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Abstract—This paper presents a fault diagnosis and prognosis 

based on an hybrid approach that combines structural and 

data-driven techniques. The proposed method involves two 

phases. Firstly, the residuals structure is obtained from the 

structural model of the system using structural analysis without 

using mathematical models (only the component description of 

the system). Secondly, the analytical expressions of residuals are 

obtained from available historical data using a robust 

identification approach. The diagnosis part consists in checking 

the evolution of residuals during the process, any inconsistency of 

residuals can be considered as a fault, so that the thresholds for 

each residual are introduced. The residuals are obtained using 

the identified interval model that takes into account the 

uncertainty and noises affecting the system. Once the fault is 

detected, also it is possible to determine which fault occurred in 

the system using the FSM (Fault Signature Matrix) obtained 

from the structural analysis of the system and residual 

generation. The prognosis part is developed using the same steps, 

but instead of considering the actual situation, it evaluates the 

tendency of deviation respect the nominal operation condition to 

predict the future residual inconsistency, allowing estimating the 

RUL (Remaining Useful Life) of the system. The interval model is 

also introduced for the future prediction of residuals, thus there 

will be an interval of RUL for each residual which contains the 

maximum and minimum RUL values. The proposed approach is 

applied to a brushless DC motor (BLDC) used as a case study. 

Simulation experiments illustrate the performance of the 

approach. 

I. INTRODUCTION 

In the past few years, the research community has gradually 

realized the industrial interest in fault diagnosis and more 

recently in fault prognosis. Currently, the majority of the 

related approaches are based on an exact system model to 

develop the diagnosis and prognosis. Nevertheless, in real 

systems is very difficult to obtain a mathematical model of the 

system that describes precisely it behavior. Thereby, a method 

that only requires the knowledge of the the structural model 

can be useful to overcome such a difficulty. Once the structure 

of the resulting analytical redundancy relations have been 

obtained, they can be identified from historical data of normal 

operation using robust identification that allow to obtain the 

model from data altogether with its uncertainty bounds. 

 In this article, we will propose methods to combine the 
structural analysis methods and data-driven techniques 
extending the applicability of conventional model-based 
diagnosis methods and proposing an extension to prognosis. 
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Some researchers have already explored similar ideas, for 
instance, try to use techniques like Grey-box recurrent neural 
networks to generate residuals in order to develop a hybrid 
fault diagnosis method [3][4]. Another outstanding research is 
about combining the state space neural networks and 
model-decomposition methods for fault diagnosis [1]. 
Nevertheless, these researches focus more on the diagnosis 
part not considering the extension to prognosis. On the other 
hand, most of the existing prognoses are based on application 
dependent methods that extract features of the measured 
variables. In this work, we will apply the idea of extending 
residuals analysis from diagnosis part to prognosis part 
extending the preliminary results presented [6], including 
several enhancements as avoiding the need to have the 
mathematical model of the system and considering modelling 
uncertainty using interval methods. Many steps of this 
approach can be dealt with alternative methods. For example, 
there exist various methods to generate residuals from 
structural model of the system. In the same way, the 
identification of the residuals can also be done with other 
methods. 

This paper proposes a fault diagnosis and prognosis approach 

combining both the structural and data-driven techniques, 

avoiding the need to know precise mathematical models of 

system. It is applied to a brushless DC motor as case study, but 

it can be used for the diagnosis and prognosis of any other 

system. 

The structure of the paper is the following: Section II 

introduced the problem statement. Section III describes the 

proposed model-based approach for diagnosis/prognosis. 

Section IV presents the case study and Section V collects some 

of the application results of the proposed approach. Section VI 

draws the conclusions of the paper and suggests future 

research paths. 

II. PROBLEM STATEMENT

A. Problem statement 

The proposed method uses the structural analysis of the 
system; thereby it starts from a graphical or textual description 
of the system operation. The exact mathematical model of the 
system to be monitored is no needed but some physical insight 
could be helpful. Moreover, a set of output observed variables, 

ky , and the set of inputs, ku  are available, which are used to 

generate the structure of the residuals and to estimate the 
mathematical expression and associated parameters. The set of 
residual in analytical form can be presented as follows: 
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  , 0, 1, , ,i i k k rr y u i n     (1) 

where i is the corresponding analytical expression of each 

residual, rn is the number of residuals derived from the 

structural analysis. 

In this paper, the proposed approach evaluates the 
residuals expressions obtained from the structural analysis to 
perform diagnosis and prognosis problems as follows: 

Problem 1. “Fault diagnosis”. Its objective consists in 
twos parts. Fault detection, which means detect the fault as 
soon as possible when an anomaly failure of system operating 
appears. Fault isolation, once detected the fault, it is also 
necessary to find out which part (component) of system is 
suffering the failure. These objectives can be achieved by 
checking the time-evolution of the residuals under different 
system operating conditions. 

Therefore, the diagnosis aims at dealing with the faults that 
have already occurred in the system. On the other hand, the 
prognosis problem focus on predicting future evolution of the 
residuals in order to anticipate the appearance of possible 
faults. 

Problem 2. “Fault prognosis”. The prognosis is similar to 
the diagnosis, the difference lies on the prognosis uses the 
available data of observed variables and inputs till the actual 
time instant to estimate the future values of residuals. The 
concept of RUL is introduced that is used to estimate the 
remaining time of corresponding residual to be out of bounds. 

B. Overview of the presented method 

The presented method consists of the following steps: 

1. From the accurate study of the provided description of the

system, find out the structural model of the system. This step 

requires information and knowledge about the considered 

system. The structural model is basically a set of 

relationships between known and unknown variables, the 

exact expressions of relations are not needed. 

2. By the aid of analysis structural, obtain the corresponding

residuals in structural form. There are many methods of 

generation of analytical redundancy relations (ARRs) from 

the structural model. This paper uses the MSO method which 

is well-implemented in Matlab
2
. 

3. Starting from the obtained residuals in structural form in

previous step and using robust system identification tools 

identify the residual mathematical expression including the 

parameters and associated uncertainty. The history data of 

input variables and measured output variables are required. 

4. Based on the calculated residuals, the implementation of

diagnosis and prognosis of system can be developed. The 

thresholds are determined by estimating the corresponding 

interval model using history data. It is considered that if the 

value of residuals violates its thresholds, a fault has occurred. 

The thresholds are determined using the interval model 

2 https://faultdiagnosistoolbox.github.io/ 

method. The isolation of the occurred fault can be 

accomplished by comparing the affected residuals to the 

FSM (Fault Signature Matrix).  As to prognosis part, the 

RUL (Resting Useful Life) can be estimated once appeared 

the tendency of deviation of residuals respect to its nominal 

value. 

III. FAULT DIAGNOSIS/PROGNOSIS USING STRUCTURAL 

ANALYTICAL REDUNDANCY RELATIONS 

As already discussed, the approach proposed in this paper 
is based on the structural model of the monitored system. The 
structural model consists of a set of relations including known 
and unknown variables. It has the advantage of no requiring 
the explicit expressions of them, thus it avoids all the 
complexity of generation and calibration of accurate explicit 
model. This is possible to be done since the generation of 
analytical redundancy relations in structural analysis does not 
require the explicit model. Afterwards, by the aid of system 
identification tolls residual expressions can be obtained, thus 
like any other data-driven technique, a large amount of data (in 
non-faulty situation) is necessary to correctly estimate the 
residual expressions. 

A.  Residual generation in structural analysis 

The residuals in structural form are generated from the 
structural system model finding the ARRs. The structural 
model is a set of relations between (known and unknown) 
variables and model relations (constraints) as follows: 

Definition 1. Structural model. The structural model of the 
system S = (C, Z) is a bipartite graph 

( , , ),G C Z      

where C is the set of constraints, Z is the set of variables,  is 

the set of edges defined as follows: 

C Z   if the variable jz appears in the constraint ic

Definition 2. Matching. A matching M  is a set of 

disjoint edges of a bipartite graph G. 

The “size” of a matching M is its cardinality M . 

Definition 3. Complete matching. A matching is called 

complete with respect to C if M C holds. A matching is 

called complete with respect to Z if M Z holds. 

Structural analysis is mainly concerned with Z-complete 

matchings, because such matching shows a way to determine 

all unknown variables of the system. 

In systems with redundancy, one method of matching can be 

used to generate a set of residuals  in (1) (see [5] for more 

details). 

B. Residual analysis with interval model 



Considering the structure of each ARR obtained using the 
structural analysis, a robust system identification approach 
will be used to obtain the mathematical expressions and 
parameters bounding their uncertainty.  The proposed robust 
identification approach expresses the ARR in regressor form 
as follows:  

( ) ( ) ( ) ( )y k k k e k φ θ      (2) 

where ( )kφ is the regressor vector which can contain any 

function of inputs and outputs, ( )e k is the additive noise 

bounded by a constant ( )e k  , ( )k   is the parameter 

vector, with   being an interval box centered in the nominal 

parameter values. It can be parameterized a particular case of a 

zonotope as follows: 

 0 :   n
Θ θ Hz z B (3) 

with nominal value 
0 ( )k ,matrix uncertainty shape H which 

is a diagonal matrix, and B is a unitary box composed by n 

unitary (B=[-1, 1]) interval vectors: 

(4) 

Then, the maximum and minimum values of the prediction are 

given by 

0

1
ˆ ˆ( ) ( ) ( )y k y k k  Hφ

0

1
ˆ ˆ( ) ( ) ( )y k y k k  Hφ      (5) 

where 
0 ( )y k is the model output prediction with nominal 

parameters
0 0( ) ( )y k k  , and it can be estimated with the 

least square method using regressor in form of straight line: y = 

a+bt. 

Then problem has transformed into solving the following 

optimization problem: 

min ( ( ))vol
H

Θ H   (6) 

subject to:  
0

1
ˆ ( ) ( ) ( )y k k y k  Hφ        

0

1
ˆ ( ) ( ) ( )y k k y k  Hφ     1,...,k N     

In the case of considering 0 H H with 0H being the 

pre-determined shape, the optimal solution is given: 

 

0

1,..., 0 1

ˆ( ) ( )
sup

( )k N

y k y k

k

   
  
 
 

φ H
        (7) 

ˆ( ) ( ) ( ) ( ) ( )o o or k y k y k y k k   φ θ     (8) 

where 
o
θ  are the nominal parameters. 

Taking into account modelling uncertainty, the detection 

test consists in evaluating the following condition  

( ) ( ), ( )
ooo
ii ir k r k r k 

  
           (9) 

where: ˆ ˆ( ) ( ) ( )
o o

ii i
r k y k y k   and ˆ( ) ( ) ( )o o

i i ir k y k y k   

while ˆ ( )
i

y k  and ˆ ( )iy k  are the bounds of the i
th

 output 

prediction calculated using (5). 

C. Fault diagnosis and prognosis 

Once the thresholds of residuals are determined according 

to (14), the diagnosis consists in checking in every time instant 

if the residual values are bounded by its corresponding interval 

model. Any violation of threshold of residuals is considered as 

a fault, and the isolation process will be developed. The 

isolation is based on the standard procedure of cross-checking 

the activated residuals with the theoretical fault signature 

matrix obtained from the structural analysis.  

In the prognosis part, the detection of fault is forecasted by 

evaluating the time (RUL) in which the threshold will be 

violated. The RUL of each residual is determined as the time 

for the current k such that 

 ( ) ( ), ( )    
  

ooo
ii i i iir k RUL r k RUL r k RUL        (10) 

 In this paper, it is proposed the application of interval 

model in the prognosis part, that is to say, the future evolution 

of residuals will have associated a corresponding interval. 

Thus, instead of one estimated value of RUL, there will be an 

interval of RUL estimated. In this case, the future intervals are 

estimated using the data till current instant. The predicted 

interval is starting to be estimated once the tendency of the 

deviation of residuals is appeared, and the regressor used is 

also a straight line in this case.  Thereby, the extremes of 

intervals RULi are interesting since they represent the earliest 

and latest instant in which the fault can be considered has 

appeared. 

IV. CASE STUDY DESCRIPTION

A. BLDC motor model 

To illustrate the proposed approach, a BLDC motor is used as 

case study. The BLDC motor is simulated using the equivalent 

circuit under the 2-phase conduction mode presented in Figure 

1. The model dynamics of a BLDC motor under the 2-phase

conduction model is given by the electrical equation and by the 

mechanical equations, giving the following matrix system 



written in the state-space equation form, where the state-space 

variables are the current (i) and the rotor speed (ωr) 

eq e

dceqeq eq

r r LT r

1
0

d

ω ωd 1
0
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where Req is the equivalent resistance of the simplified circuit, 

Vdc is the DC voltage, Leq is the equivalent inductance of the 

simplified circuit, TL is the resisting (or load) torque, J is the 

moment of inertia of the rotational system (BLDC motor and 

load), Br is the damping (or viscous friction) coefficient, kT is 

the torque coefficient and ke is the coefficient of the back 

electromotive force (emf). 

Figure 1. (a) equivalent circuit under the 2-phase conduction mode(each π/3 

rad).  (b) the simplified mechanical part of the motor, 

In this case study, it is considered that an accurate 

physical-based model is not available for the diagnosis system 

design. As an alternative, a structural model is able to be used 

  (14) 

This behavioural model of the BLDC motor leads to the 

structural graph presented in Figure 2. 

Figure 2: Structure graph of the BLDC motor system 

The grey circles represent the inputs and outputs which are 
known variables, and the rest of circles symbolize all the 
unknown internal variables. 

B. Structural Analysis 

The basic tool for the structural analysis is the concept of 

matching in bipartite graphs as discussed in Section III.A. In 

loose terms, a matching is a causal assignment which 

associates with every unknown system variable a constraint 

that can be used to determine the variable.  

In this case study, the matching process is done firstly with an 

intuitive simple algorithm, referred to as “ranking” (see [5] for 

more details). This algorithm uses the causal interpretation of 

matchings, but it cannot handle with the cases where 

subsystems are so closely coupled that a set of constraints and 

variables need be solved simultaneously. The obtained 

matching is the following one: 

TABLE I. OBTAINED MATCHING 

As the ranking algorithm may stop when encountering strongly 

connected subgraphs, which consist of constraints and 

unknown variables that need be solved simultaneously, 

another more generic approach to matching is introduced later, 

which is called the Minimal Structurally Over-determined 

(MSO) set approach (see [5] for more details). This approach 

consists of finding all subsets of an over-constrained structure 

graph, which have exactly one constraint more than the 

just-constrained subsystem.  

Algorithm determines the four MSO sets listed below. 

TABLE II. MSO SETS 

The table has to be interpreted as follows: The MSO set M1 

includes the constraint e2 (i, ωr, ωr’) = 0 as an ARR and uses e3 

to calculate i, e4 to calculate ωr and e6 to calculate ωr’. Each of 

the MSO sets is, by the definition of MSO subsystem, also an 

ARR. The MSO approach finds four MSO sets for this case. 

By comparison, the Ranking Algorithm finds one complete 

matching of the unknown variables and two ARRs, e1 and e2 in 

the Table II. 



V. RESULTS 

A. BLDC motor residuals 

Considering the structural model, and using the second method 

of generation of structured residuals “the MSO approach” 

proposed in the previous section, the following residuals can 

be generated:   
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The next step is to find the analytical expressions of these 

residuals from the input and measured data by model fitting of 

(15) the obtained expressions are the following: 
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These coefficients in expressions are nominal values 
0 ( )k  . 

These residuals have been discretized in time for real-time 

implementation. Threshold values associated to residuals are 

computed using the interval model of computed residuals in 

fault free scenarios. 

From the previous four residuals, considering the faults 

described in the following [6], 

- faults in sensors: position (fθ) and current (fi) 

- parametric faults: resistance (fR), inductance (fL), 

friction (fB) and inertia (fJ) 

- systems faults: voltage supply (fVdc), load (fLoad) 

the fault signature matrix (FSM) presented in Table IV can be 

obtained. 

TABLE III. FAULT SIGNATURE MATRIX 

fR fL fVdc fB fJ fθ fi fLoad

r1 0 0 0 1 1 1 1 1 

r2 1 1 1 0 0 1 1 0 

r3 1 1 1 1 1 1 0 1 

r4 1 1 1 1 1 0 1 1 

B. Results of diagnosis 

Scenario 1: “Encoder stuck fault”[6] 

The position encoder stuck fault scenario consists in losing 

20000 pulses of the encoder (with a resolution of 1024 pulses 

per revolution) during a small time interval,[6] in this case 

from 10 to 11 seconds (see Figure 3). From the FSM, it can be 

observed that this scenario will cause the activation of the 

residuals r1, r2 and r3.

Figure 11: Residual r1 evolution 

         Figure 12: Residual r2 evolution 

Figure 13: Residual r3 evolution 

C. Results of prognosis 

Scenario 2: “Incipient leak in the current sensor”[6] 

An incipient fault in the current sensor produces a big error 

until 0.9A after 100 seconds of the simulation scenario [6]. 

This fault causes a linear deviation on residuals r1, r2 and r4 as 

we can see in the FSM. In the Table V, it is seen that the RULs 

of residuals have its corresponding intervals thanks to the 



introduction of interval model concept. It contributes the 

considerable reduction of fault detection time and isolation 

time. 

TABLE IV. PROGNOSIS RESULTS 

Residual 

Prognosis 

r1 r2 r3 r4 

RUL  [1.07, 23.4] s [1.01, 18.8] 

s 

Not 

affected 

[0.8, 19] s 

Fault 

detection 

Anticipation time of 0.8 seconds to the real fault detection 

Fault 

isolation 

Anticipation time of 1.07 seconds to the real fault isolation 

Current 

instant 

10 s 

Figure 15: Evolution of r1 current fault 

Figure 16: Evolution of r2 current fault 

VI. CONCLUSION

The current work has proposed a hybrid approach that 

combines data-driven techniques and structural analysis 

methods. The proposed method involves two phases.. Firstly, 

the residuals structure is obtained from the structural model of 

the system using structural analysis without using 

mathematical models Secondly, the analytical expressions of 

residuals are obtained from available historical data using a 

robust identification approach. The diagnosis part consists in 

checking the evolution of residuals during the process, any 

inconsistency of residuals can be considered as a fault, so that 

the thresholds for each residual are introduced. The residuals 

are obtained using interval model that takes into account the 

uncertainty and noises affecting the system. Once the fault is 

detected, also it is possible to determine which fault occurred 

in the system using the FSM (Fault Signature Matrix) obtained 

from the structural analysis of the system and residual 

generation. The prognosis part is developed by the same steps, 

but instead of considering the actual situation, it evaluates the 

tendency of deviation respect the nominal operation condition 

to predict the future residual inconsistency, allowing 

estimating the RUL (Remaining Useful Life) of the system. 

The interval model is also introduced for the future prediction 

of residuals, thus there will be an interval of RUL for each 

residual which contains the maximum and minimum RUL 

values. The proposed approach has satisfactory applied to a 

brushless DC motor (BLDC) used as a case study in this paper. 

As future research, the proposed approach will be improved by 

using machine learning techniques to obtain the expressions of 

the ARRs from data. 

Figure 17: Evolution of r4 current fault 
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