Newcastle
University

ePrints @

Bryans J, Fitzgerald J, Payne R, Miyazawa A, Kristensen K.
SysML Contracts for Systems of Systems.
In: IEEE 9th International Systems of Systems Engineering Conference (SoSE
2014). 2014, Stamford Grand, Glenelg, Australia: IEEE.

Copyright:

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

DOI link to paper:

http://dx.doi.org/10.1109/SYSOSE.2014.6892466

Date deposited:

02/07/2014

Newcastle University ePrints - eprint.ncl.ac.uk

http://eprint.ncl.ac.uk/
javascript:ViewPublication(199531);
http://dx.doi.org/10.1109/SYSOSE.2014.6892466

SysML Contracts for Systems of Systems

Jeremy Bryans, John Fitzgerald, Richard Payne
School of Computing Science
Newcastle University, UK
{jeremy.bryans, john.fitzgerald, richard.payne} @ncl.ac.uk

Abstract—This paper proposes and demonstrates an archi-
tectural pattern for the contractual specification of interfaces
between constituent systems within a System of Systems (SoS).
We take a structured approach to the development of the
pattern, which we call the Contract Pattern. It is developed and
demonstrated in SysML using a case study from the Audio/Video
domain. We also identify some of the obstacles in the way of
checking the conformance of a constituent system to a contract,
and discuss how these may be overcome.

Keywords — systems of systems, modelling, SysML, architec-
tural frameworks, contracts, interface specification.

I. INTRODUCTION

This paper proposes and demonstrates an architectural
pattern for the contractual specification of interfaces between
constituent systems within a System of Systems (SoS).

There is considerable interest in the potential of model-
based approaches as a means of addressing the distinctive
challenges of SoS engineering. Such approaches encourage
the disciplined development and use of abstract descriptions
of SoSs, their requirements, architectures, and behaviours.
These abstract descriptions (or models) permit analysis of
(in)compatibilities between constituent systems, and of SoS
emergent behaviours at relatively early stages, before deploy-
ment of solutions [1]. The use of model-based methods permits
architectural frameworks to be developed that characterise the
forms of model and views that have been found to be valuable
in application domains, as well as specific modelling patterns
that can be reused extensively and embody good practice.
Where modelling notations have a well-defined semantics,
many forms of analysis can be automated, and the delivery of
such formal modelling and analysis techniques is the subject
of considerable current research, including our own work on
model-based engineering, which takes place as part of the EU
COMPASS project!.

However rich and formal the models, fundamental charac-
teristics of SoSs still present significant challenges. In particu-
lar, the capacity of constituents to evolve independently means
that integrators cannot justifiably rely on the behaviour of the
constituent systems persisting through the life of the SoS.
There is consequently a need in model-based SoS engineering
to specify constituent system behaviour in a way that bounds
the range of behaviours that can be relied upon without over-
constraining them, while still allowing the analyses needed to
promote desirable and limit undesirable emergent behaviours.

! WWW.compass-research.eu

Klaus Kristensen
Bang & Olufsen, Denmark
krt@bang-olufsen.dk

Alvaro Miyazawa
University of York, UK
alvaro.miyazawa@york.ac.uk

To address the imprecision and uncertainty inherent in the
description of constituent systems, we promote the contractual
description of the architectural interfaces offered by the con-
stituent systems. The constituent systems are free to choose
the way in which they meet these contracts, as well as being
free to choose the other contracts to which they adhere. The
contribution of this paper is to present a definition of a contract
as a SysML pattern, building on the work on contractual
modelling reported in [2], [3]. Our pattern is expressed in
terms of the views mandated by the COMPASS Architectural
Framework Framework (CAFF) [4], which gives a disciplined
way of defining architectural frameworks. Other architectural
frameworks have also been presented in this way: for example
a framework for modelling faults presented in [S]. We present
the contract pattern using SysML [6], but the pattern itself
is language-agnostic, and would permit representation in any
sufficiently expressive modelling language.

The remainder of the paper is structured as follows. In
Section II we outline relevant work on contracts and architec-
tural modelling for SoSs. Section III describes the Contract
Pattern within SysML using the CAFF, and in Section IV we
demonstrate the pattern’s use in a case study from the domain
of audio/video networking. The potential exploitation of con-
tracts described using the pattern is discussed in Section V.
We draw conclusions and propose future work in Section VI.

II. RELATED WORK

We propose the use of contracts to model the necessary
internal behaviours in SoSs, alongside architectural interfaces
within the widely used notation SysML [6], [7]. Several
notations have been developed for defining system architec-
tures. In [8] we survey this area more comprehensively, with
particular emphasis on the support for the rigorous definition of
interface specification. We use SysML in this paper primarily
due to its increased use in industry.

SysML allows basic operation signatures to be defined at
interfaces, and pre- and postconditions to be specified textu-
ally, though these are rarely used in practice. Our approach
builds on the Design by Contract (DbC) software engineering
technique [9], used to constrain software operations. Previous
work has considered nonfunctional properties and DbC in
architectural interfaces [10], how interfaces in SysML can
be translated into the formal notation COMPASS Modelling
Language (CML) [8] and in [11] we proposed a method of
extending SysML interface descriptions with a contractual pat-
tern. The current work extends the pattern identified in [11] and
takes a structured and rigorous approach to its formalisation.

Modelling patterns have been used extensively in the
object-oriented software engineering community for many
years. A simple outline to describing software patterns was
used in [12], which adopted pattern concepts from [13].
In [14] we describe several modelling patterns for SoS. We
identify a collection of existing system engineering architec-
tural patterns® relevant to SoS including the Service-Oriented
Architecture, Centralised and Publish-Subscribe patterns —
described using a similar approach to [12]. We also define
several enabling patterns® such as the Interface and Traceabil-
ity patterns. The approach to defining enabling patterns was
modified, prescribing the identification of the relevant concepts
and related viewpoints on the SoS architecture. This approach
was further expanded in [4] as a means to consistently define
both enabling patterns and architectural frameworks — the
CAFF, which we use in this paper to define the Contract
Pattern. The Contract Pattern may be considered as an enabling
pattern; it may be applied in architectural frameworks and
across different architectural patterns.

III. CONTRACT PATTERN

As mentioned in Section I, there is a need to model
the constituent systems composing a SoS in order to allow
the analysis of emergent behaviours at the SoS boundary.
The Contract Pattern aims to allow a modeller to define this
behaviour in such a way that it does not over-constrain the
implementation of the constituent systems, and also enables the
required analyses. It provides a collection of viewpoints which
aid the SoS integrator in modelling and defining the contracts
of a SoS in a consistent manner. The pattern is described using
SysML and implemented as a SysML profile. It is important
to note, however, that the pattern is notation agnostic — it does
not require that the views defined in the profile should be
given using SysML. The Contract Pattern extends the informal
description given previously [3], and complies with views
advocated by the CAFF [4].

The CAFF approach requires that viewpoints are identified
for a pattern or architectural framework, relationships between
those viewpoints are described, and the syntax (or permitted
modelling elements) of the viewpoints are defined. The CAFF
approach also advocates recording the context of the pattern
and its viewpoints, typically through use cases, and a collection
of rules which constrain the viewpoints.

In Figure 1, we identify the needs of SoS engineers who
we envisage to be the users of the Contract Pattern. The figure,
a CAFF Context View for the Contract Pattern, states that
the main need to be addressed is to enable analysis of SoS
emergent behaviour. One way to do this is to model the SoS
in terms of contracts. The subsequent needs, including identify
contracts in the SoS and define contract functionality, are
met by the different viewpoints which constitute the Contract
Pattern.

The ontology is the collection of terms in the problem
domain and the relationships of these terms to each other. The

2 Architectural patterns describe specific, constrained, system architectures;
both in terms of structure and behaviour.

3Enabling patterns are specific constructs of modelling elements whose
combination and subsequent use enables a number of systems engineering
applications.

afov Patiem Context View [Contracts Pattern]

Contract Pattern
Enable analysis of «include» _ =
SoS emergent -7
behaviour Identify conformance \- ~
of constituent
systems to contracts /=~ _
I ~
1 «include» 7 «include»
| .
/7 «include»
Model the SoS in
terms of contracts

\ «include»
\

Identify SoS
composition

Identify contracts
inan SoS

X

SoS Engineer Identify

conntections

between contracts Define contract

functionality

N
| I

\ + " «include»

Model the
SoS contracts b - _
= Define

«include» contracts

.7 «include»

0

Define ordering of
external communications
and internal state

«include»

Fig. 1. Architectural Framework Context View identifying the needs met by
the Contract Pattern

Ontology Description View provides a means of recording the
ontology. In the ODV for the Contract Pattern in Figure 2
we state that an SoS is composed of Constituent Systems —
as is commonly accepted in literature. We introduce the term
Contractual SoS to refer to the collection of Contracts to
which the SoS must conform. Constituent systems, in turn,
conform to contracts. Contracts and constituents own ports
which in turn expose interfaces. We use the Interface Pattern
presented in [14] to model the connections between contracts
and constituents.

odv Ontology Definition View [Contracts Concepts]J

" Ci SoS
conforms to M=

1

is composed of v

conforms to e

Contract

is composed of =

has V

State Variable

owns e

is constrained by v

tate Invariant

exposes
-=is connected to P v

1.0 has ¥

- Interface
1

-=is connected to

Operation

precondition : Expression
postcondition : Expression

has v 1

Fig. 2. Ontology Description View relating the key SoS contracts concepts
The Contract Pattern requires five viewpoints: the Con-
tractual SoS Definition Viewpoint, the Contract Conformance
Viewpoint, the Contract Definition Viewpoint, the Contract
Connections Viewpoint and the Contract Protocol Viewpoint.
Their individual purposes are identified in Table I, and meet
the needs of the Contract Pattern, as identified in Figure 1.

As is typical with an SysML model, we consider a model
defined using the Contract Pattern to consist of a collection of
related views®. As such, model elements identified in one view

4We use the term view to correspond to an instance of a viewpoint.

TABLE 1.

INFORMAL DESCRIPTION OF THE CONTRACT PATTERN VIEWPOINTS

Name Purpose of View

Contractual SoS Definition Viewpoint

Identifies the contracts which comprise the Contractual SoS.

Contract Conformance Viewpoint

Identifies the constituent systems which make up the SoS and denotes the contracts to which those constituent systems
conform. Includes all the contracts identified in the Contractual SoS Definition Viewpoint.

Contract Connections Viewpoint
Contractual SoS Definition Viewpoint.

Shows connections and interfaces between contracts of the Contractual SoS. Includes all the contracts identified in the

Contract Definition Viewpoint
Contractual SoS Definition Viewpoint.

Defines the operations, state variables and state invariants for a single contract identified in the

Contract Protocol Viewpoint

Defines the behaviour of a contract identified in the Contractual SoS Definition Viewpoint in terms of the ordering
of messages between other members of the SoS and calls to the contract operations.

may be referenced or further defined in other views. In Fig-
ure 3, we define the relationships between the viewpoints of the
Contract Pattern using a Viewpoint Relationship View (VRV).

vrv Viewpoint Relationship View [Contract Viewpoint Relationships]J

states conformance of constituents and SoS to elements identified inB-

1
‘ Contract Conformance Viewpoint i

‘ Contract Connections Viewpoint 1

defines connections between contracts identified inBw-

1 1
‘ Contractual SoS Definition Viewpoint ‘

1 1
defines contracts identified inBw—

1.%
‘ Contract Definition Viewpoint ’—

1

constrain ordering of operations defined in A

1
‘ Contract Protocol Viewpoint 1.*
]

defines protocol for contract identified inBw=

Fig. 3. Viewpoint Relationship View relating the contract viewpoints

The VRV in Figure 3, for example, states that a contract
identified in a Contractual SoS Definition Viewpoint may
be defined in a Contract Definition Viewpoint, connected to
other contracts in a Contract Connections Viewpoint and that
the conformance relations between contracts and constituent
systems are identified in a Contract Conformance Viewpoint.

The different model elements of a given viewpoint and
their relationships are defined in Viewpoint Definition Views
(VDVs). A VDV for the Contract Conformance Viewpoint is
given in Figure 4 VDVs are equivalent to defining the syntax
for each of the viewpoints — they determine which syntactic
elements may be included on a viewpoint. In the Contract
Conformance Viewpoint, for example, the model elements
which may be included comprise a single SoS element, which
is composed of two or more Constituent System elements,
one Contractual SoS, which is composed of several Contract
elements, and finally there are several conformsTo elements
which link SoS and Contractual SoS elements, and Constituent
System and Contract elements.

vdv Viewpoint Definition View [Contract Conformance Viewpoint]J

Contract Conformance Viewpoint ‘
ff

1 1

SoS " N Contractual
I conforms tome=
1.*
is composed of v is composed of
2. 2. 2. 2.

Constituent System | * * Contract

conforms to e

Fig. 4. Viewpoint Definition View for the Contract Conformance Viewpoint

IV. ILLUSTRATIVE CASE STUDY

We illustrate the Contract Pattern with a case study based
on a Bang & Olufsen (B&O) home Audio Visual (AV)
network linking multiple AV devices. The network exhibits the
characteristic properties of a SoS; for example, constituent sys-
tems are heterogeneous and may evolve (through software or
firmware upgrades). The SoS may display emergent behaviour,
and, although all constituent systems operate at the behest of
the user, they may in fact be legacy or non-B&O systems,
potentially limiting their controllability within the SoS.

Following the Contract Pattern we first model a Contractual
SoS — that is a SoS which may be modelled in terms of the
contracts being offered, rather than models of the constituent
systems themselves. In the Contractual SoS Definition View in
Figure 5, we consider an AV Contractual SoS, comprising mul-
tiple AV Device contracts and one Transport Layer contract.
The AV Device contract comprises a LE Device, a Browsing
Device and a Streaming Device contract.

The AV Device contract is composed of three contracts.
The LE Device contract states the functionality of an AV
device necessary to guarantee a single leader, and this will be
the main contract we concentrate on in this paper. The other
contracts that form the AV Device contract ensure correctness
of the media browsing and streaming functionalities of AV
constituent systems (the Browsing Device and Streaming De-
vice contracts respectively). The correct communication of data
between contracts is ensured by the Transport Layer contract.

The Contracts Connection View in Figure 6 depicts the
connections between the contracts comprising the SoS, and
their provided and required interfaces. The figure shows that
AV Device contracts are all connected to the Transport Layer

«Contractual SoS Definition View»
csdv AV SoS Contracts

«block»
«Contractual SoS»
AV Contractual SoS

!

1.* 1
«block» «block»
«Contract» «Contract»
AV Device Transport Layer
1
1 1
«block» «block»
«Contract» «Contract»
LE Device Streaming Device
1
«block»
«Contract»

Browsing Device

Fig. 5. Contractual SoS Definition View for AV SoS

contract through the same two interfaces (rec and send).
These interfaces, not given here, may be defined using the
Interfaces Pattern®. These interfaces comprise simple sending
and receiving operations — and are data agnostic. We also show
that the LE Device, Browsing Device and Streaming Device
contracts connect to the transport layer through the rec and
send interfaces. In this figure, we give only two AV Device
contracts; there may be many more.

«Contract Connections View»
cev AV C SoS Connections|

«block»
«Contractual SoS»
AV Ci SoS

«Contract»
: AV Device

«Contract»
AV Device

«Contract Conformance View»
ccv AV SoS Constructs

«block» «block»
f T
«SoS» L 7‘:0(1"?[["? 2»7 - «Contractual SoS»
AV SoS AV Contractual SoS
1
1 1 1 1
«block» «block» «block» «block»
«Constituent System» «Constituent System» «Constituent System» «Constituent System»

Network Hifi Content Provider

T
I«conformsTon
|

T T
| |
| |
I I
| «block» |
! «Contract» !
! ! «conformsTo»
| |
| |
I

Transport Layer «conformsTo»

«block»
«Contract»
AV Device

Fig. 7. Contract Conformance View for AV SoS and constituent systems

of the operations and communications with the contract’s en-
vironment. By defining the contract in this manner, we enable
the analysis of data and behavioural correctness including
simulation, model checking and theorem proving, discussed
in earlier work in [3]. Another form of analysis — ensuring
contract conformance — is considered in Section V. For space
reasons, in this paper we consider only the LE Device contract.

Figure 8 is a partial Contract Definition View for the
LE Device contract. This partial definition names the private
attributes (or values) and operations for the contract, then
identifies two invariants over the values and gives three of
the operations in more detail. The remaining operations are
omitting for legibility reasons. The two invariants, inv/ and
inv2, constrain the LE Device’s mem and otherLeaders state
variables respectively. The definition of these invariants can
be given in natural text, but in this example we use structured
expressions defined in CML, which is the formal modelling
notation developed specifically for modelling SoSs.

«Contract»
: LE Device

«Contract»
: LE Device

«Contract»
 Browsing Device

«Contract»
 Browsing Device

«Contract»
: Streaming Device

«Contract»
: Streaming Device

Fig. 6. Contract Connections View for AV SoS

The Contract Conformance View in Figure 7 shows how
the constituent systems in an example AV SoS conform to
those contracts. The network conforms to the Transport Layer
contract, and the TV, Hifi and Content Provider all conform
to the AV Device contract.

Next we produce a Contract Definition View and Contract
Protocol View for each of the identified contracts. These two
views allow the description of a contract in terms of their
internal state, internal and external operations and the ordering

5The Interface Pattern, defined using the CAFF and given in [14], identifies
the publicly accessible operations and their protocols.

«Contract Definition View»
cdv Partial LE Contract Definition)

block»
«Contract»
LE Device

1 1

block» blocky
«nvariant» «nvarianty
inv1 inv2

‘dom mem = node_ids \ {id) and dom mem <> {} | [otherLeaders <= card dom mem

values

id

em
highest_strength
highest_strength_id
otherLeaders

«block» block» «lock»
«Operation» «Operation» «Operation»
changeClaim write incStrength

my!

amlLeader parameters parameters parameters.
operations. newClaim : Claim n: LE_Id, dat: DATA 0

update postcondition

Init myCS.c = newClaim

postcondition postcondition
mem(n) = dat or mem(n).c = <off> | [myCSs=myCS~s+1

precondition
Sis<10

flushState
flushMemory
flushSummary
maxStrength
maxStrengthid
hangeCl

precondition precondition
myCS.c = <off> => newc = <undecided> and nin set dom mem myC:
myCS.c = <undecided> =>(newc = <leader> or newe = <follower>) and vetumn Teturn
myCS.c = <leader> => newc = <undecided> and 0 0
myCS.c = <follower> => news = <undecided>

incStrength return
amLeader 0

1 1

{incomplete} ™

Fig. 8. Partial Contract Definition View for LE Device contract

For example, within the leadership election, a device may
choose to take the role of a leader, a follower, or to be
undecided. The changeClaim operation allows the device to
change the role that it is going to take. It requires the new
role (or claim) as a parameter. The precondition constrains the
legal choice of new claims depending upon the current state
of the LE Device. For example, the first clause of the pre-
condition states that if the claim prior to operation invocation

is set to (off), then the new claim must be (undecided). If
the precondition holds, then the postcondition states that the
changeClaim operation will result in the LE Device’s claim to
be the one given as the parameter. The pre- and postconditions
are, as with the state invariants, defined using CML.

Figure 9 is the Contract Protocol View for the LE Device.
The protocol for this contract dictates the permitted ordering
of operation calls for constituent system conforming to the
contract. Briefly, the LE Device begins in an Off state, and
may transition only to the On state. When in this state, the LE
Device concurrently behaves in the Election state (transitioning
between acting as (leader), (follower) and (undecided)) and
the Listener state, (in which it updates its view of the states
of the other devices according to the messages it receives).

«Contract Protocol View
cpv LE Contract Protocol

LE Device

P on
Election [otherLeaders > 1 OR otherLeaders = 0]/
Follower

do : changeClaim
do : sendMessages,

[otherLeaders = 1)/

[not isLeader]/

o
Undecided

incStrengthlother_eaders = 1)/

do : changeClaim
do : sendMessages,

lisLeader)/

[otherLeaders>1]/

flushState/send off

Fig. 9. Contract Protocol View for LE Device contract

In this section we have shown an example contract — the
LE Device contract — presented following the Contract Pattern.
An AV constituent system in the SoS must conform to this
(and other) contracts. In the following section, we consider
the question of verifying this conformance.

V. CONTRACT CONFORMANCE

In the Contract Conformance Viewpoint a SoS engineer
may state informally that a constituent system of the SoS
conforms to a defined contract. In previous work, we con-
sidered how our earlier version of contracts for SysML may
be translated to the formal notation CML, and suggested
that CML refinement could be used as means of checking
conformance. This idea is outlined in Figure 10. In this
paper we do not discuss the process of translation, rather we
consider some of the issues involved in using the results of
this translation to provide evidence for contract conformance.
A complete set of formal translation rules is defined in [15].

The contract and the constituent system will often have
different interfaces, that is, offer different means of interaction.
This is because a contract does not specify the entirety of
system behaviour, but allows the designer of a constituent
system some freedom to design operations of the constituent
system as they choose, provided they meet the contract.

It seems clear that these additional operations and signals
should be ignored when checking conformance. For this rea-
son, we propose the use of a new feature called hiding. This
is an annotation of a contractual SoS that indicates which of

CML

SysML

<<Constituent Systems>> | _translation Erot':ess Cs1=
CS1 - " egin
I end
|
l T
' |
| conformsTo : refines
|
' v
v
<<Contract>> process Coni =
Con1 translation begin
e
end

Fig. 10.
refinement

Outline of relationship between contract conformance and CML

its operations and signals are internal, and should be ignored
when checking conformance. The result of this annotation is
that during an execution of the contractual SoS, occurrences
of the hidden operations and signals are not visible and do not
require any external stimulus to take place. Instead, they take
place when they become available.

Although hiding solves the issue of comparing models with
different means of interaction, some care must be taken when
using it to ensure that unused operations and signals are not
hidden. This problem can occur in two main situations. The
first is when an interface in a constituent system provides
an operation which is not required by any of its connected
interfaces. If the provided but not required operation is hidden
it can take place without external stimulus. This leads to a
problem because the SysML semantics of ports means that they
are always ready to receive operation calls, and that calls are
stored for the block to deal with. The operation can then take
place infinitely often. Allowing state machines to be defined
at ports would allow us to avoid this problem, provided the
state machine placed appropriate limits on the permitted calls
to the operation. Note that the Interface Pattern allows the use
of state machines to be defined at ports [14].

The second way in which the problem can occur is through
associations. SysML permits associations between blocks, and
therefore allows the possibility that operations are called
directly, rather than though an interface. We avoid this in
the Contract Pattern by stipulating that connections between
constituent systems may only be through interfaces at ports.

In summary, in order to support the verification of refine-
ment between SysML elements, they must be made compati-
ble. Hiding makes this compatibility possible, but must be used
with care, to ensure that divergent behaviours are avoided.
When the contracts are compatible, we are in a position to
translate them to CML, and to carry out a refinement check
between the two models (Figure 10). The results of this may be
reported to the engineer, and recorded at the SysML level. For
example, success may be included on a Contract Conformance
Viewpoint as an evidence model element, as in Figure 11.
Failure may be reported as a trace of the system which is
not permitted by the contract (or vice versa). This trace may
be translated into a SysML sequence diagram which may be
more readily understood by the SoS engineer.

<<Constituent System>>

CS1
I .
| <<Evidence>>
| Refinement Check
|

conformsTop - ____ tool = "Symphony"
| version ="1.0"
I type = "refinement check"
Y date ="..."
<<Contract>>
Con1

Fig. 11. Concept for recording refinement results in CCV

VI. CONCLUSION

We have proposed and demonstrated the Contract Pattern:
an architectural pattern for the contractual specification of
interfaces between constituent systems of an SoS. Included
informally in the pattern is the concept of the conformance of a
constituent system to its contract. In Section V we investigated
some of the issues involved in using CML refinement to
make the meaning of conformance more precise. Contractual
specification is valuable during design in order to reduce the
uncertainty associated with emergence. We anticipate being
able to monitor contracts during the operational phases of
an SoS, in order to check conformance and identify non-
conformance of constituent systems.

The description of the pattern has followed the guidelines
for the definition of architectural frameworks and patterns
used within the COMPASS project. We anticipate that this
will assist us in integrating the Contract Pattern with other
patterns and frameworks. Further work will include integrating
the Fault Modelling Architectural Framework [5] to allow us
to develop contracts which are tolerant to faults. Other possible
extensions to the pattern include non-functional properties and
security features explicitly in the definition of a contract.

Other areas of further work include: defining static seman-
tic rules that can be checked to ensure that a contract has used
the Contract Pattern correctly; exploring the link between con-
formance and CML refinement further, including support for
the definition and refinement of SoS-level contracts; exploring
the benefits and consequences of contract composition; and to
define a pattern for representing refinement at the SysML level
(including concepts such as hiding as described in Section V)
which may be combined with the Contract Pattern.

The case study presented here has been sufficient to
highlight areas of future development of the Contract Pattern.
Future work is evaluate the applicability of the Contract Pattern
in the design of an industrial scale system.

ACKNOWLEDGMENT

The work presented here is supported by the UK EPSRC
platform grant on Trustworthy Ambient Systems (TrAmS-
2), and by the EU Framework 7 Integrated Project “Com-
prehensive Modelling for Advanced Systems of Systems”
(COMPASS, Grant Agreement 287829). For more information
see http://www.compass-research.eu.

(1]

(4]

(51

(6]

(71
(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

M. Jamshidi, Ed., System of Systems Engineering: Innovations for
the Twenty-First Century. Wiley Series in Systems Engineering and
Management, 2008.

R. Payne, J. Bryans, J. S. Fitzgerald, and S. Riddle, “Interface specifica-
tion for system-of-systems architectures,” in SoSE, 2012, pp. 567-572.

J. W. Bryans, J. S. Fitzgerald, R. J. Payne, and K. Kristensen, “Main-
taining Emergence in Systems of Systems Integration: a Contractual
Approach using SysML,” School of Computing Science, Newcastle
University, Tech. Rep. CS-TR-1406, January 2014.

J. Holt, S. Perry, F. O. Hansen, S. Hallerstede, and K. Kristensen,
“Initial Report on Guidelines for Architectural Level SoS Mod-
elling,” COMPASS Deliverable, D21.2, Tech. Rep., 2013, available at
http://www.compass-research.eu/.

Z. Andrews, J. Holt, C. Ingram, R. Payne, S. Perry, and A. Romanovsky,
“Traceable Engineering of Fault-Tolerant SoSs,” School of Computing
Science, Newcastle University, Tech. Rep. CS-TR-1391, 2014.

“OMG Systems Modeling Language (OMG SysMLTM)>”
SysML Modelling team, Tech. Rep. Version 1.2, June 2010,
http://www.sysml.org/docs/specs/OMGSysML-v1.2-10-06-02.pdf.

IET, 2008.

J. Bryans, R. Payne, J. Holt, and S. Perry, “Semi-formal and formal
interface specification for system of systems architecture,” in 7th
International Systems Conference, IEEE SysCon. 1EEE, April 2013.

B. Meyer, Object-Oriented Software Construction, 1Ist
Prentice-Hall, 1988.

R. J. Payne and J. S. Fitzgerald, “Evaluation of Architectural Frame-
works Supporting Contract-based Specification,” School of Computing
Science, Newcastle University, Tech. Rep. CS-TR-1233, December
2010.

J. Bryans, J. S. Fitzgerald, R. Payne, and K. Kristensen, “Maintaining
Emergence in Systems of Systems Integration: a Contractual Approach
using SysML,” in submitted to Annual International Symposium of the
International Council on Systems Engineering. INCOSE, 2014.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns
Elements of Reusable Object Oriented Software. Addison Wesley,
1995.

C. Alexander, M. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-
Ling, and S. Angel, A Pattern Language. Oxford University Press,
19717.

S. Perry, “Report on Modelling Patterns for SoS Architectures,”
COMPASS Deliverable, D22.3, Tech. Rep., February 2013. [Online].
Available: http://www.compass-research.eu/deliverables.html

A. Miyazawa, “Final Report on Combining SysML and CML,”
COMPASS Deliverable, D22.4, Tech. Rep., March 2013, available at
http://www.compass-research.eu/.

J. Holt and S. Perry, SysML for Systems Engineering.

edition.

