

Understanding Patterns for System-of-
Systems Integration

Rick Kazman
Claus Nielsen
Klaus Schmid

December 2013

TECHNICAL NOTE
CMU/SEI-2013-TR-017

Software Engineering and Acquisition Practices

http://www.sei.cmu.edu

http://www.sei.cmu.edu

Copyright 2013 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract

No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineer-

ing Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the United States Department of Defense.

This report was prepared for the

SEI Administrative Agent

AFLCMC/PZM

20 Schilling Circle, Bldg 1305, 3rd floor

Hanscom AFB, MA 01731-2125

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING

INSTITUTE MATERIAL IS FURNISHEDON AN “AS-IS” BASIS. CARNEGIE MELLON

UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR

PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE

OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,

OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted be-

low.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material

for internal use is granted, provided the copyright and “No Warranty” statements are included with all

reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely dis-

tributed in written or electronic form without requesting formal permission. Permission is required for

any other external and/or commercial use. Requests for permission should be directed to the Software

Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM-0000474

mailto:permission@sei.cmu.edu

CMU/SEI-2013-TR-017 | i

Table of Contents

Abstract vii

1 Introduction 1
1.1 The Architectural Problem 2
1.2 Contribution of This Report 2

2 Categorization of Integration Approaches 4

3 Defining the System-of-System Development Context 6
3.1 System-of-Systems Scenarios 6

3.1.1 System-of-Systems Scope 6
3.1.2 Development Context 6
3.1.3 Integration Purpose 8

4 Categorization of Technical Integration Characteristics 10
4.1 Using the Technical Categorization 10
4.2 Integration Level 10
4.3 Data Abstraction Level 11
4.4 Data Level Integration 11
4.5 Interaction Style 12
4.6 Quality of Integration 13

5 Pattern Overview 15
5.1 Pattern Example 15
5.2 Pattern Template 16
5.3 Salesforce Integration Patterns 18

5.3.1 User Interface Update Based on Data Changes 18
5.3.2 Remote Process Invocation – Request and Reply 19
5.3.3 Batch Data Synchronization 20

5.4 Data Warehouse Integration Patterns 21
5.4.1 History Pattern 21

5.5 SAP3 Integration Patterns 22
5.5.1 SOA (Service-Oriented Architecture) 22
5.5.2 Peer-to-Peer (P2P) 23
5.5.3 Broker 24
5.5.4 Publish-Subscribe 25

5.6 Pattern-Oriented Software Architecture 26
5.6.1 Blackboard 26

5.7 Messaging 27
5.7.1 Pipes and Filters 27
5.7.2 Dynamic Router 28
5.7.3 Canonical Data Model 30

5.8 Patterns from Enterprise Application Architecture 31
5.8.1 Remote Façade 31

5.9 Cooperative Platforms 32
5.9.1 Collaborative Virtual Environments 32

5.10 Summary of Patterns 33

6 Conclusions/Future Work 38

Appendix: Levels of Information System Interoperability 41

CMU/SEI-2013-TR-017 | ii

References/Bibliography 43

CMU/SEI-2013-TR-017 | iii

List of Figures

Figure 1: LISI Levels 41

CMU/SEI-2013-TR-017 | iv

CMU/SEI-2013-TR-017 | v

List of Tables

Table 1: Data and Control Choices in a SoS 5

Table 2: Matrix for Development Context 8

Table 3: Broker Pattern Solution 16

Table 4: Template for Integration Pattern Matrix 17

Table 5: Matrix for User Interface Based on Data Changes 18

Table 6: Matrix for Remote Process Invocation 19

Table 7: Matrix for Batch Data Synchronization 20

Table 8: Matrix for History Pattern 22

Table 9: Matrix for SOA Pattern 23

Table 10: Matrix for Peer-to-Peer Pattern 24

Table 11: Matrix for Broker Pattern 25

Table 12: Matrix for Publish-Subscribe Pattern 26

Table 13: Matrix for Blackboard Pattern 27

Table 14: Matrix for Pipes and Filters Pattern 28

Table 15: Matrix for Dynamic Router Pattern 29

Table 16: Matrix for Canonical Data Model Pattern 30

Table 17: Matrix for Remote Façade Pattern 31

Table 18: Matrix for Collaborative Virtual Environment 33

Table 19: Summary of All Patterns 34

CMU/SEI-2013-TR-017 | vi

CMU/SEI-2013-TR-017 | vii

Abstract

Creating a successful system of systems—one that meets the needs of its stakeholders today and
can evolve and scale to sustain those stakeholders into the future—is a very complex engineering
challenge. In a system of systems (SoS), one of the biggest challenges is in achieving cooperation
and interoperation among systems through some form of system integration. Previous work has
approached the information system integration challenge in a generic way, not specific to a SoS
context, or has provided only a limited range of solutions. This technical report discusses how an
IT architect can address the SoS integration challenge from an architectural perspective; it also
illustrates the breadth of potential solutions to the challenge through a categorization of SoS soft-
ware architectural patterns. To demonstrate the practical relevance of this work, the authors in-
stantiate this categorization with a set of patterns described in both the research literature and by
companies that support SoS platforms.

CMU/SEI-2013-TR-017 | viii

CMU/SEI-2013-TR-017 | 1

1 Introduction

Put simply, a system of systems (SoS) is a set of systems that are cooperating and interoperating,
while the different systems are simultaneously working as independent entities (and thus not only
as parts of the integrated system). This is a shorthand way to say that a SoS can be defined as
Maier does, below [Maier 1996].

 A system of systems is an assemblage of components which individually may be regarded as
systems, and which possesses five additional properties:

1. Operational Independence of the Components: If the system of systems is disassembled into
its component systems, the component systems must be able to usefully operate independent-
ly. That is, the components fulfill customer-operator purposes on their own.

2. Managerial Independence of the Components: The component systems not only can operate
independently, they do operate independently. The component systems are separately ac-
quired and integrated but maintain a continuing operational existence independent of the sys-
tem of systems.

3. Evolutionary Development: The system of systems does not appear fully formed. Its devel-
opment and existence is evolutionary with functions and purposes added, removed, and mod-
ified with experience.

4. Emergent Behavior: The system of systems performs functions and carries out purposes that
do not reside in any component system. These behaviors are emergent properties of the en-
tire system of systems and cannot be localized to any component system. The principal pur-
poses of the systems of systems are fulfilled by these behaviors.

5. Geographic Distribution: The geographic extent of the component systems is large. Large is
a nebulous and relative concept as communication capabilities increase, but at a minimum it
means that the components can readily exchange only information and not substantial quan-
tities of mass or energy.

The paradox of systems being independent while at the same time being part of a SoS can be ex-
plained by realizing that a system in a SoS is playing simultaneously different roles in different
interactions (typically based on different use cases). Thus, a SoS must be regarded as integrated
only in the context of some use cases. Therefore, when one is making design decisions about a
SoS, understanding those use cases is important.

As we can see in the above description of a SoS, cooperation (interoperation) among systems is an
important criterion. To achieve cooperation among systems, we must perform some form of inte-
gration of the systems. In fact, no SoS is possible without integration. This integration problem is
the focus of our current work; this report describes a primary objective of that work: supporting
software engineers, and in particular software architects, to perform the integration of systems to
become a system of systems. In this report, we describe a first step towards this end: characterizing
the integration problem and illustrating the breadth of solution approaches in terms of software
architectural integration patterns. It should be noted that SoS integration is not only a technical
challenge, but also poses significant challenges from an organizational, managerial, and social
perspective. However, in this technical note, we will focus solely on the technical perspective.

CMU/SEI-2013-TR-017 | 2

That is, we are explicitly avoiding SoS patterns that focus primarily on people, processes, and
organizations in a SoS.

While this report has a strong focus on the analysis of systems of systems, this is by no means the
only application area of the work described here. As systems of systems are strongly related to
concepts such as ecosystems or platforms, and integration plays an important role in those con-

texts, the problems we investigate here are of prime importance in these contexts as well.

1.1 The Architectural Problem

Our focus in this report is on the perspective of the IT architect: we want to improve how the archi-
tect can address the integration problem in a SoS context from a software architectural perspective.
An obvious question is whether this is necessary at all. Integration has already been addressed in the
literature in many ways, in particular in books such as Software Architecture in Practice [Bass 2012]
and Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions
[Hohpe 2003] and similar publications. However, the problem is that these publications either focus
on the integration problem in a generic way, as they are not specific to a SoS context, or they pro-
vide only limited types of solutions that already make many implicit assumptions about the problem
(which are not always appropriate in a SoS context). This makes it necessary to provide specialized
support to the integration architect in a SoS context. Throughout this report, we will focus on the
integration of systems and hence on patterns that describe the interaction of systems.

To characterize the architectural problem in a SoS context, we first must differentiate two funda-
mentally different situations: integrating a new system into an existing SoS and establishing a new
SoS. While related, these fundamentally different situations bring with them different constraints.
Further, design constraints are common across the SoS landscape: for example, the need to find
architectural solutions that provide integration success while still allowing for an organizational
independence of the individual systems. As a major objective of this report, we aim to character-
ize the architecting context and the design constraints of the integration problem more precisely
than previous work has done.

While existing pattern collections for addressing the integration problem are useful, they do not
cover the range of issues we think are important. In particular, integration in a SoS context is
much broader than mere (message-oriented) information exchange. It can happen on many differ-
ent levels: for example, in the database layer, the user interface (UI), and the business logic. Im-
portant developments support this multi-level integration. For example, the SOA (Service Orient-
ed Architecture) paradigm aims at integrating and establishing interaction between separate
applications via data exchange among loosely coupled services. An older example is OLE (Object
Linking and Embedding), a technique introduced in Microsoft products to enable interface sharing
without overly integrating the individual systems. However, in a SoS context only a small subset
of such techniques is typically discussed.

1.2 Contribution of This Report

The focus in this report is mostly on classifying and bounding the problem, less on providing a
complete solution by itself. Thus, we provide a classification of the SoS situation to impart an
improved understanding of the architecture context. This classification also enables us to describe

CMU/SEI-2013-TR-017 | 3

relevant design constraints and the design space for systems of systems more effectively than in
previous work.

We also illustrate the breadth of potential solutions to the SoS integration problem through a set
of patterns. This collection of patterns is not meant to be complete, but to be illustrative of how a
collection of SoS integration patterns might be created. We provide an initial set of relevant pat-
terns that aims to outline the space of SoS integration patterns. One way we demonstrate the prac-
tical relevance of our work is by including patterns described in the research literature, as well as
patterns described by companies that support platform SoS solutions, such as SAP or Salesforce
[Sal 2012].

There are many patterns catalogs, and even a few focused on systems of systems (such as the
Network Centric Operations Industry Consortium catalog1). But the point of our work is not to
provide yet another catalog; it is to provide a framework for reasoning about, analyzing, compar-
ing, and choosing patterns for the SoS context.

As future work (and hence not as part of this report), we aim to derive both a more detailed meth-
od for developing an integration architecture in a SoS context and a more comprehensive collec-
tion of integration patterns.

1 https://www.ncoic.org/technology/deliverables/patterns/

https://www.ncoic.org/technology/deliverables/patterns/

CMU/SEI-2013-TR-017 | 4

2 Categorization of Integration Approaches

Before choosing a SoS-wide integration pattern, an architect must be clear on the form of integra-
tion to be achieved, which will influence greatly the form of integration pattern chosen. While the
need for clarity of purpose may seem obvious, the choice of pattern is not a straightforward deci-
sion for two reasons:

1. According to well-established SoS taxonomies (e.g., those presented by Maier), the individ-
ual elements within systems of systems have different purposes and control structures [Maier
1996]. Systems of systems may be broadly categorized as virtual, collaborative, acknowl-
edged, or directed [DoD 2012]. The architect must determine, early on in the design process,
which kind of SoS is being planned, as this will guide key architectural decisions.

2. Architectural patterns are collections of design decisions. Developers seldom clearly explain
the motivations for creating them and the forces involved in using them. So the architect
must endeavor to match the affordances—strengths and weaknesses—of a pattern to its an-
ticipated use.

Two aspects of design choice are central to the selection of the main SoS patterns for integration:
how data will be shared and how control will be managed. Let us examine each in turn.

Data may be common and shared or private and isolated. If a SoS has common, shared data then
any participating system can access any data. This is often the case in modern enterprise systems
of systems that use a common data warehouse. Of course, most systems of systems will be some-
where in between—few systems will externalize all of their data and allow any other system to
access it, and a SoS that shares no data is inconceivable—how would the participating systems
interact?

Control within individual activity sequences that span systems may be, at one extreme, a strictly
hierarchical arrangement where one system controls others.2 At the other end of the spectrum, it
may be the case that no one system may control another—each system is autonomous and exer-
cises discretion regarding its own actions. Just as with data, there may be points within this spec-
trum where individuals operate within a loose hierarchy, but still exercise some individual control.

Such considerations lead us to the categorization in Table 1, where we classify the different kinds
of systems of systems that appear at each endpoint of the axes. Of course, many intermediate
points are possible as well, but we simply mean to illustrate the pure forms of each decision re-
garding control and data.

To reiterate, the systems at the extremes of either dimension are likely to be quite rare, perhaps
even unthinkable. Most real-world systems of systems will require choices along these control

2 This might seem counterintuitive at first, as a SoS is defined as one where the various systems of the SoS are

managerially and operationally independent. However, here we take the perspective of individual interactions,
not of the systems as a whole. For example, an online shop and a credit card payment system are independent,
but within the sales transaction the online shop uses the payment system as part of the payment process. Thus,
from the perspective of the specific activity sequence, the online shop wields (limited) control.

CMU/SEI-2013-TR-017 | 5

and data dimensions that reflect their burden of legacy systems, their ownership, and the quality
goals that their architects are trying to achieve.

Table 1: Data and Control Choices in a SoS

Control

Data

Shared Isolated

Hierarchical Information system based on call-
return paradigm with shared memory

Traditional information system
based on call-return paradigm

None Data-centric system (e.g., data-
warehouse-based)

Agent-based system

While virtually every objective is possible to achieve in a computational system, given enough
time and money, the choice of a specific architectural pattern will make some of the control and
data objectives easier or harder to achieve. For example, service-oriented architectures or agent-
based architectures tend to be less suited to systems where precise limits of resources must be tak-
en into account. Typically, a tighter integration, going hand in hand with more control in activity
sequences, is desirable when quality attributes such as performance and availability are architec-
tural drivers (e.g., in systems with hard real-time deadlines or in safety-critical systems). In such
cases, an architect would be well advised to consider architectures with mechanisms that facilitate
greater degrees of control, such as an architecture based on remote procedure call (RPC). On the
other hand, architectures with highly hierarchical, centralized control tend to limit creativity and
exploration, and hence evolution.

Since the choice of a system-wide pattern affects so much in a SoS environment, this is a critical
decision for an architect. We do not intend the categorization in Table 1 to aid directly in choos-
ing a pattern but rather to illustrate the issues involved in such a choice. In the next section, we
describe a number of characteristics that will have a direct effect on the integration and interop-
eration of systems within a SoS context.

CMU/SEI-2013-TR-017 | 6

3 Defining the System-of-System Development Context

As we discussed in the previous sections, the first step in engineering a system of systems is to
understand the kind of system one wants to develop and its development context. Thus, it is im-
portant that we provide a set of categorizations that help to define more precisely the development
context and constraints. These categories will provide one basis for categorizing the SoS integra-
tion patterns that Section 5 describes.

3.1 System-of-Systems Scenarios

There are many possible ways to describe the engineering context of a SoS development. We
found the following two particularly important, as they significantly restrict the design space and
can be determined early on:

• SoS scope: whether we want to develop only a new system within a SoS context or to estab-
lish a completely new SoS

• Development context: whether we must take previous development into account

3.1.1 System-of-Systems Scope

System-of-systems scope involves a fundamental decision, as it determines whether we

• must take into account preexisting decisions regarding the SoS design principles, or

• are in a position to actively make such decisions, as the SoS still requires definition

While this decision might appear as a binary decision, in practice it is often more complex. For
example, a new SoS usually is not developed without first establishing systems in this context, so
the decisions are actually about both the SoS and individual systems. In addition, the complexity
and scope of systems of systems may vary widely, leading to correspondingly different impacts

on the design space.

3.1.2 Development Context

The second dimension of our categorization is critical to understanding the development context,
as we describe above, and the type of decisions we can still make after this context is determined.
Especially in a SoS context, systems are often integrated incrementally and not built initially with
the specific SoS in mind. This may reduce significantly the design space available to the system

integrator. Thus, we differentiate the following three subcategories of development contexts:

1. Greenfield: there are no preexisting implementations that restrict the design space. Thus,
whatever approach to development we choose we can implement. Greenfield implementation
for a SoS means the complete SoS must be newly constructed and thus, there are no architec-
tural constraints besides those that are a consequence of the SoS purpose. For an individual
system, Greenfield means that only this specific system must be newly constructed; the SoS
context still may be preexisting. In this case, the relevant architectural constraints derive
from the preexisting parts of the SoS context, but no further constraints apply.

CMU/SEI-2013-TR-017 | 7

If we consider the enterprise software infrastructure of an enterprise as a SoS,3 then a new
SoS in a Greenfield scenario would be one that we are able to design totally from scratch;
therefore all systems could be entirely redesigned.4 A Greenfield system in this context
would mean that an individual system (e.g., the procurement system) would be completely
newly constructed.

2. Brownfield: there exists something, but we can (in principle) modify the realization of it.
Here access to the existing implementation is available, and it is, in principle, possible to al-
ter this implementation. While theoretically this situation allows for arbitrary modifications,
typically only minimal adaptations are desirable due to cost considerations. Thus, this sce-
nario favors integration approaches that require only changes of rather limited system scope.
For a SoS, this means that we could adapt all the existing systems. In particular, we could in-
troduce or replace a common backbone (e.g., middleware). A typical example of this would
be the move to web services or a SOA conversion in a company. Typically, this goes along
with introducing new application program interfaces (APIs) for the constituent systems and
deprecating old ones. For an individual system, it means that we have the specific code and
can alter it, for example, in order to introduce connections to new systems (SoS constitu-
ents).

If we consider again the enterprise software infrastructure introduced above, a Brownfield
scenario occurs in a SoS context if the company did initially build its own SoS that now must
be modified (e.g., by introducing an ESB5 backbone). A Brownfield scenario also occurs if
one of the constituent systems, for which there is full access to the implementation, must be
modified while leaving the remaining SoS as is.

3. Closed Source: an implementation already exists, but we do not have access to change it.

In this case, the design space is significantly restricted, implying that mainly external adapt-
ers can be used, if the existing implementations do not already provide the required integra-
tion facilities. This implication holds both for a closed- source SoS context as well as for a
closed- source system. More precisely, it usually will not be possible to address a closed
source SoS context anyway. While it would be possible to modify the integration technology
for the SoS, this would provide limited benefit, as all systems would need to access this new
integration technology through translators. In a closed- source system context, we might in-
tegrate an existing system with the SoS by creating a facade and, through the facade, connect
it without the need to alter the implementation of the system.

If we again consider our enterprise software infrastructure mentioned above, in a closed
source SoS context, all software would have been bought, or the conscious decision made
that no modification of existing systems would take place. As we stated above, the modifica-
tion of the whole SoS rarely will make sense in such a case. An exception might exist in
connecting the SoS as a whole to other, external systems. Web-service-based integration
comes to mind in this case. More practical might be the case for integrating a new account-

3 We take the point of view here that, since in large organizations the individual systems might be under the

control of different sub-organizations (different disciplines or countries), this system might qualify as a SoS.

4 Of course, in practice, a company hardly will create the whole systems from scratch, but acquire many systems,
making a pure Greenfield approach rather unlikely.

5 Enterprise Service Bus, an integration infrastructure that provides message- and event-based interactions in a
heterogeneous environment, often is related to service-oriented architectures.

CMU/SEI-2013-TR-017 | 8

ing system or perhaps an accounting system that is not yet deeply integrated with the re-
mainder of the enterprise systems. In the case of a third-party development, this would be a
typical closed source system context.

Table 2 summarizes this range of possibilities.

Table 2: Matrix for Development Context

 Greenfield Brownfield Closed Source

System of
Systems

Create a new system

of system without the

need to take legacy

into account (e.g., if a

new organization is

set up, or a new plat-

form, such as web

services, is intro-

duced).

Establish a new SoS by cre-

ating new APIs and depre-

cating existing APIs. The

integration of new APIs

requires deep modifications

(e.g., the move to web ser-

vices, or SOA conversions

in companies).

Wrap existing system in a way

that creates interface compli-

ance with the existing environ-

ment (e.g., SOA conversions

where existing systems are

wrapped instead of altered, .net

in the Windows environment,

and sometimes web services).

System

(in SoS)

Create a new system

to be integrated into

an existing (at least

defined) SoS.

Adapt an existing system

such that it can be integrated

into a SoS. This could be

done, for example, by inte-

grating necessary web ser-

vice interfaces into a legacy

system.

An existing system must be

integrated in a SoS, but due to a

lack of access to its implemen-

tation (or for other reasons dis-

allowing alteration) it cannot be

adapted. So, it must be wrapped

in some way.

As the discussion above illustrates, the different situations provide significantly different architec-
tural constraints that determine the acceptable solutions to the integration problem. However, the
border between these various scenarios is often vague in practice. Moreover, existing integration
capabilities of the systems must be taken into account. For example, an existing system might
already provide a web service interface, so no alteration is needed for moving towards web ser-

vice-based integration.

3.1.3 Integration Purpose

Another issue, which requires early clarification, is the purpose of integration among the systems.
This issue will often require definition on two levels: the purpose of the integration of the system
versus the purpose of an individual interface. We identified the following range of potential pur-
poses.

• One-directional information exchange (inform): One system must provide information to
one or more systems.

• Bi-directional information exchange (sync): Two (or more) systems must exchange infor-
mation to keep each other in sync. There is no clear provider-consumer relation among the
systems (summarized over all information exchanges).

CMU/SEI-2013-TR-017 | 9

• Control: One system controls the other (the direction may change over time or different as-
pects might be controlled in different directions). Unlike in information exchange, where the
receiving system determines how to act based on the information, in this case the sending sys-
tem already determines how the receiving system should react.

• Negotiation: Multiple systems must negotiate to achieve their particular purpose. This typi-
cally involves particular patterns, such as auctions, and may include the previous purposes as
special cases (e.g., systems negotiate to determine which instance may exert controlling pow-
er).

This list is, of course, not necessarily exhaustive. However, identifying the particular purpose of
the integration is important to determining an adequate pattern, as individual (low-level) patterns
typically support only a specific purpose.

CMU/SEI-2013-TR-017 | 10

4 Categorization of Technical Integration Characteristics

The categorizations we presented in Sections 2 and 3 focused mainly on describing the develop-
ment context and the overall goals of the integration problem. While these are important to under-
standing the overall context, they are still rather abstract. In this section, we emphasize the more
specific technical characteristics that may relate to individual interactions. Of course, this catego-
rization must be interpreted “on top of” the previous ones.

4.1 Using the Technical Categorization

The goal of this technology-oriented classification is to provide a detailed categorization that can
be useful for determining relevant patterns for solving integration problems. Note that the catego-
rization we present here is of a more fine-grained nature than the general ones provided in the
previous sections. It should not be applied on a system-wide level to determine the integration of a
system as a whole in a SoS context; rather, it should be applied to an individual aspect of the inte-
gration.

We will illustrate the application with examples. In Section 4.2, we discuss different purposes for
integration, such as information exchange or user-interface sharing. Of course, within the integra-
tion of a single system into a SoS, multiple goals may apply for different parts of the system. In
this case, it is important first to identify the different aspects of the system and how strongly they
should be integrated. This information is then used to determine not a single pattern, but a whole
set of patterns that support the integration for the different integration levels. Of course, each of
the patterns must be compatible with the system-wide context description that we presented in the
previous sections. In the case of data abstraction level, we also see that the different levels build
on top of each other; thus, multiple layers of patterns might apply simultaneously to solve the
whole set of problems, even for a single aspect of integration.

4.2 Integration Level

The integration level aims to describe how deeply the different applications are integrated with
each other. As there is no generally accepted set of categories for integration, we devised the cate-
gories below.

• Information Exchange (Data Level): one system provides information that is used in anoth-
er system as part of its normal processing. The technical problem here is simply the data ex-
change, or the common data access. The categorizations in Section 4.3 may offer further re-
finement of this category.

• Basic Behavior Interaction (Service Level): one system makes use of the capabilities of
another. This may be simple service requests or requests with reply. Interactions with a great-
er complexity are deferred to the next level. Basic behavior interaction also needs to address
information exchange as part of the interaction for communicating needed information to the
peers.

CMU/SEI-2013-TR-017 | 11

• Complex Behavior Interaction (Logic/Business Process Level): in this case there is a com-
plex interaction among the different systems. In the context of service-oriented architecture,
this is often described as choreography and orchestration. Complex behavior interaction dif-
fers from basic behavior interaction in that it typically spans across a number of individual in-
teractions and later ones may depend on earlier ones. Complex behavior interaction may in-
clude basic behavior interaction and information exchange as sub parts.

• User Interface Sharing (UI Level): in this case multiple systems may need to share the user
interface. These might be different portals in a web-based interface or it may be that even
within a single user interface some regions belong to different systems. A classical way to do
this is OLE integration in and with the Office suite. In this case the different systems might
not even know about each other.

4.3 Data Abstraction Level

For communication and integration among systems to occur, the mutual understanding of any
communicated data is important and requires a common basis on multiple levels. Typically the
following levels are differentiated [COE 2010, p.18]:

• Structural: defined as adherence to relevant standards that describe data exchange. This
might be a low-level standard that does not necessarily determine the details of the data for-
mat.

• Syntactic: defined as data exchange occurring with the appropriate formats. Often standards
will define both structural and syntactic aspects. In particular we will use syntactic to denote
that higher level data types are appropriately mapped.

• Semantic: defined as providing the correct data as part of the data exchange. For example,
the customer address mentioned above is really a known customer address and the correct one
that should be used here as part of the processing (the latter is also called relevant [COE
2010]).

Most patterns that we could identify do not by themselves enforce a given level. Thus, additional
measures must be taken to ensure a given abstraction level.

4.4 Data Level Integration

Data level integration addresses how integration of data is performed; it has a significant impact
on the strength of coupling of the individual systems and hence of the appropriate integration pat-
terns. However, data level integration requires that the decision on how integration of data is per-
formed can already be made.

• File Transfer: This is the mechanism that induces the lowest amount of coupling. Data is
written to some file in a defined format at a specified place by one application and then
read under the same assumptions by a different system. However, this mechanism restricts
the range of applicability of the data level integration approach, as no events are generated
that can be used to communicate the availability of data among the different systems.

• Message-Exchange: Integration is achieved by using messages to communicate among the
individual systems. This is the approach emphasized by Hohpe and Woolf as well as other

CMU/SEI-2013-TR-017 | 12

researchers [Hohpe 2003]. An advantage is the loose coupling that such a pattern brings
about.

• Streams: Often the systems must communicate through continuous streams of data. Typical
examples are video streams or streams of price data at stock exchanges. While, in princi-
ple, streaming can be seen as a consecutive sequence of messages, it brings about some
special criteria; these include order preservation and minimizing delays and interruptions,
often on a millisecond or microsecond level, combined with the limitation of being able to
access only a very limited window of a potentially infinite data stream at any point in time.

• Common Data: This method is fundamentally different from the previous two. As data is
shared and accessed in an interleaving way by different entities, the guarantee of SoS-level
consistency becomes a difficult issue, as it must be ensured that different applications use
and interpret the data in the same way. However, this method also allows for additional in-
tegration applications, such as cross-application data mining.

When applying this categorization, one should again be aware that a single system might well use
multiple of these methods to share data concurrently, typically for different types of data. Thus, an
individual pattern will address only one of these data level integration modes, and only for the
relevant part of the information.

4.5 Interaction Style

Interaction style describes the form of interaction implied by the pattern, and is strongly related to
the Integration Purpose (see Section 3.1.3). However, here we focus on the style of integration of
a single system. We discuss the different interaction styles roughly in the order of the increasing
coupling that they induce.

Send: uni-directional sending of information from one system to one or multiple others in
a SoS context.

Call: not only transfers information, but also triggers certain actions. By itself it is asyn-
chronous, but often it will either implement a call-return or call/call-back approach.

Call-Return: refines the call by synchronously transferring control to a different system
(typically this happens only on a single thread) and waiting until the other system
answers and returns a result.

Call/Call-Back: an asynchronous variant of the above, where the reaction of the called
system is not transferred as a return to the original call, but indirectly by perform-
ing a separate call back to the originating system at a later point in time.

Time-Based: a form of interaction that uses timing to synchronize behavior among the
participating systems. In one form of this style, one system provides a file at cer-
tain points in time that is read at specific points in time by a different system. Here
the time frame is typically every 24 hours or similarly large. Other variants of this
form include polling or time-slice-based bus sharing, where the time frame is typi-
cally in the millisecond range. The drawback of this approach is that the various
systems must be synchronized by implicit design decisions, such as the position of
time slots.

CMU/SEI-2013-TR-017 | 13

Multi-Call Protocols: an extension of the call-based interaction. While the above styles
focus on individual interactions, multi-call protocols describe more complex inter-
action scenarios, for example 1-N messaging. For example, we will typically see
more complex interactions in negotiations (see Section 3.1.3). This subsumes a
large number of different protocols and could in principle be further subdivided.

The different interaction styles relate to the integration purposes described in Section 3.1.3. For
example, one-directional information exchange will usually be realized by send or time-based
interaction. Bi-directional information exchange is typically implemented by send, call-return, and
call/call-back. Control is typically realized through use of patterns that support some form of call.
Negotiation typically relies on multi-call protocols.

4.6 Quality of Integration

Finally, the quality that must be ensured as part of the integration is an important criterion. While
integration and interoperability are typically qualities in their own right [Bass 2012], and these are
the main foci of integration patterns, often additional qualities must be ensured with respect to the
integration.6 Below we identify the additional qualities that we have observed as being the most
important and common in integration patterns.

Reliability: requires that the integration works reliably, meaning that at least the system
initiating the communication is informed if the integration breaks down (e.g., if the
communication fails).

Performance: requires that the integration perform adequately; in particular, that the inte-
gration activities do not require too many intermediate steps or excessive execu-
tions and data transfers.

Security: requires that the integration is secure; for example, no alteration of the ex-
changed information may occur, and it must be possible to assure the source of the
data.

Availability: requires that the integration source / destination remain available.

Interoperability: assures the connectivity and information interchange among systems. Interop-
erability concerns technology and engineering challenges related to communication, data

management, semantics, architectural mismatches, and similar aspects.

Scalability: requires that the integration is scalable across large numbers of systems.
Thus, the integration will work correctly if many different systems are integrated,
many instances of individual systems are integrated, or much information is ex-
changed (a performance consideration).

Manageability: requires that it is easy to manage the integration. For example, the ability
to easily change the peers of the integration might support this.

Consistency: ensures the validity and integrity of the data shared between systems when
integrated.

6 This should not be confused with the qualities of the application themselves.

CMU/SEI-2013-TR-017 | 14

The above is a non-exhaustive list of qualities that stakeholders might demand in combination
with the integration. An individual pattern might support a quality in combination with ensuring
the integration, or additional patterns and tactics might support these qualities, and the integration
pattern can be combined with those.

CMU/SEI-2013-TR-017 | 15

5 Pattern Overview

Based on the discussions and descriptions of categories in Sections 3 and 4 and Appendix A, we
describe in this section a template for characterizing different integration patterns and provide a
collection of different patterns. This set of patterns is far from complete; we intend that they mere-
ly exemplify the broad scope of integration patterns. As evidence that this is a reasonable repre-
sentative set of patterns, we note that the patterns presented in this report cover the space of pos-
sible pattern categories, as we will discuss in Section 5.10.

Before we present our patterns and our template, we first give an example of how patterns are
described in the research literature and in the patterns community.

5.1 Pattern Example

This example of the Broker pattern is adapted from the book by Bass and colleagues [Bass 2012].
While there is no universally agreed-upon format for presenting patterns, this example contains
the major components found in all patterns catalogs.

Context: Many systems are constructed from a collection of services distributed across multiple
servers. Implementing these systems is complex because you need to worry about how the sys-
tems will interoperate—how they will connect to each other and how they will exchange infor-
mation—as well as the availability of the component services.

Problem: How do we structure distributed software so that service users do not need to know the
nature and location of service providers, making it easy to dynamically change the bindings be-
tween users and providers?

Solution: The broker pattern separates users of services (clients) from providers of services (serv-
ers) by inserting an intermediary, called a broker. When a client needs a service, it queries a bro-
ker via a service interface. The broker then forwards the client’s service request to a server, which
processes the request. The service result is communicated from the server back to the broker,
which then returns the result (and any exceptions) back to the requesting client. In this way, the
client remains completely ignorant of the identity, location, and characteristics of the server. Be-
cause of this separation, if a server becomes unavailable, a replacement can be dynamically cho-
sen by the broker. If a server is replaced with a different (compatible) service, again, the broker is
the only component that needs to know of this change, and so the client is unaffected. Proxies are
commonly introduced as intermediaries in addition to the broker to help with details of the inter-
action with the broker, such as marshaling and unmarshaling messages.

The down sides of brokers are that they add complexity (brokers and possibly proxies must be
designed and implemented, along with messaging protocols) and add a level of indirection be-
tween a client and a server, which will add latency to their communication. Debugging brokers
can be difficult because they are involved in highly dynamic environments where the conditions
leading to a failure may be difficult to replicate. The broker would be an obvious point of attack,
from a security perspective, and so it needs to be hardened appropriately. In addition, a broker, if

CMU/SEI-2013-TR-017 | 16

it is not designed carefully, can be a single point of failure for a large and complex system. Bro-
kers also can potentially be bottlenecks for communication.

Table 3 summarizes the solution of the broker pattern.

Table 3: Broker Pattern Solution

Overview The broker pattern defines a runtime component, called a broker, which medi-
ates the communication between a number of clients and servers.

Elements Client, a requester of services

Server, a provider of services

Broker, an intermediary that locates an appropriate server to fulfill a client’s
request, forwards the request to the server, and returns the results to the client

Client-side proxy, an intermediary that manages the actual communication with
the broker, including marshaling, sending, and unmarshaling of messages

Server-side proxy, an intermediary that manages the actual communication with
the broker, including marshaling, sending, and unmarshaling of messages

Relations The attachment relation associates clients (and, optionally, client-side proxies)
and servers (and, optionally, server-side proxies) with brokers.

Constraints

The client can only attach to a broker (potentially via a client-side proxy). The
server can only attach to a broker (potentially via a server-side proxy).

Weaknesses Brokers add a layer of indirection, and hence latency, between clients and serv-
ers, and that layer may be a communication bottleneck.

The broker can be a single point of failure.

A broker adds up-front complexity.

A broker may be a target for security attacks.

A broker may be difficult to test.

5.2 Pattern Template

Table 4 presents our template for listing a SoS pattern’s attributes and values. In the column
“Value Range,” the template shows the possible values that might be relevant for various patterns.
If an attribute value is only partially relevant it is shown in parentheses. For each attribute, a par-
ticular pattern would select one or more of the values listed here.

CMU/SEI-2013-TR-017 | 17

The various attributes shown here have been discussed in the previous sections, with the excep-
tion of the LISI and PAID attributes, which have been discussed in previous literature [Morris
2004] and are summarized in the appendix.

The possible LISI (Levels of Information System Interoperability) attribute values are the follow-
ing: Isolated, Connected, Functional, Domain, or Enterprise. “Enterprise” means that all ap-
plications share data and collaborate across the enterprise. At the “Domain” level of infor-
mation exchange, there are shared databases and sophisticated collaboration among separate
applications. At the “Functional” level there is heterogeneous exchange of products and basic
collaboration, with few common functions. The “Connected” level describes the state where
data and applications are separate, but can communicate by, for example, messages, exchange
of text files, and email. Finally, at the “Isolated” level, the various systems are not connected.

The PAID attributes are part of the LISI model and describe what aspects of integration are sup-
ported. The possible values are the following: “Procedures”—the degree to which procedures and
governance are integrated; “Applications”—the degree to which applications are integrated from
single processes to applications suites; “Infrastructure”—the infrastructure components that sup-
port the integration; and “data”—the range of data formats and standards that support interopera-
bility.

Table 4: Template for Integration Pattern Matrix

Attribute Value Range

SoS-Scope System of Systems, System

Development Context Greenfield, Brownfield, Closed Source

Integration Purpose One-Directional Information Exchange, Bi-Directional
Information Exchange, Control, Negotiation

LISI Isolated, Connected, Functional, Domain, Enterprise

PAID Attributes Procedures, Applications, Infrastructure, and Data

Integration Level Information Exchange, Basic Behavior Interaction,
Complex Behavior Interaction, User Interface Sharing

Data Abstraction Level Structural, Syntactic, Semantic

Data Level Integration File-Transfer, Message-Exchange, Streams, Common
Data

Interaction Style Send, Call, Call-Return, Call/Call-Back, Time-Based,
Multi-Call Protocols

Quality Attributes of

Integration

Reliability, Performance, Security, Availability, In-
teroperability, Scalability, Manageability, Consistency

CMU/SEI-2013-TR-017 | 18

Attribute Value Range

Pattern is defined by Reference to pattern documentation

5.3 Salesforce Integration Patterns

In an attempt to include patterns that are used in industry as best practice, we turned to the set of
documented Salesforce integration patterns [Sal 2012]. The documentation makes clear that the
patterns are particularly adapted to the situation of Salesforce.com. However, the underlying pat-
terns are generic and useful in a broad range of SoS integration scenarios.

5.3.1 User Interface Update Based on Data Changes

This addresses the problem of a deep integration among multiple systems. The pattern describes
how a UI may subscribe to information from a data stream to update the view, if a change of the
underlying data occurs. In particular, this implies that the user interface must be aware of different
potential data sources. However, the fact that the data may originate from different systems in the
SoS environment will be hidden when a client requests data in a generic way (e.g., by interacting
with a broker).

The actual data integration occurs through messaging. The pattern uses an event-based approach
in which systems subscribe to change notifications. The originating system includes data in the
notification, and leaves it to the subscribers to handle it. Thus, there is no connotation of control
in this case, even though a visible reaction will occur. The pattern can be used in the Salesforce
context for creating new systems, but it could also be applied in general for the creation of new
systems of systems. The pattern requires deep data integration and semantic interoperation. There-
fore, the receiver must be able to understand the data and judge whether it is adequate for display
in the current view.

Table 5: Matrix for User Interface Based on Data Changes

Attribute Pattern Value

SoS Context

SoS Scope System, (System of Systems)

Development Context Greenfield (Brownfield)

Integration Purpose One-Directional Information Exchange

LISI Functional

PAID Attributes Infrastructure, Data

Technical Categorization

Integration Level Information Exchange

Data Abstraction Level Syntactic, Semantic

CMU/SEI-2013-TR-017 | 19

Attribute Pattern Value

Data Level Integration Streaming

Interaction Style Send

Quality Attributes of
Integration

Adheres to Salesforce organization-level security

Relation to Patterns

Pattern is defined by Salesforce Integration Patterns: UI Update based on Data
Changes [Sal 2012, p.8]

5.3.2 Remote Process Invocation – Request and Reply

This section addresses the need to make explicit changes in a different system as a result of some
current activity in the local system. The Salesforce documentation discusses four different ap-
proaches; we will use only the first three as relevant examples [Sal 2012]. In this specific case,
either through a button or a data change, a SOAP or a HTTP request is initiated. The correspond-
ing response is handed back to the caller.

This interaction style can easily be introduced in any system where adaptation is possible, as it
provides a simple call-return style of integration. It supports bi-directional information exchange
and is bi-directional by nature. When a result is given back to the caller, the information transfer
is reliable (in the sense that at least a notification of a problem is provided). The pattern also inte-
grates well with other patterns, such as a broker or a load balancer, to achieve further qualities of
integration.

The connection might occur on many different levels, ranging all the way from the user interface
to the data layer; it can thus serve a number of integration purposes [Sal 2012].

Table 6: Matrix for Remote Process Invocation

Attribute Pattern Value

SoS Context

SoS Scope System (System of Systems)

Development Context Greenfield, Brownfield, (Closed Source)

Integration Purpose Bi-Directional, Information Exchange

LISI Domain

PAID Attributes Applications / Procedures

Technical Categorization

Integration Level Basic Behavior Interaction

CMU/SEI-2013-TR-017 | 20

Attribute Pattern Value

Data Abstraction Level Syntactic (Web Services Definition Language (WSDL), but
semantics of WSDL must be developed)

Data Level Integration Message-Exchange

Interaction Style Call-Return, Call/Call-Back

Quality Attributes of
Integration

Reliable (semi-batch variants for high performance)

Relation to Patterns

Pattern is defined by Salesforce Integration Patterns: Remote Process Invocation
– Request and Reply, [Sal 2012, p.11]

5.3.3 Batch Data Synchronization

Batch Data Synchronization is often used to integrate data among different systems in a high-
performance (but not necessarily timely) way. In this case, a large number of different data entries
are written into a single data structure that is then handed over to the communicating system. The
hand-over process may—or may not—be combined with an event. If no event is created, the syn-
chronization is typically triggered on a time basis. In the specific case of the Salesforce infrastruc-
ture, this pattern may be used in two ways: for importing data from foreign systems into
Salesforce or by exporting data from Salesforce for consumption by other systems.

This approach can be applied in virtually any situation, as it only requires the integration of a
reader (or writer) into the system. Even in Brownfield situations, this approach can be often ap-
plied; most systems possess such an interface, or a translator can be conceived to integrate an ex-
isting system with such an interface. The focus is purely on data exchange in this case. Typically,
such an interface style does not provide specific constraints on the data format. However, in the
Salesforce case, this pattern is used together with Extract, Transform, Load (ETL) tools that typi-
cally provide some constraints on the data format.

This pattern is quite common, especially when used in connecting to legacy systems.

Table 7: Matrix for Batch Data Synchronization

Attribute Pattern Value

SoS Context

SoS Scope System

Development Context Greenfield, Brownfield, (Closed Source)

Integration Purpose (Batch) Information Exchange

LISI Connected

CMU/SEI-2013-TR-017 | 21

Attribute Pattern Value

PAID Attributes Data

Technical Categorization

Integration Level Information Exchange

Data Abstraction Level Structural (Syntactic)

Data Level Integration File-Transfer

Interaction Style Time-Based

Quality Attributes of In-
tegration

Performance

Relation to Patterns

Pattern is defined by Salesforce Integration Patterns: Batch Data Synchroniza-
tion [Sal 2012, p.28]

5.4 Data Warehouse Integration Patterns

Data warehouses are widely used in industry as a means of integrating data that will be shared
across multiple systems. As such, the warehouse serves as an integration vehicle for those systems
(as noted in Table 1).

5.4.1 History Pattern

The history pattern is one of a set of data warehouse integration patterns identified by Köppen and
colleagues [Köppen 2011]. The problem focus is that master data,7 while it is fundamental to sys-
tem operation and overall rather stable, will sometimes change. In such a case, the time windows
of validity of the data must be captured so that the systems can adequately operate with this data.
The history pattern addresses only how some aspect of data is communicated across a range of
systems and in this process makes important assumptions about the overall form of integration
(data warehouse). Thus, it has a clearly described range of applicability; for example, it can be
applied in a system of systems, particularly if a data warehouse is planned anyway. It cannot be
applied on a single system level, as it relies on shared assumptions regarding the data warehouse
and its data structure.

The history pattern requires enterprise-level integration and addresses only the data and infra-
structure levels. It addresses only data integration and deals directly with the semantic interpreta-
tion of data (validity time stamps).

7 Master data typically refers to rather stable “configuration” data in an information system that is vital to its

operation.

CMU/SEI-2013-TR-017 | 22

Table 8: Matrix for History Pattern

Attribute Pattern Value

SoS Context

SoS Scope System of Systems

Development Context Greenfield, Brownfield

Integration Purpose Track Data Evolution

LISI Enterprise

PAID Attributes Data/Infrastructure

Technical Categorization

Integration Level Data Integration

Data Abstraction Level Semantic

Data Level Integration Common Data

Interaction Style Call-Return

Quality Attributes of

Integration

Manageability

Relation to Patterns

Pattern is defined by [Köppen 2011, p. 53]

5.5 SAP3 Integration Patterns

The following integration patterns are all found in the book Software Architecture in Practice, 3rd
edition [Bass 2012].

5.5.1 SOA (Service-Oriented Architecture)

The SOA pattern is a natural and popular choice for many modern systems of systems. It is orga-
nized around the concept of loosely coupled, distributed services, which are offered, described,
and implemented by service providers. The services may be implemented in different languages,
on different computing platforms, and by different organizations. Service consumers and provid-
ers may be entirely unaware of each other’s existence, which makes this pattern well suited to
support interoperability and system evolution. Service interactions are typically mediated by an
enterprise service bus that routes messages between service providers and consumers. An SOA
implementation typically provides a service registry so that services can learn of each other’s ex-
istence. In addition, many implementations include an orchestration engine to support the crea-
tion and execution of complex workflows.

CMU/SEI-2013-TR-017 | 23

Table 9: Matrix for SOA Pattern

5.5.2 Peer-to-Peer (P2P)

The peer-to-peer (P2P) pattern underlies some of the largest systems known. The communication
mechanism underlying the internet, for example, is a P2P system. In the P2P pattern, components
directly interact as peers. All peers are “equal” and no peer or group of peers can be critical for
the health of the system. For this reason, this pattern is attractive in a SoS context. Peer-to-Peer
communication is typically a request/reply interaction. That is, any component can, in principle,
interact with any other component by requesting its services. Note that, while request/reply ap-
pears to be superficially similar to call-return, it is fundamentally different in terms of how con-
trol is managed, since peers operate asynchronously and do not suspend themselves until their
requests receive a reply.

Attribute Pattern Value

SoS Context

SoS Scope System of Systems, System

Development Context Greenfield, Brownfield, Closed Source

Integration Purpose Information Exchange, Collaboration

LISI Domain, Enterprise

PAID Attributes Applications, Data

Technical Categorization

Integration Level Information Exchange, Basic Behavior Interaction, Com-
plex Behavioral Interaction

Data Abstraction Level Syntactic, Semantic

Data Level Integration Message-Exchange

Interaction Style Call-Return, Send

Quality Attributes of
Integration

Availability, Performance, Security, Interoperability

Relation to Patterns

Pattern is defined by [Bass 2012, pp. 222-226]

CMU/SEI-2013-TR-017 | 24

Table 10: Matrix for Peer-to-Peer Pattern

5.5.3 Broker

The broker pattern separates users of services (clients) from providers of services (servers) by
inserting an intermediary, called a broker. When a client needs a service, it queries a broker via a
service interface. The broker then forwards the client’s service request to a server, which process-
es the request. The service result is communicated from the server back to the broker, which then
returns the result (and any exceptions) back to the requesting client. In this way, the client remains
ignorant of the identity, location, and characteristics of the server. Because of this separation, if a
server becomes unavailable, a replacement can be chosen dynamically by the broker. If a server is
replaced with a different (compatible) service, again, the broker is the only component that needs
to know of this change, and so the client is unaffected. Proxies are commonly introduced as in-
termediaries in addition to the broker to help with details of the interaction with the broker, such
as marshaling and unmarshaling messages.

Attribute Pattern Value

SoS Context

SoS Scope System of Systems, System

Development Context Greenfield, Brownfield

Integration Purpose Information Exchange, Collaboration, Negotiation

LISI Domain, Enterprise

PAID Attributes Applications, Data

Technical Categorization

Integration Level Information Exchange, Basic Behavior Interaction, Complex

Behavioral Interaction

Data Abstraction Level Syntactic, Semantic

Data Level Integration Message-Exchange

Interaction Style Send, Call

Quality Attributes of
Integration

Performance, Availability

Relation to Patterns

Pattern is defined by [Bass 2012, pp. 220-222]

CMU/SEI-2013-TR-017 | 25

Table 11: Matrix for Broker Pattern

5.5.4 Publish-Subscribe

In the Publish-Subscribe pattern components interact via messages (sometimes called events).
Components may subscribe to a set of events. It is the job of the Publish-Subscribe runtime infra-
structure to make sure that each published event is delivered to all subscribers of that event type.
Thus, the main form of connector in these patterns is an event bus. Publisher components place
events on the bus by announcing them; the connector then delivers those events to the subscriber
components that have registered an interest in those events. In addition, any component may be
both a publisher and a subscriber.

Attribute Pattern Value

SoS Context

SoS Scope SoS

Development Context Greenfield, Brownfield

Integration Purpose Information Exchange, Collaboration, Negotiation

LISI Domain, Enterprise

PAID Attributes Applications, Data

Technical Categorization

Integration Level Information Exchange, Basic Behavior Interaction, Complex

Behavioral Interaction

Data Abstraction Level Syntactic, Semantic

Data Level Integration Message-Exchange

Interaction Style Call-Return, Call/Call-Back

Quality Attributes of
Integration

Interoperability

Relation to Patterns

Pattern is defined by [Bass 2012, pp. 210-212]

CMU/SEI-2013-TR-017 | 26

Table 12: Matrix for Publish-Subscribe Pattern

5.6 Pattern-Oriented Software Architecture

The following integration patterns are all found in the book Pattern-Oriented Software Architec-
ture, Volume 4 [Buschmann 2007].

5.6.1 Blackboard

By its very nature, a SoS involves some degree of cooperation among the constituents that make
up the SoS. The systems (sometime) interact and collaborate to reach a solution that fulfills a
common goal.

The Blackboard pattern offers a way for distributed systems to work together in a common solu-
tion space. Using the Blackboard, multiple systems can give their contributions to solving the
problem and react to each other’s input to make decisions. In addition, the Blackboard makes it
easy to scale such systems, adding new loosely coupled collaborators.

Attribute Pattern Value

SoS Context

SoS Scope SoS

Development Context Greenfield, Brownfield

Integration Purpose Information Exchange, Collaboration, Negotiation

LISI Domain, Enterprise

PAID Attributes Applications, Data

Technical Categorization

Integration Level Information Exchange, Basic Behavior Interaction, Complex

Behavioral Interaction

Data Abstraction Level Syntactic, Semantic

Data Level Integration Message-Exchange

Interaction Style Send

Quality Attributes of
Integration

Interoperability, Manageability

Relation to Patterns

Pattern is defined by [Bass 2012, pp. 226-229]

CMU/SEI-2013-TR-017 | 27

It is easier to adopt this pattern in a Greenfield implementation, while it can be more difficult to
implement in a system involving legacy systems that have a closed source. The pattern requires a
central storage repository for the shared solution space, and often the pattern includes some kind
of prioritization of goals and inputs. Therefore, it can be a challenge to implement the pattern in a
SoS with no overall centralized authority. It can, however, be done by adapting systems through
the use of some intermediates to perform the coordination, such that the legacy systems need not
realize that they are participating in a Blackboard pattern.

The pattern has the benefit of having a clear semantic understanding of shared data by making use
of global information. This makes the pattern work at the highest level of integration, where each
system is utilizing the capabilities of other systems.

Table 13: Matrix for Blackboard Pattern

Attribute Pattern Value

SoS Context

SoS Scope System

Development Context Greenfield, Closed Source

Integration Purpose Information Exchange, Decision Making

LISI Domain, Enterprise

PAID Attributes Applications, Data

Technical Categorization

Integration Level Complex Behavioral Interaction

Data Abstraction Level Semantic

Data Level Integration Message-Exchange

Interaction Style Multi-Call Protocols

Quality Attributes of
Integration

Interoperability, Scalability

Relation to Patterns

Pattern is defined by POSA 4 [Buschmann 2007, p. 204]

5.7 Messaging

5.7.1 Pipes and Filters

Doing complex operations on data is a challenge in a SoS, as each sequence of the processing
steps often will occur on distributed independent systems that use a broad range of data formats.

CMU/SEI-2013-TR-017 | 28

The Pipes and Filters pattern enables a sequence of transformations and data processing to be
combined in a flexible way. The pattern uses a simple interface to ensure that the constituent sys-
tems are compatible and can be connected in a flexible sequence to establish a pipeline. Creating
an architecture where a pipeline forms the interconnection, and the constituent systems are con-
sidered filters is a means of structuring the SoS in a flexible way, which ensures that the constitu-
ents are independent from each other.

A challenge of using the pattern is that the interface connecting the filters must be agreed upon.
The required interface may entail that the legacy system needs an adaptor to participate in the
pipeline. However, the pattern should enable existing systems to be composed without necessarily
altering them. Another challenge is constructing the pipeline itself, which may require some type
of centralized entity. Regarding the level of integration, the pattern can be used both for systems
that have separate data as well as for more integrated systems that have shared data models.

Table 14: Matrix for Pipes and Filters Pattern

Attribute Pattern Value

SoS Context

SoS Scope System

Development Context Greenfield, Brownfield

Integration Purpose Information Exchange

LISI Functional, Domain

PAID Attributes Infrastructure /Data

Technical Categorization

Integration Level Information Exchange, Basic Behavior Interaction

Data Abstraction Level Structural

Data Level Integration Streams

Interaction Style Send, Call

Quality Attributes of

Integration

Interoperability, Manageability

Relation to Patterns

Pattern is defined by [Hohpe 2003, p. 70]

5.7.2 Dynamic Router

A SoS is always evolving, which means that the system topology is constantly changing over
time. This evolution presents a challenge for the exchange of data between the distributed sys-
tems; these changes will affect the routing of data.

CMU/SEI-2013-TR-017 | 29

The Dynamic Router pattern aims to maintain the exchange of data between the distributed sys-
tems without losing efficiency, because the Dynamic Router is not responsible for tracking each
individual distributed system. Instead, the individual constituent systems are responsible for an-
nouncing changes by sending special control messages to the Dynamic Router. Having a Dynamic
Router in a SoS context means that you get a system structure that can evolve, is largely self-
regulating, and is scalable over time.

As the pattern requires the participating systems to announce themselves initially, as well as to
announce any changes in conditions, it is most suitable for a SoS in which a common agreement
can be made among the individual constituents. Such a scenario may be more easily accomplished
in a Greenfield development context. Agreeing on supplying these announcements of changed
conditions is simply the price for participating in a SoS using the Dynamic Router pattern. The
individual systems must do some maintenance of their own, but they also gain from the services
delivered by the router. The requirement for participation also means that the pattern is sensitive
to autonomous systems that unexpectedly choose not to follow the common agreement, or be-
come disconnected from the SoS due to failures.

Table 15: Matrix for Dynamic Router Pattern

Attribute Pattern Value

SoS Context

SoS Scope System

Development Context Greenfield

Integration Purpose Information Exchange

LISI Functional, Domain

PAID Attributes Infrastructure, Data

Technical Categorization

Integration Level Information Exchange, Basic Behavior Interaction

Data Abstraction Level Structural

Data Level Integration Message-Exchange

Interaction Style Send

Quality Attributes of
Integration

Scalability, Manageability

Relation to Patterns

Pattern is defined by [Hohpe 2003, p. 243]

CMU/SEI-2013-TR-017 | 30

5.7.3 Canonical Data Model

Building a SoS is all about the interaction between distributed constituent systems. This interac-
tion often involves a large degree of information exchange between heterogeneous systems that
may not share structures, notations, and ways of data interpretation.

The Canonical Data Model aims to minimize the dependencies that can arise from the need for
conversion between data formats by providing a level of indirection. The benefit of having a pre-
cise and uniform understanding and interpretation of data formats throughout the systems is obvi-
ous. It can, however, be challenging to implement the pattern in a SoS context, as this often in-
volves both legacy systems and dispersed ownership of the individual constituents. Therefore, the
type of SoS and its current development context must be considered. In a SoS with no collabora-
tive agreement between the owners of the constituents systems, it would be difficult to introduce a
Canonical Data Model, while it might be considerably easier in a SoS where the ownership of the
constituent systems is more centralized. Likewise, it would be easier to utilize in a Greenfield de-
velopment context, as the development of a highly established SoS might require the addition of
Message Translators between the Canonical Data Model and legacy formats.

As introducing the Canonical Data Model can be complicated, it may not be the initial best fit for
a SoS with a small number of constituents. However, one must consider the extent to which the
SoS may evolve over time. With the increasing size and scope of an evolving SoS, the cost of uti-
lizing the Canonical Data Model may prove valuable over the long term. The pattern fits into the
Domain level of the LISI model, with a clear focus on Data attributes supporting large integrated
systems with shared domain data.

Table 16: Matrix for Canonical Data Model Pattern

Attribute Pattern Value

SoS Context

SoS Scope System of Systems

Development Context Greenfield

Integration Purpose Information Exchange

LISI Domain

PAID Attributes Data

Technical Categorization

Integration Level Information Exchange

Data Abstraction Level Semantic

Data Level Integration Message-Exchange

Interaction Style Send

CMU/SEI-2013-TR-017 | 31

Attribute Pattern Value

Quality Attributes of
Integration

Scalability

Relation to Patterns

Pattern is defined by [Hohpe 2003, p. 355]

5.8 Patterns from Enterprise Application Architecture

5.8.1 Remote Façade

A SoS can consist of large and complex systems that offer a great deal of advanced functionality.
These systems may not be designed for use in this particular SoS, or they may be meant to interact
with various other constituent systems that each want to access different functionality. Interacting
with such systems of systems may be challenging; their advanced functionality may necessitate
complex and detailed interfaces.

The Remote Façade pattern delivers a coarse-grained access to these complex and detailed sys-
tems. The pattern can be seen as a type of single-address gateway that wraps complexity into a
simpler, unified interaction. Accessing a system through a Remote Façade will provide a strong
focus on certain capabilities as seen from specific systems. However, some system-wide
knowledge may be needed to shape the Remote Façade towards the needs of the specific systems.
In certain cases, the Remote Façade also can minimize the number of interactions needed between
systems, because of the coarse-grained approach.

The pattern is a way of affecting the structure of the overall system by using a fairly simple con-
cept working at the lower levels of integration. Still, the pattern’s focus on individual capabilities
makes both access and use of the system considerably easier and faster under certain conditions.

Table 17: Matrix for Remote Façade Pattern

Attribute Pattern Value

SoS Context

SoS Scope System

Development Context Brownfield, Closed Source

Integration Purpose Information Exchange

LISI Functional, Domain

PAID Attributes Applications

Technical Categorization

Integration Level Basic Behavior Interaction

CMU/SEI-2013-TR-017 | 32

Attribute Pattern Value

Data Abstraction Level Structural

Data Level Integration Message-Exchange

Interaction Style Call, Call-Return

Quality Attributes of
Integration

Performance

Relation to Patterns

Pattern is defined by [Fowler 2003, p. 388]

5.9 Cooperative Platforms

5.9.1 Collaborative Virtual Environments

The integration effort between the constituents in a SoS occurs on all levels, from the hardware
level to the user interfaces. Enabling constituent systems to work cooperatively on the user-
interface level presents a major integration challenge. The individual constituents will have differ-
ent ways of portraying data and of interacting with the users of the system. Some may have an
extensive human computer interface, others may be headless systems, and some may have no in-
terface directed towards human users. The challenge is to integrate these different degrees of user
interface into a coherent user environment that can reflect the capabilities arising from the joining
of constituent systems.

Depending on the purpose of the SoS, it may require a user interface that allows multiple stake-
holders and users to interact and monitor the SoS as a whole.

Collaborative Virtual Environments focus on establishing collaboration among dispersed users by
creating a shared environment that allows them to interact. The core element of Collaborative Vir-
tual Environments is to establish a shared context through User Interface Sharing, which creates a
collaborative space that can be accessed and altered synchronously. Having a shared context ena-
bles users to view or alter the data and processes in the overall system that is composed of many
distributed constituent systems. Being able to see the behavior of other users and systems helps
create a common understanding of underlying actions and awareness of the current goals in the
system.

Creating a Collaborative Virtual Environment in a SoS context entails a system architecture that
allows for advanced forms of collaboration at a user level, with multiple users simultaneously
accessing a shared information space. A shared user interface may be the technology needed to
satisfy the demands for insight and joint responsibility of the overall SoS, which are required by
the many stakeholders and users of a SoS. However, achieving integration at the user-interface
level has many challenges. As the system may require bi-directional information sharing and po-
tentially performs a large number of data modifications, it must have fast access to shared re-
sources. Creating a Collaborative Virtual Environment requires advanced mechanisms in the SoS
architecture and user interface framework for handling both legacy systems and the evolution of

CMU/SEI-2013-TR-017 | 33

the SoS over time. Finally, despite the overview and insight afforded by a Collaborative Virtual
Environment, the fact remains that decision making in a SoS, involving no real authority, is com-
plex and easily becomes unmanageable.

Table 18: Matrix for Collaborative Virtual Environment

Attribute Pattern Value

SoS Context

SoS Scope System of Systems

Development Context Greenfield, Brownfield

Integration Purpose Bi-Directional Information, Control

LISI Enterprise

PAID Attributes Applications

Technical Categorization

Integration Level User Interface Sharing

Data Abstraction Level Semantic

Data Level Integration Message-Exchange, Streams

Interaction Style Multi-Call Protocols

Quality Attributes of
Integration

Security, Availability

Relation to Patterns

Pattern is defined by [Churchill 2001]

5.10 Summary of Patterns

Looking at our classification of the various patterns, we might ask whether our examples cover
the space of the available categorizations. To determine the answer, we summarized all values for
all possible categories and listed them in the following table. We see that the patterns are not
evenly distributed across the various categories. However, it is difficult to determine the source of
this effect. Different possible interpretations are below:

• The range of all possible patterns is not evenly distributed according to our categoriza-
tions.

• We had some bias when performing our categorizations. This hypothesis is supported by
the fact that the corresponding categorization was not always clear.

• Some categories of patterns are more common than others.

CMU/SEI-2013-TR-017 | 34

We tend towards the last interpretation and assume that our survey might be roughly in line with
the overall trend. We presume, as a foundation for this interpretation, that some problems can be
more readily solved (and in more ways), thus giving rise to more patterns.

However, more important than the overall distribution of the different patterns is whether patterns
for all different situations could be identified. If we use a combination of characteristics as a basis
for such identification, it immediately becomes impossible, as the number of resulting combina-
tions would be significantly larger than our set of patterns. If we look only at the individual val-
ues, we see that we could identify patterns that instantiate all attribute values except for PAID
Attributes: Procedures. We presume that the reason for missing this is that procedures are actually
more on an organizational level than on a technical level and thus cannot be guaranteed by tech-
nical means.

Table 19: Summary of All Patterns

Attribute Value Range Pattern

SoS Context

SoS Scope System-of-Systems History Pattern, SOA (Service-Oriented Architec-
ture), P2P (Peer-to-Peer), Broker, Blackboard, Col-

laborative Virtual Environments

System UI Update based on Data Changes, Remote Process
Invocation – Request and Reply, Batch Data Syn-
chronization, History Pattern, SOA (Service-
Oriented Architecture), Publish-Subscribe, P2P
(Peer-to-Peer), Broker, Blackboard, Pipes and Fil-
ters, Dynamic Router, Canonical Data Model, Re-

mote Façade

Development
Context

Greenfield UI Update based on Data Changes, Remote Process
Invocation – Request and Reply, Batch Data Syn-
chronization, History Pattern, SOA (Service-
Oriented Architecture), Publish-Subscribe, P2P
(Peer-to-Peer), Broker, Blackboard, Pipes and Fil-
ters, Dynamic Router, Canonical Data Model, Col-

laborative Virtual Environments

Brownfield Remote Façade, Remote Process Invocation – Re-
quest and Reply, Batch Data Synchronization, SOA
(Service-Oriented Architecture), Publish-Subscribe,
P2P (Peer-to-Peer), History Pattern, Broker, Black-
board, Pipes and Filters, Remote Façade, Collabo-

rative Virtual Environments

Closed Source Batch Data Synchronization, Remote Façade, Re-
mote Process Invocation – Request and Reply, SOA

CMU/SEI-2013-TR-017 | 35

Attribute Value Range Pattern

Integration
Purpose

Information
Exchange

Remote Process Invocation – Request and Reply,
Batch Data Synchronization, SOA (Service-
Oriented Architecture), Publish-Subscribe, P2P
(Peer-to-Peer), Broker, Blackboard, Pipes and Fil-
ters, Dynamic Router, Canonical Data Model, Re-

mote Façade, Collaborative Virtual Environments

Negotiation Publish-Subscribe, P2P (Peer-to-Peer), Broker

Updating UI Update based on Data Changes

Track Data Evolution History Pattern

Collaboration SOA (Service-Oriented Architecture), Publish-
Subscribe, P2P (Peer-to-Peer), Broker

Decision Making Blackboard

LISI Connected Batch Data Synchronization

Functional UI Update based on Data Changes, Pipes and Fil-
ters, Dynamic Router, Remote Façade

Domain Remote Process Invocation – Request and Reply,
SOA (Service-Oriented Architecture), Publish-
Subscribe, P2P (Peer-to-Peer), Broker, Blackboard,
Pipes and Filters, Dynamic Router, Canonical Data

Model, Remote Façade

Enterprise History Pattern, SOA (Service-Oriented Architec-
ture), Publish-Subscribe, P2P (Peer-to-Peer), Bro-
ker, Blackboard, Collaborative Virtual Environ-

ments

PAID Attributes Procedures

Applications Remote Process Invocation – Request and Reply,
SOA (Service-Oriented Architecture), Publish-
Subscribe, P2P (Peer-to-Peer), Broker, Blackboard,
Remote Façade, Collaborative Virtual Environ-

ments

Infrastructure UI Update based on Data Changes?, History Pat-
tern, SOA (Service-Oriented Architecture), P2P

(Peer-to-Peer), Pipes and Filters, Dynamic Router

CMU/SEI-2013-TR-017 | 36

Attribute Value Range Pattern

Data UI Update based on Data Changes, Batch Data
Synchronization, Publish-Subscribe, History Pat-
tern, Broker, Blackboard, Pipes and Filters, Dy-

namic Router, Canonical Data Model

Technical Categorization

Integration Level Information
Exchange

UI Update based on Data Changes, Batch Data
Synchronization, History Pattern, SOA (Service-
Oriented Architecture), Publish-Subscribe, P2P
(Peer-to-Peer), Broker, Pipes and Filters, Dynamic

Router, Canonical Data Model

Basic Behavior

interaction

Remote Process Invocation – Request and Reply,
SOA (Service-Oriented Architecture), Publish-
Subscribe, P2P (Peer-to-Peer), Broker, Pipes and

Filters, Dynamic Router, Remote Façade

Complex Behavioral
Interaction

SOA (Service-Oriented Architecture), Publish-
Subscribe, P2P (Peer-to-Peer), Broker, Blackboard

User Interface

Sharing

Collaborative Virtual Environments

Data Abstraction
Level

Structural Batch Data Synchronization, Pipes and Filters, Dy-
namic Router, Remote Façade

Syntactic UI Update based on Data Changes?, Remote Pro-
cess Invocation – Request and Reply, History Pat-
tern, SOA (Service-Oriented Architecture), Pub-

lish-Subscribe, P2P (Peer-to-Peer), Broker

Semantic (History Pattern), SOA (Service-Oriented Architec-
ture), Publish-Subscribe, P2P (Peer-to-Peer), Bro-
ker, Blackboard, Canonical Data Model, Collabora-

tive Virtual Environments

Data Level

Integration

Message-Exchange Remote Process Invocation – Request and Reply,
SOA (Service-Oriented Architecture), Publish-
Subscribe, P2P (Peer-to-Peer), Broker, Blackboard,
Dynamic Router, Collaborative Virtual Environ-

ments, Canonical Data Model, Remote Façade

Streaming Pipes and Filters, UI Update based on Data Chang-
es, Collaborative Virtual Environments

CMU/SEI-2013-TR-017 | 37

Attribute Value Range Pattern

Common Data History Pattern

File-Transfer Batch Data Synchronization

Interaction Style Send UI Update based on Data Changes, SOA (Service-
Oriented Architecture), Publish-Subscribe, P2P
(Peer-to-Peer), Pipes and Filters, Dynamic Router,

Canonical Data Model

Call P2P (Peer-to-Peer), Remote Façade

Call-Return Remote Process Invocation – Request and Reply,
History Pattern, SOA (Service-Oriented Architec-

ture), Broker, Remote Façade

Time-Based Batch Data Synchronization

Call/Call-Back Broker, Remote Process Invocation – Request and
Reply

Multi-Call Protocols Blackboard

Quality
Attributes of

Integration

Reliability Remote Process Invocation – Request and Reply

Performance SOA (Service-Oriented Architecture), P2P (Peer-
to-Peer)

Security SOA (Service-Oriented Architecture), Collabora-
tive Virtual Environments

Availability SOA (Service-Oriented Architecture), P2P (Peer-
to-Peer), Collaborative Virtual Environments

Scalability Blackboard, Pipes and Filters, Dynamic Router

Manageability Dynamic Router, Pipes and Filters, Publish-
Subscribe

Interoperability Blackboard, Broker, Pipes and Filters, Publish-
Subscribe, SOA (Service-Oriented Architecture)

CMU/SEI-2013-TR-017 | 38

6 Conclusions/Future Work

Any repository of patterns will be, of necessity, incomplete. Patterns reflect the experience of the
broad community of software engineers over decades of building complex systems. This process
of accumulating new challenges, new experience, and new solutions never stops. Therefore, any
catalog of patterns will be subject to revision and reinterpretation in light of new knowledge.

Our goal in this report was to provide a classification that could, at a later time, be used to develop
such a catalog. In this sense, our goal here is to present a way of thinking about and evaluating
SoS patterns for integration, and to present a sample set of patterns from industrial and academic
sources. Assuming you agree with this premise, how can you, as an architect, make use of the
work presented here? We began this report by stating that our objective was to make it easier for
an architect to approach the integration problem.

Clearly, there are many “start states” for a SoS. Just as clearly, it is also never the case that an
architect has a clean slate to work with; legacy will always burden a SoS and its evolution. So
clearly understanding the characteristics of the legacy systems, infrastructure, and data, and un-
derstanding the intended characteristics of the goal state (the SoS that we are trying to build and
evolve towards) are critical.

We see a process emerging for how to create a SoS based on patterns as a central, organizing, ar-
chitectural concept. As a start state, we assume that the architect has one or more independent
systems that must be integrated, or that must be integrated into an existing SoS. To achieve this,
the architect can make use of patterns. But which patterns to use? We suggest the following set of
steps:

1. Choose/prioritize architecturally significant requirements, focusing on the driving quality
attributes [Bass 2012].

2. Catalog the technological, budget, schedule, and organizational constraints that will limit the
set of possible architectural options.

3. Choose data and control strategies that reflect the requirements of the interoperating systems.

4. Based on the requirements, constraints, and data/control strategies, choose one or more pat-
terns.

5. Tailor and combine any chosen patterns.

6. Finally, choose technologies to implement and realize these patterns [Cervantes 2013]. En-
terprise frameworks, for example, will realize many of the patterns described in this report at
relatively low cost to the project.

Steps 4 and 5 are, of course, the most fundamental and most challenging of these steps. And these
steps are the most harmful if the architect makes poor choices. So let us say a few more words
about how to achieve these crucial steps. Buschmann et al. [Buschmann 2007], in their discussion
of patterns and pattern languages for distributed systems, recommend starting with patterns that
take one from the “Mud” of requirements and constraints to a set of primary structures that parti-
tion and organize the architecture. These could be patterns such as Domain Model, a set of Lay-
ers, Pipes and Filters, a Shared Repository, and so forth.

CMU/SEI-2013-TR-017 | 39

Typically SoS systems engineers begin architecture design with a functional viewpoint (some-
times called a “behavioral” or “horizontal” view). This viewpoint describes how SoS constituent
systems and subsystems should interact at runtime to achieve SoS capabilities. The SoS capabili-
ties are described by “kill chains”, business or mission threads, or similar scenario-based ap-
proaches. This functional viewpoint is the most common starting point for SoS architecture (e.g.
see [Dahmann 2011]). Once the “Mud to Structure” patterns have been chosen, the next choice
for the architect is how the individual systems within the SoS interact. These patterns—called
“Distribution Infrastructure” by Buschmann et al.—are the main concerns of this report. These
describe the primary means of interaction among the constituent systems and include patterns
such as Client-Server, Peer-to-Peer, Broker, Messaging, and Publish-Subscribe.

At this point other patterns are typically chosen to augment these fundamental ones—for database
access, synchronization, concurrency, event handling, extension, and so forth. In this way, the
SoS architect can move from a largely functional description of the SoS to one that is instantiated
with patterns, and hence analyzable and implementable.

Creating a successful SoS—that meets the needs of its stakeholders today and can evolve and
scale to sustain those stakeholders into the future—is one of the most complex engineering chal-
lenges facing the software world. The patterns we have presented here are, of course, not the
whole solution. But they do present the distilled learning from many thousands of projects that
have gone before, and so they offer a solid foundation on which to build.

CMU/SEI-2013-TR-017 | 40

CMU/SEI-2013-TR-017 | 41

Appendix: Levels of Information System Interoperability

The Levels of Information System Interoperability (LISI) is described by Morris and colleagues
as a widely recognized model for system-of-systems interoperability [Morris 2004, p. 5]. It com-
prises the levels shown in Figure 1. The description of the levels is also based on work by Morris
and colleagues [Morris 2004, p.5].

Figure 1: LISI Levels

Level 0 – Isolated interoperability in a manual environment between stand-alone systems: In-
teroperability at this level consists of the manual extraction and integration of data from multiple
systems. This is sometimes called “sneaker-net.”

Level 1 – Connected interoperability in a peer-to-peer environment: This level relies on electron-
ic links with some form of simple electronic exchange of data. Simple, homogeneous data types,
such as voice, text email, and graphics (e.g., Graphic Interface Format files) are shared. There is
little capacity to fuse information.

Level 2 – Functional interoperability in a distributed environment: Systems reside on local area
networks that allow data to be passed from system to system. This level provides for increasingly
complex media exchanges. Logical data models are shared across systems. Data is generally het-
erogeneous—containing information from many simple formats fused together (e.g., images with
annotations).

Level 3 – Domain-based interoperability in an integrated environment: Systems are connected
via wide area networks. Information is exchanged between independent applications using shared

CMU/SEI-2013-TR-017 | 42

domain-based data models. This level enables common business rules and processes as well as
direct database-to-database interactions. It also supports group collaboration on fused infor-
mation.

Level 4 – Enterprise-based interoperability in a universal environment: Systems are capable of
using a global information space across multiple domains. Multiple users can access complex
data simultaneously. Data and applications are fully shared and distributed. Advanced forms of
collaboration are possible. Data has a common interpretation regardless of format.

Understanding in advance, before building the actual systems, what level of integration must be
achieved is crucial to identifying appropriate patterns, as different patterns will address only cer-
tain levels of integration.

The PAID attributes are part of the LISI model [Morris 2004, p.6]. They further refine the level of
integration by describing which aspect of integration is supported on the corresponding level
[BMP 2012]. The following attributes are distinguished:

Procedures: describes the degree to which overall procedures and governance are in-
tegrated

Applications: describes the degree to which the actual applications are integrated from
single processes to applications suites

Infrastructure: defines the infrastructure components that support the integration

Data: describes the range of data formats and standards that support interopera-
bility. Again, the degree of data integration varies across the different
LISI levels.

While applications, infrastructure, and data are of technical nature and hence supported by tech-
nical patterns, procedures belong more closely to the organizational realm and must be supported
on this level.

CMU/SEI-2013-TR-017 | 43

References/Bibliography

URLs are valid as of the publication date of this document.

[Bass 2012]
Bass, Len; Clements, Paul; & Kazman, Rick. Software Architecture in Practice. Addison-Wesley,
2012.

[BMP 2012]
Best Manufacturing Practices, Center of Excellence. LISI Model: Levels of Information Systems
Interoperability (LISI) Reference Model. “The PAID Paradigm.”
http://www.bmpcoe.org/library/books/lisi%20model/32.html (Accessed March 14, 2013).

[Buschmann 2007]
Buschmann, Frank; Henney, Kevlin; & Schmidt, Douglas C. Pattern-Oriented Software Architec-
ture: A Pattern Language for Distributed Computing, Volume 4. Wiley & Sons, 2007.

[Cervantes 2013]
Cervantes, Humberto; Velasco-Elizondo, Perla; & Kazman, Rick. “A Principled Way to Use
Frameworks in Architecture Design.” IEEE Software, Mar/Apr. 2013.

[COE 2010]
Chief Information Office, United States Army. Common Operating Environment Architecture,
Appendix C to Guidance for ‘End State’ Army Enterprise Network Architecture. Technical Re-
port, U.S. Army CIO/G-6. October 2010.

[Churchill 2001]
Churchill, Elizabeth F.; Snowdon, David N.; & Munro, Alan J. Collaborative Virtual Environ-
ments: Digital Places and Spaces for Interaction, Springer-Verlag, 2001.

[Dahmann 2011]
Dahmann, Judith; Rebovich, George; Lowry, Ralph; Lane, JoAnn; & Baldwin, Kristen “An im-
plementers' view of systems engineering for systems of systems”, IEEE International Systems
Conference (SysCon '11), pp. 212 -217, 2011.

[DoD 2012]
Department of Defense. Systems Engineering Guide for Systems of Systems, version 1.0. 2008.
www.acq.osd.mil/se/docs/SE-Guide-for-SoS.pdf

[Fowler 2003]
Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-Wesley, 2003

[Hohpe 2003]
Hohpe, Gregor & Woolf, Bobby, United States Army. Enterprise Integration Patterns: Design-
ing, Building, and Deploying Messaging Solutions. Addison-Wesley, 2003.

http://www.bmpcoe.org/library/books/lisi%20model/32.html
http://www.acq.osd.mil/se/docs/SE-Guide-for-SoS.pdf

CMU/SEI-2013-TR-017 | 44

[Köppen 2011]
Köppen, Veit; Brüggemann, Björn; & Berendt, Bettina. “Designing Data Integration: The ETL
Pattern Approach.” Business Intelligence 12, 3, pp. 39–55, 2011.

[Maier 1996]
Maier, Mark. “Architecting Principles for Systems-of-Systems” 567–574. INCOSE 1996 Sixth
annual International Symposium of the International Council on Systems Engineering, Boston,
MA, June 1996.

[Morris 2004]
Morris, Edwin; Levine, Linda; Meyers, Craig; Place, Pat; & Plakosh, Dan. System of Systems In-
teroperability (SOSI): Final Report (CMU/SEI-2004-TR-004). Software Engineering Institute,
Carnegie Mellon University, 2004. http://www.sei.cmu.edu/library/abstracts/reports/04tr004.cfm

[Sal 2012]
Salesforce.com. “Integration Patterns and Practices,” version 26.0. 2013.
http://www.salesforce.com/us/developer/docs/integration_patterns/integration_patterns_and_pract
ices.pdf

http://www.sei.cmu.edu/library/abstracts/reports/04tr004.cfm
http://www.salesforce.com/us/developer/docs/integration_patterns/integration_patterns_and_pract

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

December 2013

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Understanding Patterns for System-of-Systems Integration

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Rick Kazman, Claus Nielsen, Klaus Schmid

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2013-TR-017

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFLCMC/PZE/Hanscom

Enterprise Acquisition Division

20 Schilling Circle

Building 1305

Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

n/a

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Creating a successful system of systems—one that meets the needs of its stakeholders today and can evolve and scale to sustain those
stakeholders into the future—is a very complex engineering challenge. In a system of systems (SoS), one of the biggest challenges is in
achieving cooperation among systems through some form of system integration. Previous work has approached the integration challenge in a
generic way, not specific to a SoS context, or has provided only a limited range of solutions. This technical report discusses how an architect
can address the SoS integration challenge from an architectural perspective; it also illustrates the breadth of potential solutions to the chal-
lenge through a categorization of SoS patterns. To demonstrate the practical relevance of this work, the authors instantiate this categorization
with a set of patterns described in both the research literature and by companies that support SoS platforms.
14. SUBJECT TERMS

pattern, integration, system of systems, software architecture

15. NUMBER OF PAGES

55

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Abstract
	1 Introduction
	2 Categorization of Integration Approaches
	3 Defining the System-of-System Development Context
	4 Categorization of Technical Integration Characteristics
	5 Pattern Overview
	6 Conclusions/Future Work
	Appendix: Levels of Information System Interoperability
	References/Bibliography

