
Goal-Driven Software Reuse in

the IV&V of System of Systems∗

Thomas W. Otani, James Bret Michael, Man-Tak Shing
Naval Postgraduate School

Monterey, California, U.S.A.
{twotani, bmichael, shing}@nps.edu

Abstract

This paper addresses the need to increase the
effectiveness and productivity of independent
verification and validation (IV&V) of complex system-
of-systems software via software reuse. It builds upon
our previous work on reusing the system reference
model (SRM) artifacts in the IV&V of system-of-
systems software and presents a framework for
organizing the reusable artifacts according to a
common set of business goals. We demonstrate the
proposed framework using NASA science missions as
examples.

Keywords: Software reuse, Goal-driven reuse, IV&V,
System of systems, space systems

1. Introduction

In [1] Caffall and Michael describe the prevalence
of systems of systems used by the National
Aeronautics and Space Administration (NASA) and its
partners such as the European and Japanese space
agencies. There is a long history within the space
systems community of reuse-in-the-large: creating
systems of systems from legacy systems and new
developments to support new missions. For example,
one would like to leverage existing space vehicles and
communication systems to support new space-
exploration missions.

Although the reused systems may have a long
history of service and have undergone extensive
verification and validation (V&V), when they are
reused as part of system of systems their behavior
needs to be reverified and revalidated for the system-
of-systems context in which they will operate in
support a mission. Validation refers to ensuring the

correct product is built (i.e., all the requirements for the
product are identified and correctly specified), whereas
verification refers to ensuring the product is built
correctly (i.e., all the stated requirements are satisfied
by the product). Independent validation and
verification (IV&V) means that a team independent
from the developers conducts the V&V of the system.

We were tasked by the NASA IV&V Facility to
develop a framework for conducting computer-aided
formal V&V. As we developed that framework it
became obvious to us that there is an opportunity to
make such a framework more palatable to its users by
providing them with a means to leverage V&V artifacts
produced from past IV&V of systems and reuse them
in newly formed systems of systems or plugged into
existing systems of systems. In this paper we
introduce a goal-driven approach to reuse of assurance-
related artifacts to support the conducting IV&V on
systems of systems. The approach is general enough to
apply to the evolution of single systems too.

In [2], we discussed why the traditional, mainly
manual, IV&V methodology is inadequate and
proposed a new software automation framework for
computer-aided formal V&V. One of the key
contributions of our framework is the concept of an
executable system reference model (SRM) that utilizes
lightweight formal methods. The SRM captures the
system behavior precisely by identifying: (a) what the
system should do, (b) what the system should not do,
and (c) how the system should respond under adverse
conditions. The adoption of SRM-supported V&V is a
step in the right direction, but it not does not guarantee
that an IV&V effort will be successful. Just as
programming in a high-level language is much more
efficient and effective than programming in assembly
language or microcode, the use of the SRM can
improve the IV&V team’s effectiveness and efficiency

∗ The research reported in this article was funded in part by a grant from the National Aeronautics and Space Administration. The views and
conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright annotations thereon.

2010 5th International Conference on System of Systems Engineering

U.S. Government work not protected by U.S. copyright
DOI 10.1109/SOSE.2010.464

at detecting and resolving problems at the system-
requirements level without getting sidetracked by
lower level system artifacts: This is in concert with the
software testing adage that one should conduct testing
with a model at the right level of abstraction to answer
questions about the behavior of the system at that level
(e.g., do not try to find requirements-level failures by
conducting module-level testing). One of most
effective ways to increase the productivity of
programming in a high-level language is to adopt a
reusable code library such as the Java Application
Programming Interface (API). We would like to
achieve the same end when using a SRM by building a
library of reusable analysis and design artifacts. In [3,
4], we presented our initial foray into this area. In this
paper, we discuss our current effort to expanding the
reusable artifacts to include business goals.

The paper is organized as follows. In Section 2, we
describe the SRM and discuss our previous efforts at
reusing SRM artifacts. Then, in Section 3, we explain
our work on improving reusability by including
business goals as the guide for reuse. We propose to
classify the business goals into three categories, and
based on this categorization, we present a framework
for a reuse library that will allow the modelers to
search and reuse assets effectively in Section 4. Section
5 summarizes the key accomplishments.

2. SRM and Reuse

 Much of this section is a summary of our previous
research on reuse reported in [3, 4]. We will describe
the SRM and discuss how the SRM artifacts can and
should be reused.

An SRM is composed of Unified Modeling
Language (UML) artifacts, such as use cases, activity
diagrams, sequence diagrams, and class diagrams,
along with formal executable assertions for specifying
system behavior. In the SRM, formal assertions are
enhanced statechart diagrams [5], with each system
requirement represented by a single assertion. The
IV&V team uses the assertions to instrument the
developer’s software. When an assertion pops during
the software testing (via automatic generation and
running of test cases based on the SRM, the details of
which can be found in [2]), this is an indication that
either one of two things has occurred: the software has
failed to meet a requirement or the assertion itself is
not a correct representation of the real requirement
(i.e., the cognitive understanding of what the
stakeholder expects in terms of system behavior); this
is why we refer to this as computer-aided formal
validation.

As is the case for any formal modeling and analysis
tool, it takes a nontrivial level of effort by a novice to
become proficient at using the SRM approach; use of

formal methods, let alone cutting-edge techniques like
execution-based model checking, are not part of the
knowledge base or skill set of most software or
systems engineers. Even for a well-seasoned
practitioner, creating and maintaining an SRM is not a
simple task. To aid both the novice and expert
practitioners working with an SRM, we advocate the
adoption of a reuse library. An effective reuse library
can improve the quality of the SRM and reduce the
time and cost involved in developing the model.

We proposed a framework for a reuse library in [4]
and described a way of reusing libraries of statechart
assertions in [3]. Instead of defining assertions from
scratch, the modelers reuse assertions from a library.
Correctly constructing assertions is one of the more
difficult tasks in the development of an SRM, so by
reusing previously tested assertions from a library the
team conducting assurance improves its chances of
starting out with the right model against which to judge
the behavior of the system under review.

Our initial efforts were focused on reusing
individual artifacts, such as assertions or activity
diagrams. There are two types of reuse in the SRM
approach: adoption reuse and instantiation reuse.
Adoption reuse involves copying and using existing
artifacts in another product. An artifact can be adopted
as is or with modifications. In contrast, instantiation
reuse entails creating a concrete artifact from a generic
template. In [3] we described an instantiation reuse of
the assertions library. The modelers create concrete
assertions and test scenarios from the assertion patterns
and validation test-scenario patterns in the reuse
library. In [4], we described a framework that supports
both types of reuse.
 The ultimate goal of our research, as mentioned in
[3], is the reuse of assets. An asset is a collection of
related artifacts. For example, instead of finding and
reusing individual artifacts, the modelers will locate
and reuse a collection of artifacts associated with a
single high-level task such as “put the spacecraft into
an orbit.” We describe in this paper a step toward
achieving this goal.

3. Reusing Business Goals

There are many ways to classify space missions.
Possible mission classifiers include but are not limited
to: mission types (e.g., Orbiter vs. Lander), location/
destination (e.g., Earth Orbit vs. Non-Earth Planetary
Orbit), orbit type (e.g. Low Earth Orbit, Polar, or
Geocentric), number of orbiters (e.g., Solo vs. Cluster),
mode of operations (e.g., autonomous vs. commanded),
and length of the mission.

When developing an SRM for a mission, the first
step is to identify high-level use cases from the
stakeholder’s perspective, such as from mission

statements. The high-level use case describes the
workflow of a business (or operation) goal. Many of
the high-level use cases materialize repeatedly in
different products. For example, the high-level use
cases such as Transport Spacecraft to Destination,
Collect Science Data, and Maintain Spacecraft Safety
are common goals that appear in almost every NASA
science mission. Each of these goal-oriented, high-
level use cases are described in detail by a
corresponding set of SRM artifacts (e.g., activity
diagrams, class diagrams, and statechart assertions).

When a certain use case appears repeatedly in many
different missions, then ideally, we would like to create
the corresponding set of SRM artifacts for the first
mission and reuse it for the other missions. The
artifacts would be developed precisely and correctly by
an expert SRM modeler and reused by others. In
reality, however, without a reuse library and a
framework for systematic reuse, the modelers would
have to repeat the development process of the artifacts
from scratch for every mission with similar use cases.
This will necessarily increase the development time
and cost and the likelihood of introducing errors in the
model.

Our objective, therefore, is to organize common use
cases in such a way that will allow the modelers to
reuse the corresponding sets of SRM artifacts when
they create a new SRM.

To facilitate an effective reuse of SRM artifacts, we
propose a classification scheme to categorize use cases
into one of the three possible groups: science,
spacecraft, and instrument. The science category
includes the use cases that pertain to science operations
such as transmitting data to earth. The spacecraft
category includes the use cases that pertain to
spacecraft operations such as putting the spacecraft
into an orbit. The instrument category includes use
cases that pertain to the instrument operations such as
deploying sun shields.

Figure 1 illustrates a single use case diagram for a
generic science mission to collect science data that
includes use cases from all three categories. We
normally use different colors to distinguish categories,
but for the diagrams in black-and-white, we use
symbols S, V, and M to distinguish the three categories
Science, Spacecraft, and Instrument, respectively. The
Science category includes operations pertaining to
collecting and processing of scientific data. The
Spacecraft category includes operations pertaining to
maneuvering the spacecraft and maintaining its safety
and health. The Instrument category includes
operations pertaining to managing instruments for
supporting both science and spacecraft operations. A
use of an instrument can be strictly for science such as
a device for measuring precipitation or strictly for

controlling and maintaining a spacecraft such as a solar
panel. Some instruments such as antennas can be used
in multiple categories.

In the next section we illustrate how the proposed
categorization scheme positively affects the degree of
reusability of SRM artifacts.

4. Framework for Goal-based Reuse

In [4], we proposed a framework for the SRM reuse
library with a focus on reusing individual artifacts. We
describe here how the goal-based reuse increases the
unit of reusability from individual artifacts to assets—
collections of related artifacts. For the reuse library to
be truly useful, it must support both instantiation and
adoption reuse. We describe how the types of reuse are
achieved in our proposed reuse library by illustrating
the reuse library’s browsing and searching capabilities.
Although browsing and searching can be applied in
both types of reuse, we envision browsing as the
primary interaction style for instantiation reuse and
searching as the primary interaction style for adoption
reuse.

Browsing

Browsing can start at any level, but it is typical to
start from the topmost level in one of the three

Figure 1: A use case diagram with use cases from all
three categories.

categories. Suppose the modeler is interested in a
certain type of science operation. The modeler begins
browsing by first listing the available topmost use
cases in the science operation category, such as Store
Science Data or Transfer Science Data. At the topmost
level in each category, there are at most approximately
a dozen or so use cases, which is a manageable size for
browsing.

Once the modeler locates the desired use case or the
one that looks similar to the one he or she is looking
for, the modeler can expand the chosen use case by
including the related (sub) use cases in the diagram.
For example, suppose the modeler determines that it is
necessary to maneuver the spacecraft in order to
accomplish the goal of obtaining science data, as
shown in Figure 1. The modeler can then select the
Maneuver SC use case and expand it to browse the
(sub) use cases as illustrated in Figure 2.

The Maneuver SC use case has two sub use cases:
Determine SC Position and Maintain SC Stability. The
Maintain SC Stability use case in turn has three sub use
cases: Control SC Nutation, Control SC Spin Rate, and
Control SC Precision. In addition, the Maneuver SC
use case can be extended to two optional use cases:
Adjust SC Attitude and Adjust SC Orbit, which the
modeler may choose to include depending on the
spacecraft maneuvering requirements of the science
mission.

When expanding the selected use case, the modeler
can restrict the expansion to include only those (sub)
use cases of the same category. For example, when
expanding the Obtain Science Data use case of the
Science category, the modeler may want to limit the
expansion to include only the use cases related to the
same Science category. This restriction can be toggled
on or off by the modeler while exploring the use cases.
The modeler can continue expanding, adding more and
more use cases to the level of detail he or she needs to
view.

Modelers can follow the hyperlinks to inspect the
use case scenarios and other related artifacts. Figure 3
is the domain model that captures essential concepts
for the SRM. The links in the diagram depict
relationships—connections which the modeler can
traverse to view related concepts. The rectangle labeled
“Business Goal” contains the goal-based use cases,
such as those shown in Figures 1 and 2.

When the modeler finds the use case that most
closely matches what he or she wants, the modeler can
pull out the associated artifacts of the chosen use case.
The associated artifacts include activity diagrams, state
diagrams, statechart assertions, etc. Figure 4 shows a
sample activity diagram associated with the Collect
Science Data use case.

Figure 2: A) A diagram showing the desired (single)
use case. B) The expanded version of the same
diagram that displays the included (sub) use cases in
the same category.

This is an illustration of instantiation reuse, in which
the use case is a generic version that captures the
common aspects across the different mission types. As
such, the associated artifacts are not fully specified.
The generic versions include a number of placeholders
the modeler has to fill in to construct concrete artifacts
for the given project.

Searching

Searching interaction is a desired approach for
adoption reuse. The modeler enters values for different

Figure 3: The domain model showing the essential
concepts in the SRM reuse library.

discriminators such as manned or unmanned, orbit
type, mission length, and so forth. The system will
search the reuse library and retrieve the concrete use
cases from the previous missions. The modeler scans
through the returned list for partial matches. If the
match is close enough, the modeler can retrieve the
associated artifacts and adjust them as necessary to fit
his or her needs for the mission at hand. If none of the
retrieved use cases provide a close enough match then
the modeler can browse the generic reuse library for an
instantiation reuse or simply search for individual
artifacts, as we described in our previous articles [3, 4].

Database Support

To realize the proposed framework we present here,
we must implement an effective and efficient database
system to manage the artifacts shown in Figure 3. The
database system we build should integrate smoothly
with the existing tools the modelers use in their
modeling work.

It is a well known fact that a relational database
management system (RDBMS) is not suitable for an
engineering-oriented application domain in which the
relationships among different entities are complex.
This is because implementing such a database with
complex relationships will invariably require a large
number of join operations when retrieving data. The
number of joins increases in parallel as the length of a
navigation path traversing multiple relationships
increases. For example, consider retrieving associated
statechart assertions for a given business goal in Figure
3. It will require a navigation path of length 4, starting
from the Business Goal entity and traversing Activity,
Sequencing Behavior, and Assertion Pattern before
finally reaching the desired Statechart Assertion entity.
Each of these entity types includes a large number of
instances, and performing multiple joins on such large
sets of data quickly reaches an unacceptable level of
performance.

To mitigate a possible performance degradation of
the RDBMS for engineering-oriented databases, we
anticipate using an object-oriented DBMS for our
proposed SRM reuse library. We have not excluded an
object-relational DBMS completely, but at this point,
we are not considering an object-relational DBMS
mainly for two reasons. First, we are not required to
connect to any existing relational databases. or create a
part of our database in the (pure) relational format.
And, second, we believe the additional layer of
abstraction for mapping objects into relational tuples
and vice versa most likely will become a performance
bottleneck for our application. We are in process of
investigating candidate object-oriented DBMSs for
their suitability in implementing the proposed SRM
reuse library.

There is a common set of development tools that
modelers routinely use. For our proposed reuse library
to be accepted by modelers, it cannot be a standalone
system, but instead integrated with that set of
commonly used tools. One of those commonly used
tools is the Eclipse integrated development
environment (IDE) (see http://www.eclipse.org/). We
envision building a front-end client module that
connects to the SRM reuse library as an Eclipse plugin.

5. Conclusion

We presented our notion of reuse in the context of
the System Reference Model (SRM). In this paper, we
expanded on our previous research by increasing the
unit of reusability from the individual artifacts to
collections of related artifacts called assets. For asset-
based reusability, we believe the goal-based approach
to reuse is most promising. We use a UML use case to
describe a goal, and for each use case, there are

Figure 4: A simplified activity diagram for the Collect
Science Data use case.

associated artifacts. The modeler reuses a collection of
related artifacts by locating the desired use case. Our
proposed reuse library supports both instantiation and
adoption reuse of assets. The next step in our research
is the detailed design of the proposed reuse library.

6. Acknowledgment

We would like to thank the members of NASA
IV&V Facility’s SRM Reuse Working Group for the
valuable discussions that helped us crystalize the ideas
presented in this paper.

7. References

[1] D. Caffall and J. Michael, “Space Applications of
System of Systems,” in M. Jamshidi, ed., System of
Systems: Principles & Applications, Boca Raton, Fla.:
CRC Press, 2008, pp. 381-397.

[2] D. Drusinsky, J.B. Michael and M. Shing, “A
Framework for Computer-Aided Validation,”
Innovations in Systems and Software Engineering, 4(2),
June 2008, pp. 161-168.

[3] D. Drusinsky, J.B. Michael, T.W. Otani, and M. Shing,
“Validating UML Statechart-Based Assertions Libraries
for Improved Reliability and Assurance,” Proc. Second
IEEE International Conference on Secure System
Integration and Reliability Improvement, Yokohama,
Japan, 14-17 July 2008, pp. 47-51.

[4] T. Otani, B. Michael and M. Shing, “Software Reuse in
the IV&V of System of Systems,” Proc. 2009 IEEE
International Conference on System of Systems
Engineering, Albuquerque, NM, 1-3 June 2009.

[5] D. Drusinsky, Modeling and Verification Using UML
Statecharts - A Working Guide to Reactive System
Design, Runtime Monitoring and Execution-based
Model Checking, Elsevier, 2006.

