
must follow. This document also includes traceability
information such as the statute number, the source (referencing
where the law is documented in the South Dakota Register
record), and references to related authorization and
implementation bills passed by the South Dakota legislature.

For example, section 20:18:17:41.03 contains the NFR:

“Security levels. The host system must have the ability to
structure permission levels and logins…”

On the other hand, 20:18:17:29 is an operations requirement:

“The slot machine drop shall be performed by a minimum of
two persons.”

The South Dakota regulations have 94 sections, varying in
length from a single sentence (such as 20:18:17:41.03 above) to
2 or 3 pages. Altogether, the document contains 649 paragraphs.

The Nevada Gaming Commission (NGC) “Technical
Requirements for Slot Machines” [16] includes not only
technical requirements but also notes, definitions and
annotations indicating the month/year when each regulation was
adopted or amended. One functional requirement from this
document reads:

 “Inappropriate coins-in shall be returned to the player by
activation of the hopper or credited toward the next play …”

This NGC document is 15 pages long, and contains 37
sections and 307 paragraphs.

The documents are similar, although the South Dakota
regulations contain a few more operations requirements than the
Nevada requirements. Automated keyword and key-phrase
discovery on the regulations was performed on each dataset.
First, automated part-of-speech (POS) tagging was performed
on each word in each regulation. Then, the Rapid Automatic
Keyword Extraction (RAKE) algorithm [2] was performed on
adjective/noun words and combinations. The results from each
set of regulations were similar. The top 20 keywords and
keyword phrases in the Nevada requirements are shown in
Figure 1.

Examining these keywords, one sees that the keywords
includes references to states and statuses (print failure, power
reset), components (control program, external connection,
printer), and slot machine inputs and outputs (electronic fund,
cashable credits, non-cashable credits). Hence one might expect
that technical requirements dominate these regulations, which
turns out to be true.

Gaining stakeholder agreement on key phrases and terms is
an essential part of understanding stakeholder needs. To support
this, automatically extracted keywords and phrases should be
carefully considered when constructing the program glossary.
For example, consider the key phrase from Figure 1 “percentage
variance”. Slot machine networks must be able to compute and
report the difference between the theoretical return and the

Fig. 1. Keywords and Phrases from Nevada Slot Machine Regulations

actual return to players. Stakeholder agreement on how this is
calculated is an essential precondition for acceptance testing and
certification.

B. Data Pre-Processing

Regulations pre-processing started with identification of all
of the paragraphs that contained mandatory and conditional
requirements. A conditional requirement is one which may or
may not be necessary, depending upon the ultimate system
design. An example from [15] of such a requirement is:

“The bonus or extended feature provides only one choice to
the patron i.e. press button to spin wheel. In this case the device
may auto initiate the bonus or extended feature after a time out
period of at least 2 minutes.”

If the slot machine manufacturer decides to have an auto-
play feature, then this regulation states that this feature may not
start until at least 2 minutes have elapsed.

As noted earlier and as seen in the example just given, many
of the requirements embedded in legal regulations lack the word
“shall”. To determine which of these regulations was, in fact, a
requirement, the text was transformed using the following
substitution rules:

1. “must” or “is required to”, “should”, “will”  “shall”

2. “may only”  “shall only”

3. “may not” or “is prohibited from”  “shall not”

4. “can”  “may”

5. “[is][are] allowed to”  “may be allowed to”

6. “[is][are] prohibited from”  “shall not”

7. “requires a”  “shall require a”

8. “[is][are] determined”  “shall be determined”

9. “[is][are] responsible”  “shall be responsible”

10. “responsibility … lies”  “responsibility … shall lie”

11. “no … may”  “no … shall”

To this we added a 12th rule: any sub-bullet or sub-
paragraph of a requirement statement is also a requirement.

After these transformations, any paragraph or sub-paragraph
that contains the word “shall” was deemed to be a mandatory
requirement (functional, non-functional or operations), and any
paragraph with the word “may” in it contains a conditional
requirement.

When a “shall” was included in a main paragraph but not its
corresponding sub-paragraphs, the main requirement text was
concatenated to each of the subparagraphs and bullets
underneath the requirement. For example, from [17], the
statement

“Gaming devices must have electronically stored meters …
that record the number of games played:

a) Since power reset”

b) Since door close”
becomes

“Gaming devices must have electronically stored meters …
that record the number of games played since power reset.”

“Gaming devices must have electronically stored meters …
that record the number of games played since door close.”

The English language is rich and nuanced, and there is no
doubt that many more rules would be required to make the list
of rules exhaustive. Nevertheless, when these 12 rules were
compared with a systems engineering expert opinion review of
the gaming regulations, all but one of the regulation
requirements were captured. The one requirement not captured
states [15]:

“If a slot machine uses more than one similar physical or
video component to portray either motion or a random selection
process the symbols on each separate component are selected
independently and randomly.”

Here the phrase “shall be” is implied by the word “are”, but
the rules listed above are unable to cover this case. This was the
only paragraph not recognized to contain a requirement in it
across both sets of regulations.

Another limitation of this ruleset is that it fails to separate
complex requirements that are partly technical and partly
operational. For example, from [16]:

“System meters shall be referred to with the above terms and
shall accumulate applicable system generated information as
well as information stored on gaming device meters as required
by Technical Standard 2.040.“

The word “shall” appears twice in this one sentence. One of
these is a technical requirement (adherence to 2.040), the other
is a documentation requirement. The ruleset used in this analysis
was not robust enough to split this sentence up. However, only
about 3% of the requirements were compound in this way.

From this ruleset, 273 requirements paragraphs from the
Nevada regulations were extracted, and 284 South Dakota
requirements paragraphs were extracted.

The final step in pre-processing the gaming regulations was
to prepare them for the term frequency and similarity modeling.
Stopwords were removed, remaining words were stemmed,
punctuation was removed, and words were converted to lower
case. For each stemmed word in each requirement, the term
frequency (TF) and the word frequency against each regulation

TABLE I. CONFUSION MATRIX FOR CONTROL DATASET

Control Dataset (South Dakota Requirements)

Actual\Prediction Non-technical Technical

Non-technical 128 2

Technical 1 153

TABLE II. CONFUSION MAGTRIX FOR VALIDATION DATASET

Validation Dataset (Nevada Requirements)

Actual\Prediction Non-technical Technical

Non-technical 41 8

Technical 26 198

set was tabulated. These calculated quantities are used in the
modeling described in the following sections.

IV. REQUIREMENTS MODELING

A. Identifying Functional Requirements

After the text transformations described earlier, a term
frequency Naïve Bayes model was built from the South Dakota
requirements and applied to the Nevada requirements to predict
which requirements were functional or not functional.

An Expert Systems Engineering Professional (the author)
assessed each of the 284 requirements paragraphs in the South
Dakota regulation set and tagged them as either functional (154
of the requirements) or not (130 of them). The requirements that
were not functional fell into two categories: nonfunctional
product requirements or operations requirements.

Next, the frequency of every word in the South Dakota
regulations was calculated, in total and separately for the
functional requirements and non-functional/operations
requirements. These were then used to develop a Naïve-
Bayesian model that was then applied to predict whether or not
each of the Nevada requirements was functional or not.

To illustrate how this model worked, let X be a word in the
South Dakota requirements set, and define the frequency of X in
the functional, not functional and complete set of South Dakota
requirements as ������, ���	���, and �	�	
����.

From Bayes’ theorem, given a randomly selected word X and
requirement R, the probability that a requirement R is functional,
given that it contains X, is given by:

���
�������� �|� �� �� = ���
�������� � ∩ � �� ��
����

 (1)

= ���|�
�������� �� ∗ ���
�������� ��
����

But all three of the terms in this last expression are known:

������ and �	�	
���� are the word probabilities, and
���
�������� �� is the fraction of South Dakota requirements
paragraphs that are functional.

Generalizing this approach, suppose a new requirement
being analyzed consists of n words, with m<n of them found in
the South Dakota requirement set. Then if the m words are
denoted by X1, X2, …, Xm, the equation

���
�������� �|��, ��, … , �� �� ��

 (2)

≈ ���
�������� �� ! ����|�
�������� ��
�����

�

�"�

provides an estimate of the probability that R is a functional
requirement. The equality is approximate because words within
a requirement are not actually independent. Despite this Naïve
Bayes’ algorithm approach often yields good predictions. The
� − $ words that are in requirement R but not in the South
Dakota requirements are ignored in the computation.

One issue with this approach is that if a word appears in only
the South Dakota functional requirements but not in the “not
functional” requirements set, then this estimate always
computes to exactly 1 whenever that word occurs in R. A similar
situation occurs when the word appears in only the not
functional requirements, and the estimate is exactly 0. Laplacian
smoothing was used to avoid these situations. In Laplacian
smoothing, word frequencies are adjusted by a factor

 % = �& + (�/�* + +(�, (3)

where s is the number of occurrences of the word in the corpus,
N is the total number of words in the corpus (including repeats),
and α and d are smoothing factors. This study used the values
α=1 and d=0. With N=8,841 total words in the South Dakota
requirements set, this guaranteed that any word Xi had a
frequency ����� of at least 1/8,841 = .000113 in (2).

The confusion matrix for the control dataset of South Dakota
requirements is shown in Table 1 below. Model accuracy was
98.9%. Specificity and sensitivity were 98.5% and 99.4%,
respectively. Only three requirements were incorrectly predicted
when compared with expert opinion. Two of these were
compound with both functional and non-functional parts, and
the third described the usage of the on/off switch (which was
tagged as functional by the systems engineering expert).

The real test of a model, however, occurs when applied to
the validation dataset. The model was applied to the Nevada
requirements and compared with expert opinion, which had
apriori tagged each requirement as either functional or
otherwise. Of the 273 Nevada requirements, 224 had been
tagged as functional and 49 were tagged as not functional. Table
II shows the confusion matrix of model predictions against the
apriori tagging. Model accuracy was 87.5%, sensitivity was
83.7% and specificity was 88.4%.

Of the 26 Nevada regulation paragraphs that the model could
not find, 14 were documentation requirements, 5 were
requirements embedded in notes or definitions, 4 were
references to technical standards, and 3 were mixed paragraphs
(containing both technical and non-technical requirements).

The model’s high prediction accuracy is due in part to some
keywords only appearing in the functional requirements or only
appearing in the not functional requirements. For example, the
word “transmit” appears in the South Dakota functional
requirements, but does not appear in a non-functional
requirement. Similarly, the word “advertise” is used in
operations requirements only, never in functional requirements.

Another contributor to the model’s high prediction accuracy
is the degree of commonality between the Nevada and South
Dakota regulations, which is discussed in the next section.

V. FINDING SIMILAR AND RELATED REQUIREMENTS

Slot machine vendors need to meet the regulations of all
states that they have customers in. Hence, it is important for
them to understand the similarities and differences in two sets of
sets of state regulations. Term Frequency-Inverse Document
Frequency (TF-IDF) and Dice similarity were employed to find
requirements equivalency and relatedness between Nevada and
South Dakota slot machine laws.

As noted earlier, the TF of each stemmed word in each
requirement was computed for both sets of regulations as part of
preprocessing. Also computed were the document frequencies
(DF), which are the count of the number of requirements that
contained each word. From these values, the TF-IDF for each
word in each requirement is given by

 ,-./-��, /� = ���, /� ∗ log 3 �
4�5,6�7, (4)

where

• C is a collection (“corpus”) of documents,

• D is a particular document in the corpus C,

• X is a particular word in the document D, and

• f(X,Y) is the frequency of word X amongst all words in
the document or document set Y.

TF-IDF for the same word in different documents will be
different, because TF, given by f(X,D) in (4), is different for each
document. TF-IDF scores are higher for a word that occurs often
but in few documents. The heuristic for this is that a frequently
occurring in only a few documents must convey important
meaning in the documents that it is used in.

TF-IDF was computed for each stemmed and stopped word
in two corpuses, the set of requirements paragraphs extracted
from South Dakota and Nevada gaming laws.

First applied to botany [17], Dice proposed a similarity
metric between two sets S and N by

 +�8, *� = ��9∙;�
�|9|<|;|� , (5)

Where “S∙N” is the raw count of the number of items S and N
have in common, and “| |” is the count of the objects in each set.

In the context of NLP, this approach can be generalized
when the words Xi are weighted by positive weighting factors
wi. This modified Dice measure becomes

 s�8, *� = ∑ 2@�
�A|8|A+A|*|A�B�∈�8∩*� , (6)

and the norm is given by the sum of the word weights

 |8| = ∑ @�5D9 . (7)

The modified Dice similarity score equals 1 if S and N have
exactly the same words and word frequencies, and 0 if they have
no words in common. The closer the word vectors are to having
the same words, the higher the score is.

The weighted Dice similarity using TF-IDF weights was
computed for each requirement paragraph pair drawn from the
Nevada and South Dakota regulations. The most similar South
Dakota requirement to each Nevada requirement was selected.

For comparison, expert opinion was used to grade the quality
of the pairs selected. A pair of requirements was graded as:

• Equivalent if they were identical, nearly identical, or
conveyed the same intent, even if worded differently,

• Related if both address the same capability and the
implementation of one was likely to influence the
implementation of the other.

• Dissimilar if not equivalent or related.

Figure 2 depicts a box-and-whisker diagram depicting
similarity scores for these four categories of requirements.

The weighted Dice similarity was found to be an excellent
proxy for requirements equivalence. To generate such a proxy,
the metric d’ was computed which maximized the geometric
mean of model sensitivity and specificity

F��&��GH < +′|��� HK
�L��H��� ∗ F��&��GH ≥ +′|HK
�L��H��� .

This occurs when d’ = .54, the mean metric is .953, and the
proxy accuracy is 96.0%. The confusion matrix for this result in
shown in Table III.

This approach was also useful, but not as precise, for
characterizing requirement relatedness. The maximum metric
for this test occurs when d’=.38, the metric mean is .810, and the
accuracy of this proxy is 82.1%. The confusion matrix for this
situation is also found in Table III.

VI. SUMMARY AND NEXT STEPS

A. Summary

Concept definition is usually performed by skilled engineers
who use stakeholder information and their domain knowledge to
develop solutions that satisfy stakeholder needs. NLP offers
promise for helping them do this. This paper demonstrates four
such techniques for slot machine development: automated
keyword and key-phrase extraction from state slot machine
regulations, automated requirements extraction from the
regulations, segregation of functional from non-functional and

TABLE III. EQUIVALENCY AND RELATEDNESS CONFUSION MATRICES

<.38 >=.38

Not Related 131 14

Related+Equivalent 35 93

Similarity
Relatedness

<.54 >=.54

Not Equivalent 245 10

Equivalent 1 17

Similarity
Equivalency

Fig. 2. Match Quality and Modified Dice Similarity

Weighted

Dice Similarity

Unrelated

Related

Equivalent

Match Quality

operations requirements, and identification of similar and
related requirements across different sets of state gaming laws.

Using statutes regulating the technical standards for slot
machines from Nevada and South Dakota, the most important
keywords and key phrases were extracted using the RAKE
algorithm. These form the basis for the initial program glossary;
getting a common understanding of the most important words
and phrases is essential to any system development project.

Not all customer needs are written with “shall” statements.
Other phrases, such as “must”, and “may not” are often used by
stakeholders to identify their most important needs. This is
especially true in legal statutes. This paper illustrates how a
pattern matching algorithm with 12 rules was able to identify
extract all but one (99.8%) of the requirements from the Nevada
and South Dakota gaming statutes.

After requirements are identified, they are characterized and
organized. Using a Naïve Bayes model built from word
frequencies in the South Dakota regulations statutes, 88% of the
functional requirements and 84% of the non-functional
requirements in the Nevada statutes were correctly identified.

Finding commonality and differences across multiple sets of
state regulations is important for vendors who want to sell their
product across multiple jurisdictions. Using a modified Dice
similarity that employs TF-IDF weights, equivalent
requirements were identified between the two-state slot machine
regulation datasets with 96% accuracy, and related requirements
were identified with 82% accuracy.

B. Next Steps

This study focused on slot machine requirements and
gaming regulations. There are many other domains that have
technical requirements embedded in legal statutes, including but
not limited to, the defense industry, the drug and healthcare
industry and the automobile industry. Similar undertakings can
be performed in these fields.

There are many additional opportunities for further research
into the use of NLP for electronic gambling systems, including
but not limited to automated architecture creation, automated
execution timeline development and automated requirements
decomposition. In addition, the results of this study can be
further refined and improved upon through the use of more
sophisticated algorithms.

Other means to improve this study include: a) adding
additional sets of regulations, including the European Union
regulations, and b) developing a more refined approach for
requirements extraction, including breaking apart compound
requirements that have both functional and non-functional
elements, and c) characterizing the NFR requirements more
precisely (e.g., security NFR requirements, reliability NFR
requirements and maintainability NFR requirements). Potential
approach avenues for doing this can be found in [8, 9, 10, 11].
This is a direction of ongoing research by the author.

Although this paper illustrated how to estimate the similarity
between two paragraphs, it did not cluster sets of requirements
by similarity. The use of clustering algorithms for grouping slot

machine and other casino requirements is also a direction of
ongoing research by the author.

REFERENCES

[1] INCOSE (International Council on Systems Engineering). Systems
Engineering Handbook – A Guide for System Lifecycle Processes and
Activities. John Wiley and Sons, Hoboken, NJ, 2015.

[2] S. Rose, D. Engel, N. Cramer and W. Cowley, “Automatic Keyword
Extraction from Individual Documents”. Chapter 1, Text Mining:
Applications and Theory, edited by Michael W. Berry and Jacob Kogan
© 2010, John Wiley & Sons, Ltd.

[3] D. M. Berry, “Natural Language and Requirements Engineering — Nu?”,
International Workshop on Requirements Engineering, Imperial College,
London, UK, 2001. Retrieved from https://files.ifi.uzh.ch/rerg/
arvo/IWRE/papers%26presentations/Berry.pdf, accessed 10/4/2020.

[4] F. Mokammel, E. Coatanea, J. Coatanea, E. Blanco and M. Pietola.
“Automatic requirements extraction, analysis, and graph representation
using an approach derived from computational linguistics.” Wiley Online
Library, Systems Engineering. 2018;1–21.

[5] J. Natt och Dag, B. Regnell, P. Carlshamre, M. Andersson and J.
Karlsson, “A Feasibility Study of Automated Natural Language
Requirements Analysis in Market-Driven Development”, SpringerLink
Requirements Eng (2002) 7:20–33.

[6] J. Natt och Dag, B. Regnell, V. Gervasi and S. Brinkkemper, "A
linguistic-engineering approach to large-scale requirements
management," in IEEE Software, vol. 22, no. 1, pp. 32-39, Jan.-Feb. 2005,
doi: 10.1109/MS.2005.1.

[7] K.S. Divya, R. Subha and S. Palaniswami, “Similar Words Identification
Using Naive and TF-IDF Method.” International Journal of Information
Technology and Computer Science, 2014 ,11,42-47.

[8] Yang, H. and P. Liang. Identification and Classification of Requirements
from App User Reviews. EASE'17: Proceedings of the 21st International
Conference on Evaluation and Assessment in Software Engineering, June
2017 Pages 344–353. .

[9] M. Lu and P. Liang, “Automatic Classification of Non-Functional
Requirements from Augmented App User Reviews”. Proceedings of the
21st International Conference on Evaluation and Assessment in Software
Engineering, pgs. 344-353.

[10] J. Slankas and L. Williams, “Automated extraction of non-functional
requirements in available documentation.” 1st International Workshop on
Natural Language Analysis in Software Engineering (NaturaLiSE), pages
9–16, May 2013.

[11] J. Swadia, A Study of Text Mining Framework for Automated
Classification of Software Requirements in Enterprise Systems. Master
of Science thesis, Arizona State University. Retrieved from
https://repository.asu.edu/attachments/170770/content/Swadia_asu_001
0N_16164.pdf, accessed 10/4/2020.

[12] C.A. Furnari, C. Palomares Bonache, J. Franch Gutiérrez, Orsim:
Integrating existing software components to detect similar natural
language requirements, CEUR Workshop Proceedings, 2018, pp. 1–7.

[13] E. J. Stierna and N. C. Row, “Applying information-retrieval methods to
software reuse: a case study.” Information Processing and Management,
Vol. 39, No. 1 (January 2003), 67-74.

[14] N. Niu and S. Easterbrook, "On-Demand Cluster Analysis for Product
Line Functional Requirements," 2008 12th International Software
Product Line Conference, Limerick, 2008, pp. 87-96, doi:
10.1109/SPLC.2008.11.

[15] South Dakota Legislature, “Slot Machine Requirements”, South Dakota
Codified Law (SDCL) Chapter 20:18:17. Retrieved from
https://sdlegislature.gov/, accessed 10/4/2020.

[16] Nevada Gaming Commission – Technology Division (NGCTD). (2005).
Technical Standards for Gaming Devices and On-line Slot Systems.
Retrieved from https://gaming.nv.gov/, accessed 10/4/2020.

[17] L. R. Dice, "Measures of the Amount of Ecologic Association Between
Species". Ecology. 26, 3 (1945): 297–302. doi:10.2307/1932409. JSTOR
1932409.

