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Abstract– For efficient operation, it is vital for supply chain 
management leaders and policy makers to recognize the nature of the 
system they deal with. Supply chains, are increasingly recognized as 
systems of systems, which are complex networks exhibiting self-
organising properties. In large scale real-life networks, self-
organisation manifests itself in distinctive structural patterns, such as 
Power Law connectivity distribution, scale-free, fractal, and nearly 
decomposable modular structure. Identification of such structural 
patterns in real-world supply networks may provide useful insights 
into their dynamics and functionality, and as a result, apply adequate 
governance frameworks to embrace structural complexity. To this 
end, the methods for identification of complexity traits in real-world 
industrial supply networks are of interest. A case study of the mining 
industry supply network in South Australia has been used to propose 
a method for identifying self-organisation patterns in regional 
industrial supply network structures. The approach combines network 
analysis and recent methods for testing Power Law distributions. The 
findings provide insights into the mining industry supply network 
functionality, including such operational characteristics as 
robustness, responsiveness, flexibility, and resilience.   

Keywords—supply networks, mining industry supply chain, 
structural patterns of self-organisation in complex systems 

I. INTRODUCTION 
The mining industry and its associated supply chains 

recently experience the need for new management frameworks 
to deal with increasing dynamism and complexity. However, 
mining industry supply chains are still traditionally viewed by 
scholars and practitioners as hierarchical or linear [1].  

Increasing complexity of supply chains in various industrial 
contexts, lead to the development of new approaches to 
manage them effectively and efficiently. Industrial supply 
chains have been increasingly recognized as a system of 
systems, which is essentially a complex network [2]–[6]. 
Supply networks are seen as sets of intertwined supply chains 
that transmit the flow of goods and services from original 
sources of raw materials to the end customer [6], [7].  

Supply chain management frameworks incorporating 
complex networks approaches have been mainly developed 
through application of modelling and simulation techniques 
[1], [2]. However, there are fewer empirical studies done that 
focus on examining structural properties of real-world supply 
networks that may vary significantly depending on the nature 
of the industrial relationships. There is a need for empirical 

validation of recently developed frameworks and methods that 
incorporate complex systems views in the supply chain context 
[2]–[4].  

In this paper, we explore whether regional supply networks 
(specifically, emphasizing the nature of the mining industry) 
exhibit structural patterns of self-organised complex networks 
and what are the implications for policy-makers and 
practitioners? 

To answer research questions, we are proposing a method 
for identifying structural patterns of self-organisation in the 
geographically bounded supply networks, that combines 
network analysis and Power Law (PL) testing tools [8].  

As a case study, we will explore the structural patterns of 
the South Australian segment of mining industry supply 
network. Based on empirical data of 2794 companies and their 
connections in the South Australian mining industry supply 
chain, we have discovered that the supply network exhibits 
scale-free structure and self-repeating patterns in degree 
distribution in decomposition, which is similar to other real-
world networks.  

This has the following implications for regional policy 
makers and mining industry supply chain managers (1) 
regional mining industry supply chains are self-organising 
complex networks and relevant governance frameworks must 
be applied to manage them efficiently and effectively; (2) in 
order to incentivise resilient and responsive regional mining 
industry supply chains, structural aspects should be considered 
and monitored on a regular basis; (3) the proposed method 
could be used as a dashboard for assessing supply chains 
complexity and could be extended to other industrial contexts.  

The paper is organized as follows. Section II describes the 
problem of supply chain management in the mining industry, 
Section III draws on theory of complex networks and self-
organisation to explain structure and dynamics of complex 
supply networks; Section IV presents a case study of the SA 
mining supply network. A discussion of findings and practical 
implications are provided in Section V, which concludes the 
paper. 



II. THE MINING INDUSTRY SUPPLY CHAINS 
Mining industry supply chains currently experience the 

need for adequate management frameworks to deal with 
increasing dynamism and complexity. The recent trends of 
flexible production incorporating outsourcing practices in the 
mining industry, significantly increased interconnectedness and 
complexity of the mining industry supply chains driving the 
them towards flat and decentralized structures. However, linear 
and hierarchical management models still dominate. Mining 
companies use hierarchical approaches, while supplier 
companies usually do not extend supply chain management 
beyond direct transactions [9]. Local policy-makers involved in 
the enhancement of regional supply chain efficiency, 
experience information uncertainty.  

The majority of scholarly works also consider mining 
industry supply chains from linear [1], [10] or hierarchical [9], 
[11] perspectives. These models and frameworks do not 
provide adequate basis to deal with current complexity and 
networked structure of the mining industry supply chains. The 
network-level properties of supply chains such as 
responsiveness, adaptability and resilience could not be 
captured by linear methodologies and require approaches  
based on system of systems and complex networks views [4]. 

III. STRUCTURAL PATTERNS OF COMPLEX NETWORKS AND 
THEIR APPLICATION IN SUPPLY NETWORKS CONTEXT 

Supply networks are identified as sets of supply chains that 
transfer  flows of goods and services from original sources to 
the end customer [6]. They are characterised by complex non-
linear dynamic interactions between firms and organisations, 
existing in a multitude of different topologies, they are 
complex and bidirectional, having parallel and lateral links, 
loops, and exchanges of materials, finance, and 
information [7]. 

The complex networks approach has been mainly applied 
in three major themes in supply networks research: network 
structure, networks dynamics, and system network governance 
strategy. Network structure research focuses on supply network 
components, their connectivity and firm-level structural 
properties, flow types and tier strengths e.g. [10], [12]. System 
behaviour studies look at formation, change and evolution of 
supply networks considering network level parameters such as 
adaptability, responsiveness, resilience, and robustness from 
complex systems perspective e.g.[1], [13]. System policy and 
control studies suggest governance frameworks that allow to 
leverage and improve supply network performance e.g. [2], [4], 
[14]. The methods most commonly used are simulation and 
modelling e.g. [1]–[3] and Social Network Analysis [10], e.g. 
[15], [16].  

Complex network structures have often been attributed to 
the dynamics of the interwoven web of relationships among 
multiple constituents, which interact with each other producing 
large-scale patterns. A generic property of complex networks is 
that they constantly grow and evolve over time due to process 
of self-organisation. The dynamic forces that act at the level of 
individual nodes, produce cumulative effects, that determine 
the network large-scale structural patterns [17]–[19]. These 
patterns could be discovered in real-world networks through 

assessing a number of network structural parameters, such as 
degree distribution, network density and clustering, average 
path length, size of the largest connected component, small-
world properties,  modularity and self-similarity across all 
levels of decomposition .   

• PL distribution of nodes’ degree in the network 
reflects its scale-free structure. Such a structure 
means that the network evolution is driven by at 
least two coexisting mechanisms: 1) growth, 
implying that network continuously expands by 
adding new nodes; and 2) preferential attachment, 
implying that every incoming node tends to link to 
the nodes that already have a large number of 
links [20]. A quantity x obeys a PL if it is drawn 
from a probability distribution p(x) ~ x , where  
is the exponent or scaling parameter of the 
distribution known [8]. Scale-free  structures are  
to be considered resilient to random attacks and 
disturbances. 

• Dense networks, characterised by high clustering 
coefficient, are seen to be flexible and adaptive to 
changes in external envirionment [17]. 

• Short average path length in the supply network is 
a sign of its responsiveness  [21], [13].  

• The size of the largest connected component of a 
network is associated with network robustness and 
resilience [21], [13].  

• A small-world property exhibits in the network 
structure, when the average distance between 
nodes is a logarithm of the size of the network, 
whereas the clustering coefficient (or density) is 
larger than in a random Erdos-Renyi graph with 
the same size and average distance [17]. Small-
world structure of any network could be identified 
as proposed by Watts and Strogatz  by comparing: 
(1) the average number of links in the shortest 
path,  and (2) the clustering coefficient. The 
randomised graph metrics Lr and Cr are compared 
to the La and Ca of an actual graph. If La and Ca 
are significantly greater than the random figures - 
Lr and Cr, the network exhibits a small-world 
structure. Small-world network topologies are seen 
as resilient as scale-free structures.  

• Hierarchical modularity or decomposability, is an 
ability of complex networks to be divided into a 
set of almost non-overlapping modules or clusters, 
which have high connectedness within a module, 
but relatively moderate amount of links between 
the modules [22]. In complex networks such 
modules are found at different hierarchical levels. 
Modularity in supply networks contributes to 
network resilience and ability to adapt to changing 
environment[5], [21].  

• Self-similarity (similarity over different length 
scales) is property of self-organising networks to 
exhibit self-repeating patterns at all levels of 
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decomposition. Scale-free networks exhibit the 
absence of a characteristic degree (i.e. the number 
of connections for a network node). Self-similarity 
has been discovered in complex networks by 
applying methods, including k-core decomposition 
[23]. It contributes to complex networks 
robustness and resilience properties. 

Identification of these structural patterns in industrial 
supply networks may provide valuable insights into dynamics 
and effectiveness of industrial relationships for practitioners 
and policy-makers. The authors applied network analysis and a 
recent method for identification of PL degree distribution 
proposed by Clauset et al. [8] to assess whether mining 
industry supply networks exhibit any of the structural patterns 
of complex networks. 

IV. ARE MINING INDUSTRY SUPPLY CHAINS SELF-
ORGANISING COMPLEX NETWORKS? A CASE STUDY OF THE 

SA MINING INDUSTRY 

A. Network boundaries 
To establish the boundaries of a network of interest, the 

authors consider the mining industry supply network as a set of 
firms that are engaged directly or indirectly in economic 
transactions within the SA mining industry (Fig. 1).  

 

 
Fig. 1. The boundaries of SA mining industry supply network 

 

 

 

 

 

 

Australian mining industry databases, Industry Capability 
Network (ICN) and Global Maintenance Upper Spencer Gulf 
(GMUSG), were used to identify companies operating in the 
state. Filter criteria have been applied to extract companies (1) 
who identified themselves as suppliers to the mining industry, 
(2) who identified themselves as operating in South Australia. 
The supplier-buyer relationships of these companies have been 
extracted to reconstruct the supply network.  

B. Analysis and results 
The first step in identifying structural patterns of self-

organisation  in the supply network of interest was to calculate 
basic network parameters, including average degree, network 
density and clustering coefficient, average path length and the 
size of the largest connected component (Table 1).  

To estimate whether the degree distribution fits the PL 
model, the procedure described in was applied [8]. The scaling 
exponent  of a PL probability density function – p(x) ~ x , 
and the lower bound of power-law behavior xmin were 
estimated via Maximum Likelihood Estimation (MLE) and 
Kolmogorov–Smirnov (K-S) goodness-of-fit statistic. Smaller 
K-S values 0.1 indicate better conformity to a PL. A scaling 
parameter  represents the overall dynamics of the distribution: 
the closer it is to 1, the longer the tail, and the greater 
proportion of the total distribution is in the tail (i.e., a greater 
proportion of extreme scores. xmin is a lower bound of power-
law behavior in the data [8]. The results are presented in Table 
II.  

Self-similarity has been tested through application of k-core 
decomposition procedure, which allows for identifying 
hierarchical properties in large scale networks [23]. Using a 
recursive pruning strategy this procedure extracts network 
regions of increasing centrality and connectedness (k-cores).  

A subgraph H = (C, E | C) induced by the set C  V is a k-
core if and only if the degree of every node v  C induced in H 
is greater or equal than k, and H is the maximum subgraph with 
this property. A vertex i has shell index k if it belongs to the k-
core but not to (k+1) - core. A k-shell Sk is composed by all the 
vertices whose shell index is k. The maximum value k such that 
Sk is not empty is denoted kmax. The k-core is thus the union of 
all shells Sc with c  k [23]. 

 In the case of the SA supply network the decomposition 
procedure has identified kmax=10. The number of nodes 
belonging to each kCore with shell indices 1-10 as well as the 
parameters of the PL probability density function are presented 
in Table II.  

The kCores have revealed approximately the same shape of 
the PL distribution which has not been affected by the 
decomposition, thus showing hierarchical similarity. The 
degree distribution and kCores with shell indices 1-4 fit into a 
PL model with K-S values  0.10 [24]. However, the most 
densely connected part of the network with shell indices 5-10, 
show significant deviation from a PL distribution, with high K-
S values, at the same time with only minor deviation in  and 
xmin, which is consistent with other studies in complex 
networks [23]. 

 



TABLE I.  SA MINING INDUSTRY SUPPLY NETWORK PARAMETERS 

Parameter Value 

Number of nodes 2,473 

Number of connections 7,069 

Average Degree 5.28 

Density 0.001 

Clustering coefficient (Ca) 0.028 

Average path length (La) 4.110 

Size of largest connected component 2460 

Kmax (Kcore decomposition) 10 

 

TABLE II.  NETWORK PARAMETERS TESTED  FOR PL DISTRIBUTION 

 

V. SECTION 4. CONCLUSION AND FUTURE WORK 
This paper proposes the method for identifying structural 

patterns that could be used to define complexity traits in the 
industrial supply chains. The method could be used as a 
dashboard to assess and monitor interconnectedness and 
complexity of any given geographically localised supply chain. 

As a case study, this paper explores through empirical 
testing whether the connectivity of firms within the SA mining 
industry supply network exhibits structural patterns of self-
organisation. The results show that: (1) the supply network 
connectivity parameters statistically fit a PL distribution, thus 
exhibiting scale-free structure, (2) the regional supply network 
reveals self-similarity in connectivity distribution when 
applying hierarchical decomposition procedure, (3) the path 
length and clustering coefficient do not allow to assert the 
presence of a “small-world” structure in the supply network.  

These results could imply that regional supply networks are 
self-organising complex networks, or in other words, systems 
of systems [25]. As it is has been shown from insights into the 
mining industry supply network, these structural patterns are 
functionally related to its operational characteristics as 
robustness, responsiveness, flexibility, and resilience.  

The  important insights for policy makers and mining 
industry supply chain managers are as follows (1) regional 
mining industry supply chains are complex systems or systems 
of systems and self-organising complex networks and relevant 

governance frameworks must be applied to manage them 
efficiently and effectively; (2) in order to incentivise resilient 
and responsive regional mining industry supply chains, their 
structure should be monitored on the regular basis; (3) the 
application of the proposed method could be extended to 
analysing supply chains in other industrial contexts.  

Authors believe that governance frameworks have to be 
informed by an understanding of the true nature of regional 
supply chain networks in order to ensure development of 
efficient and effective strategies and policies for developing 
better to overcome current challenges of integration faced by 
mining sector supply chains. 

Authors acknowledge the limitations of this study in terms 
of unavoidable measurement bias, as it has been acknowledged 
by other authors studying complex networks, e.g. [22], [23]. 
The database used in this study includes information about the 
most prominent firms within the SA mining industry, which 
may cause bias in parameter estimation. However, given the 
large sample size, nature of the research question and the level 
of analysis, it could be asserted that at a large scale the 
structural patterns attributed to self-organisation processes have 
been captured.  

Further research will examine the interaction dynamics and 
decision-making mechanisms of firms operating in the mining 
industry supply networks. 
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