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I. INTRODUCTION

There are two strategies to address engineering problems: 1)
focus on a specific application and devise a clever solution for it
or 2) try to develop generic solutions that can be applied by
tailoring to specific applications. The first approach is usually
much more effective and fast when building a single system;
the second, however, is less effective for a single application
and much more time consuming. This being the case, the
generic approach offers two effects that make it desirable:
reduces the cost of developing several systems and, most
interesting, provides theoretical insights into the nature of the
engineering problem. This is the kind of research described
in this paper, where we develop a generic approach to the
engineering of autonomous systems and apply it to the specific
case of a fault-adaptive robotic application.

The growing complexity of missions and behaviours
demanded to autonomous systems imply the use of a
precise, yet increasingly complex, knowledge shared by the
different stakeholders in the process. For an autonomous
system to behave appropriately in an uncertain environment,
the system must have some kind of meaningful representation
of what it perceives as it observes entities, events, and
situations in the world. It would also be desirable for the
system to have an internal model that captures what it knows
and learns, as well as a mechanism to compute values and
priorities that enables it to decide what objectives and goals to
fulfil. Knowledge is not only the cornerstone of intelligent
artificial systems, such as autonomous robots, it lies at the
centre of the engineering of such systems. This is true not
only for intelligent entites but also for all kinds of
autonomous systems.
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Knowledge about the domain is usually acquired by
analysing system implementations and talking to experts. This
knowledge constitutes the very engineering resource when
designing a system, to fulfil users’ requirements. Nevertheless,
the development process could become a daunting task due to
two major issues [1]:

e Lack of a global picture of the problem: despite a
thor- ough research to understand the problem space,
systems developers encounter a myriad of different
viewpoints, partitioned domains of expertise, and
incompatible prior- ities.

= Never-ending changes throughout development: it is not
uncommon that research and development projects should
be updated, changed or reconsidered whilst the engineer-
ing efforts take place.

To overcome them, our research aims at capturing the core
concepts and relationships in the autonomous systems domain,
to enable the systematisation of knowledge, and its use in the
model-based engineering of autonomous systems. Engineers
have always built models: to describe physical systems, to
specify products to be built, and to describe system interaction
with the environment. Models serve as the basis for analysis
and design in an engineering process.

Nevertheless, models need a precise meaning to allow for
consistency, sharing, traceability and reasoning. This is where
our proposal based on ontologies fits in: an ontological anal-
ysis of a domain becomes an excellent enabler for modelling,
since it allows to identify the terminology needed to model a
domain as well as establishing the meaning of the concepts
and their relationships.

In this paper, we propose the use of an ontological approach
to engineer autonomous systems, as an ontology-driven engi-



neering framework that produces models of the system as core
assets. This technology has been applied to a mobile robot,
where models can be used throughout the robot life-cycle,
from analysis through design up to its implementation and
maintenance, as well as during self-operation.

The rest of the paper is organised as follows: Section II
presents a summary of previous efforts related to our research.
Section III situates the background for the research, the ASLab
ASys Project, and the ontology-driven engineering framework.
Section IV explains the ideas on how to develop a metacontrol
for autonomous robots, with Section V describing the engi-
neering application of the methodology and the metacontrol.
Finally, Section VI concludes the paper with some insights
and conclusions.

II. RELATED RESEARCH

Knowledge engineering faces some theoretical challenges to
unleash the full potential of a model-based approach for the
engineering of autonomous robots. Following, we review the
literature on the issues that we have addressed in this work.

A. On Ontologies, Models and Metamodels

A model is an abstraction of a system leaving aside ir-
relevant details hence focusing on the relevant ones, thus
allowing significative predictions or inferences to be made
[2]. In software engineering a model is an artifact constructed
according to a certain modelling language that describes the
system, including usually a graphical representation of it using
different types of diagrams.

A metamodel is a specification model for a system, where
each system happens to be itself a valid model expressed in
a concrete modelling language. In other words, a metamodel
is a prescriptive model of a modelling language [3], defining
explicitly the constructs and rules needed to build up specific
models within a domain of interest. A model thus conforms
to its metamodel.
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Fig. 1. The Engineering/Runtime Gap

A special flavour of models, called ontologies, became
relevant to the knowledge engineering community as a mean
to represent knowledge to support intelligent behaviour [4],
where ontologies are typically intended for exploitation of

knowledge at runtime, and must be “formal” in the sense
of being understandable by a computer. An ontology is a
formal, explicit specification of a shared conceptualisation,
as a machine-readable abstract model where relevant con-
cepts and relationships are identified and explicitly defined
by consensus in a group [5]. Ontologies are used to model
domains in knowledge-based systems. Models are formalized
using modelling languages. Ontologies expressed in that very
same modelling language can serve to build those models,
acting as analysis metamodels defining all valid models for a
domain [6], [7].

B. On Ontology-driven Engineering

Ontologies facilitate good modelling as analysis models
describing the conceptualization of a domain: its terminology,
their definitions, and relationships. All these elements can
be reused across multiple engineering domains to model real
world applications. Ontologies could be regarded as reusable
building components when modelling systems at a knowledge
level, since they enable knowledge sharing and reuse. Fol-
lowing this approach, ontologies are used as the backbone
in Model-Based Systems Engineering (MBSE) and software
development [8]. As an example, the Ontology Action Team
[9], a part of the INCOSE MBSE initiative, whose goal is to
consider ontologies as a component in engineering modelling
activities.

Ontologies also serve as representational mechanisms based
on a computational language, to clarify and share the domain
knowledge, providing a common representation vocabulary for
software engineering processes, helping to transfer knowledge
as well as to simplify the development cycle from project
to project. The ontological analysis clarifies the structure of
knowledge used by the practitioners in the domain, easing its
sharing and reuse among them.

When it comes to the particular domain of autonomous
robots, ontologies have been applied for autonomous robots
description and operation, as knowledge representation used
to characterize the autonomous robots domain, the tasks to
perform or the environment where the autonomous robot is
placed in, or the knowledge base used by the robot for
autonomous operation [10]. An IEEE standard for robotics and
automation has been recently approved, where ontologies are
used to represent knowledge in both domains [11], to allow for
unambiguous knowledge transfer among any group of human,
robots and artificial systems [12], [13].

ITII. OUR RESEARCH
A. Systems Engineering in the ASLab ASys project

The ASLab ASys Project tries to develop a generic au-
tonomous control system architecture and associated reusable
assets as well as an engineering methodology using this
architecture and assets to build autonomous systems. A
paradigmatic example of the autonomous systems we target
are mobile robots that shall perform a mission coping with
both unstructured environments and inner faults. The central
methodological idea that drives this research is the use of a
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Fig. 2. OASys Structure: ontologies, subontologies, and packages.

full life-cycle model-based approach where system models are
used to build the robot and also to enable its fault handling
capabilities through meta-cognitive capabilities based on those
system models’.

The system model that is the cornerstone of this ap-
proach shall ease both the construction and the operation of
autonomous systems (ASys). This model is integrated and
executable helping bridge the gap between the engineering
and operation phases of the system life-cycle. Both the system
architecture and the engineering methodology orbit around
these ASys models: models are core assets of the methodology
and models are used at runtime by the autonomous system to
drive its self-x mechanisms [14], [15] to increase its autonomy.

In this vision of breaking the engineering/runtime gap (Fig.
1), the sharing of concepts between the engineers and the
metacognitive engine of the robot is critical. This is the reason
why ontologies and metamodels are a crucial aspect of this
approach.

B. The Ontology-driven Framework

The developed framework is ontologically driven, consisting
of two elements. The first one is a domain ontology to capture
the system structure, function and behaviour of autonomous
systems. The second element is an ontology-driven engineer-
ing methodology to develop specific autonomous systems —
e.g. mobile robots. This methodology is based on MBSE and
uses models of the system as core assets. These models can be
used throughout the whole engineering life-cycle, from design
through implementation, up to validation and maintenance, and
most importantly, to runtime to drive self-x mechanisms.

1) The domain ontology — OASys: The Ontology for
Autonomous Systems (OASys) is a two-layered dual ontology
[16] (see Fig. 2). The two layers address different levels of
abstraction: a higher level of ontological elements addressing

To be precise, runtime models derived from them. See Fig. 1.

general systems; and a lower level specifically addressing
autonomous systems (ASys). The two dual ontologies describe
the systems themselves (ASys Ontology) and the engineering
process (ASys Engineering Ontology). Each ontology is in-
ternally organized in subontologies and packages, to allow
for reusability and future extensions. As a domain ontology,
OASys is a special kind of ontological model expressed using
a modelling language (UML), used to define the ontological
elements and their relationships (UML class diagrams).

2) The methodology — ODEM: The OASys-driven En-
gineering Methodology (ODEM) provides support for
ontology-based autonomous systems development based on
the OASys ontological elements [17]. The methodological
elements of ODEM are (see Fig. 3):

« An autonomous system engineering process as a com-
bination of phases (e.g. Requirements phase, Analysis
phase, Design phase, etc.) and related tasks for each phase
(e.g. System Use Cases, Requirements Characterization,
Structural Analysis, Behavioural Analysis, Functional
Analysis, etc.).

« The work products to be obtained as a model kind that
could consist of different diagrams and specifications
(e.g. Structural Model as a combination of Structure and
Topology models from the Structural Analysis task).

« The specification of the related OASys ontologies, pack-
ages and elements to be used in the work products, e.g.
Requirement Package and ASys Requirement Packages
for the Requirements phase.

To obtain the system models as work products, the ontolog-
ical elements in OASys are instantiated or refined as specified
in ODEM, considering two forms of types of metamodelling
relations: linguistic (instance-of relation) and ontological (is-a
relation) [19].
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Fig. 3. ODEM Phases, Work Products and related OASys Packages

IV. MODEL-BASED METACONTROL

This ontology-driven framework has been applied to the
ASys idea of bridging the engineering/runtime gap in a mobile
robot application. The Operative Mind (OM) architectural
framework [20] defines a reference control architecture that
exploits the knowledge in the engineering model of the
autonomous system to implement self-x mechanisms: self-
awareness, self-monitoring and self-repairing.

The core elements of the OM metacontrol architecture are:
1) a model of the autonomous system, and 2) a metacontrol
module that uses such model. The metacontroller can be
integrated on top of any component-based control system. The
model is a functional model that relates the system structure
and configuration of components to the functions designed in
the system to fulfil its mission objectives. The specification
of the metacontroller as a reference architecture makes our
solution applicable to all robotic domains, and its model-
based character allows for the re-usability of implemented
metacontrollers for different applications.

The OM Architectural Framework also includes an engi-
neering process defined with ODEM to build the metacontrol
architecture in new autonomous systems, or integrating it into
extant ones.

A. TOMASys Metamodel

We have followed the metamodeling approach to define
the functional model in OM. The Deep Model Reflection
Pattern [21], is our solution for the capture of the meta control
knowledge. For the knowledge to be executable at runtime
as an explicit model, and that model being generated from
the engineering model of the system, it shall conform to
a metamodel from which a transformation exists from the
engineering modelling language.

This metamodel, TOMASys, has been domain-focalised
from OASys, and integrates concepts from other models and

specifications [22], [23], [24]. TOMASys refines OASys con-
cepts to account for the structure and functions in component-
based robot control architectures. Fig. 4 shows the main ele-
ments in the TOMASys metamodel and the OASys concepts
it refines.

B. Metacontrol operation

The metacontrol module uses the TOMASys model of the
autonomous system to monitor that its behavior fulfils the
mission requirements. To do so, it closes a control loop whose
reference goal is the TOMASYys objectives hierarchy of the
system. The metacontrol receives the monitoring information
—the state of the system’s components— through introspection
probes, and acts on the system by reconfiguring it —if required—
to adapt to behavioural divergences. It may activate or deacti-
vate components, re-connect them or change their parameters
as appropriate.

The metacontrol architecture consists of two loops that use
the TOMASys model at the structural and the functional levels.
At the lower loop, the structural and behavioural knowledge
captured in the model components classes is used to update
the instantaneous state of the components from the probes’
readings.

This state is the input for the upper loop to infer the
functional state of the system up to the system’s objectives
achievement, using the knowledge in the functions and their
require relationships. Any deviation at the functional level
is addressed by the metacontroller looking for alternative
functions in the model. If found, the configuration of the
components is commanded to the lower loop, which executes
the reconfiguration actions required to realize it.

C. Metacontrol Engineering

The OM Engineering Process (OMEP) has been developed
based on ODEM (see Fig. 5), to define the activities that
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Fig. 4. Core elements of TOMASy.

support the engineering of our metacontrol solution for au-
tonomous applications. OMEP involves two subprocesses:

o The Domain Control Development subprocess uses
ODEM in the analysis and design of the regular control
of the autonomous system to obtain the modelling assets
required for metacontrol.

o The Metacontrol Development subprocess has been
greatly simplified thanks to the architectural and model-
based approach and the application-independent assets
that we have already developed. For a concrete robotic
application, only the model and the integration of our
meta control library for the specific platform of the
robot must be developed, the later being reusable for any
robotic system implemented with that platform.

V. FAULT-TOLERANT ROBOT RE-ENGINEERING

OMEP has been tested in the re-engineering of an au-
tonomous mobile robot for patrolling. The goal was to enhance
the robot with mission-level resilience to failures.

The robotic system consisted of a four differential wheeled
base instrumented with odometry, a range laser and a Kinect
camera for navigation. The control system was based upon
the ROS navigation stack [25], with additional components
developed for the patrol application. By adding an OM meta-
controller, the robot would be able to recover to some extent
from failures in its components, and thus continue navigation.

Firstly, in the ODEM ASys Requirements phase the meta-
control requirements were identified: the robot being able to
recover operation in scenarios including a transitory failure
in any of the control components and, more importantly, a
permanent failure in the laser sensor.

Then, the ODEM ASys Analysis phase maps then into
the Structural Analysis task (OASys subsystems) and the

s and their refinement from OASys.

Functional Analysis task (OASys operations) following the
metacontrol requirements. As result of the Structural Analysis
task, a System Model consisting of Structure and Topology
Models showing the component’s configuration and their in-
terconnection were obtained.

The Behavioural Analysis task produced the error models of
the components. ROS components report errors and their crit-
icality through a runtime log system. The Functional Analysis
task identified the standard robot control architecture. Fig. 6 (a)
and (b) show respectively, the navigation, localisation, motion,
and sensing functions demanded from the robot according to
the requirements, and how they are realised by the config-
uration of the components. The impact of the components’
errors on the robot functionality was analysed empirically and
captured in the TOMASys model during this task too. The
standard metacontroller recovery for components provided the
distinction for both laser errors. While a reset of the laser
driver solved the transient failure without triggering a failure
at the localisation function level, a permanent error in the laser
(e.g. due to a hardware problem) scaled to an error in the
localisation and navigation functions.

Next, the ODEM Functional Analysis task identified alter-
native designs for the localization and navigation functions
that do not make use of the laser sensor. In this case, the
scan information provided by the laser sensor, which is used
both for localisation and obstacle avoidance during navigation,
could be replaced by the Kinect 3D information, provided
some additions, such as improved dead reckoning accuracy
using a compass. The resulting Functional Model identified
the roles of the components (OASys actors) required to realize
the alternative robot control architecture. Fig. 7 (a) displays the
alternative functions identified, with Fig. 7 (b) showing how
them are realized by the final configuration of components.
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Thanks to the models, the metacontroller can switch the mentation of the new components, a Kalman filter to improve
robot control to the alternative architecture on the fly. Sub- odometry and a module to map Kinect readings into laser-like
sequently the re-engineering of the robot controller (regular scans. To implement the robot’s metacontrol two application-
control implementation in Fig. 5) only required the imple- independent libraries were built: a Java library with a multi-
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platform implementation of the metacontrol architecture; and
a ROS package to integrate the Java metacontroller in any
ROS-based system. This way, for the patrolling application,
the Metacontrol Development subprocess only required the ob-
tention of the TOMASys model of the mobile robot, taking as
input the structural and functional models previously obtained
in the ODEM Analysis phase.

While this solution may seem overkill to handle a sensor
failure, the reader should consider the laser as a use case. The
metacontrol architecture potentially provides for resilience to
any failure, provided that sufficient engineering information is
included in the model during the combined ODEM and OMEP
processes.

For the sake of space, only some models of the application
have been included here. For the interested reader, a com-
prehensive description of all the models in the application of
ODEM and OMEP to the autonomous mobile robot can be
found in [18], [20].

VI. CONCLUSIONS

Autonomous systems engineering is hampered by the lack
of systematic methods to incorporate cognitive capabilities to
systems. Al-based autonomous systems employ sophisticated
algorithms from software libraries but lack a established
methodology and an architectural foundation. This is espe-
cially so when dealing with metacognitive capabilities, where
system-specific idiosyncrasies permeate the knowledge and
reasoning methods of the metalayer.

A more reusable and improvable methodology and assets
for autonomous systems construction in a broad application
domain is in serious need®. However, providing domain-wide
solutions is not an easy task. Domain and multi-domain
engineering requires deep conceptualizations and generic im-
plementations to move from mere craftsmanship into true
systems engineering for the autonomous systems domain that
we are addressing.

Ontologies are an excellent mechanism to conceptualise the
knowledge of a domain, providing the structured knowledge
required to describe and to engineer the autonomous system —
e.g. a mobile robot or a whole factory. Ontologies as enablers
for modelling, also allow to obtain models for the description
and the engineering of autonomous systems.

Additionally, formalised ontologies develop into exercisable
models that can be used as core assets fuelling the whole
model-based systems engineering process. Concepts from the
mind of the autonomy engineers are reified into pieces that
are used to build the autonomous system. This streamlines
the engineering process, effectively breaking the gap be-
tween engineering-time and run-time. This is a necessary step
because future systems shall be autonomous beyond their
mission responsibilities and be able to take care of themselves.

Our approach has produced a framework that combines
a general ontology for autonomous systems (OASys) and a

2This is specially important nowadays due to the necessary integration
of autonomous and non-autonomous supervised systems into socially-critical
large-scale systems-of-systems.



methodology for ontology-based MBSE (ODEM). These are
the two cornerstones of a model-based autonomous systems
engineering strategy that addresses the broad domain of au-
tonomous systems.

This ontology-driven framework has proven its value en-
abling the development of a more domain-specific architectural
framework for building self-x mechanisms into autonomous
robots. Functional concepts are used for representing the robot
elements, being instantiated into a self-model that enables run-
time reflection of the autonomous robot.

This self-model sits at the core of a reusable architecture
for robot self-awareness (OM). Firstly, ODEM’s theoretical
modelling stand has provided the knowledge engineering
guidelines and foundational concepts for the building the self,
functional model used by the metacontroller. This is rendered
using TOMASys, a functional and componental metamodel
that has been domain-focalised [26] from OASys. Secondly,
ODEM has allowed to specify the engineering activities to
build the metacontrol solution in an autonomous robots appli-
cation, identifying the key assets involved — hence producing
the OM Engineering Process (OMEP). This domain-focused
application — from general autonomous systems to self-aware
robots — is not a trivial task given the meta-aspects involved.
Note that by the use of OASys, the robot can think about its
own realisation — as an engineer would do.

Obviously, all this process seems too complex for engi-
neering a single, simple, fault-tolerant mobile robot controller.
However the extremely general approach based on a general
ontology for autonomous systems will pave the way to both 1)
easy extension of the robot metacontrol architecture to address
a broader set of robot issues at the mission and meta-mission
levels; and ii) portability of the self-awareness architectural
framework from the robotics domain to other domains where
run-time reflection would help keep the system working.

The strategy and assets described have the ambition of serv-
ing as basement for a wide autonomous systems engineering
technology.
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