

Edinburgh Research Explorer

Certified Lightweight Contextual Policies for Android

Citation for published version:
Seghir, MN, Aspinall, D & Marekova, L 2017, Certified Lightweight Contextual Policies for Android. in
Proceedings - 2016 IEEE Cybersecurity Development, SecDev 2016., 7839801, Institute of Electrical and
Electronics Engineers (IEEE), Boston, MA, USA, pp. 94-100, 2016 IEEE Cybersecurity Development,
SecDev 2016, Boston, United States, 3/11/16. https://doi.org/10.1109/SecDev.2016.032

Digital Object Identifier (DOI):
10.1109/SecDev.2016.032

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings - 2016 IEEE Cybersecurity Development, SecDev 2016

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 24. Apr. 2024

https://doi.org/10.1109/SecDev.2016.032
https://doi.org/10.1109/SecDev.2016.032
https://www.research.ed.ac.uk/en/publications/37387393-da96-4390-9f3c-9d6510f6f406

Certified Lightweight Contextual Policies

for Android

Mohamed Nassim Seghir

University of Edinburgh

David Aspinall

University of Edinburgh

Lenka Marekova

University of Edinburgh

Abstract—Security in Android applications is enforced with
access control policies implemented via permissions giving access
to different resources on the phone. These permissions are often
too coarse and their attribution is based on an all-or-nothing
decision on most of Android distributions. How can we grant
permissions and be sure they will not be misused? We propose
a policy-based lightweight approach for the verification and
certification of Android applications with respect to a given policy.
It consists of a verifier running on a conventional computer and a
checker residing on an Android mobile device. The verifier applies
static analysis to show the conformance between an application
and a given policy. It also generates a certificate asserting the
validity of the analysis result. The checker, on a mobile device,
can then check the validity of the certificate to confirm of refute
the fulfilment of the policy by the application before installing it.
This scheme represents a potential future model for app stores
where apps are equipped with policies and checkable evidence.
We have implemented our approach, we report on the preliminary
results obtained for a set of popular real-world applications.

I. INTRODUCTION

Android’s openness and ubiquity make it an ideal target for
malware. Security in Android applications is enhanced with
access control policies implemented via permissions giving
access to different resources on the phone. But the permission
model depends on the good judgment of the user, who needs
to have some knowledge about the reasonable behavior of
the application. For example, Brightest Flashlight Free 1 is
an app which was downloaded 50 million times; its purpose
is to turn on all the lights on a phone to their maximum
level. However, it turned out that this app requested many
inappropriate permissions, stealing the user’s location and
unique ID, and sending them to advertisers [1]. Most users
would probably be unaware or surprised by this behaviour.

A straightforward solution to the previous case is to refuse
granting permissions (refuse installation) to an app if its natural
functionality does not match the requested permissions. But
what if an app asks for permissions for some extra functional
tasks which are not harmful? On the opposite side, if the
required permissions match the logical functionality of the
app, can we grant them and be sure they will not be misused?
For example, an application for SMS management needs the
permission SEND SMS for sending, but should not use it
to send out private data or contact premium rate numbers.
Another example concerns a sound recording app. While the
RECORD AUDIO permission is a legitimate requirement for the
natural functionality of the app, using it for recording without
the user consent is an unwanted and a suspicious behavior.

1https://play.google.com/store/apps/details?id=golden
shorestechnologies.brightestflashlight.free

We propose fine-grained yet lightweight policies to pre-
scribe the reasonable behaviour of applications. They refine
the raw permissions model by making permissions bound to
specific contexts, similar to the idea used in Pegasus [8].
For example, sound can only be recorded as a response to
a user interaction, i.e., responding to a GUI event. We use
static analysis to show the conformance between policies and
application behaviour. A question that arises: can we trust the
soundness (result) of the analysis? Moreover, how do we know
that the analysis was indeed carried out? To address these
questions, we propose a policy-based scheme, illustrated in
Figure 1, which consists of the following ingredients:

• Policy: specify a set of rules to which the application
must adhere. It can be provided by either a client of
the application as a requirement or by the application
provider as an advertisement to promote the safety/se-
curity features of its application.

• Verifier: static analysis that runs on the application
provider side. It checks the conformance between the
application and a policy, and generates a certificate.

• Certificate: audit for the accountability of the static
analysis (verifier). It attests the correctness of the
verifier outcome.

• Checker: static analysis that runs on the client (mobile
device) side. It checks the validity of the certificate
with respect to the application and the related policy.
The checker is much lighter compared to the verifier.

Fig. 1: Contract-based certification scheme

The certificate provides independently verifiable guarantees
in concert with cryptographic signatures. It broadens the idea
of Proof-Carrying Code by Necula [22] by encompassing
lightweight forms of evidence specific to particular properties,
e.g., program annotations tracking permissions or resource
usage. It also goes beyond cryptographic signatures as it
allows to certify properties inherent to the functionality of
the application, such as the absence of information leakage or

1 p u b l i c c l a s s R e c o r d e r ex tends A c t i v i t y {
2 p r i v a t e MediaRecorder r e c o r d e r = n u l l ;

3

4 p u b l i c vo id o n C r e a t e (. . . .) {
5 ((B u t ton) f indViewById (S t a r t))

6 . s e t O n C l i c k L i s t e n e r (s t a r t C l i c k) ;

7

8 / / s t a r t R e c o r d i n g () ;

9 }
10

11 p r i v a t e void s t a r t R e c o r d i n g () {
12 r e c o r d e r = new MediaRecorder () ;

13 r e c o r d e r . s e t A u d i o S o u r c e

14 (MediaRecorder . AudioSource . MIC) ;

15 r e c o r d e r . s e t O u t p u t F i l e (/∗ f i l e name ∗ /) ;

16

17 r e c o r d e r . s t a r t () ;

18 }
19

20 p r i v a t e View . O n C l i c k L i s t e n e r s t a r t C l i c k

21 = new View . O n C l i c k L i s t e n e r () {
22 p u b l i c vo id o n C l i c k (View v) {
23

24 s t a r t R e c o r d i n g () ;

25 }} ;

26

27 }

Fig. 2: Code snippets and graphical interface of the Recorder
app

bugs. The certificate can be independently checked to validate
or refute the result of the analysis.

Checking the certificate is efficient compared to its gener-
ation. Hence, we are able to directly perform it on mobile
devices which are relatively limited in terms of resources.
We have extended our tool EviCheck [24] with this new
operational scheme (check on device). We report on the results
obtained for a set of real-world applications.

II. EXAMPLE

In this section, we illustrate our approach via possible
scenarios of permission misuse.

A. Actions without user consent

Consider the code snippets and the associated graphical
interface in Figure 2, which represent the audio recording
app Recorder. The access to the recording device is car-
ried out via object recorder (line 2). At the creation phase
(onCreate), a callback for a click event is associated with
the button Start (line 5). Within the callback onClick, the
method startRecording is invoked (line 24) which in turns
calls recorder.setAudioSource and recorder.start to set the
(on-device) microphone as a source and trigger the recording
process. This app requires the permission RECORD AUDIO

which is associated with the API method setAudioSource
of the MediaRecorder class. We might ask how and when

is this permission used? In the normal case, the user would
expect the recording to begin when the button Start is pushed.
A possible malicious behaviour is to trigger the recording
without the intervention nor the knowledge of the user. To rule
out such a behaviour we provide a policy expressing that the
RECORD AUDIO permission will only be used in the context of
the function onClick. An app can have multiple entry points.
Hence, in terms of method invocations, we do not want to have
a sequence of calls in which the API method associated with
RECORD AUDIO is reachable from an entry point of the app
other than onClick. We express this via the following rule:

ENTRY POINT, ¬CLICK HANDLER : ¬RECORD AUDIO

The context variable ENTRY POINT ranges over the set of
entry points and CLICK HANDLER ranges over click event
handlers. The notation ¬CLICK HANDLER means that click
event handlers are discarded and ¬RECORD AUDIO means
that the permission for audio recording should not be used.
So the rule says: “in all entry points, apart from click event
handlers, the permission RECORD AUDIO must not be used”.
This means, setAudioSource should only be reachable from
a click event handler. This rule lacks some precision in
describing the functionality of the app as the click event
handler could be associated with the Start button as well as
the Stop button. We can be more precise in our specification,
if needed, by directly providing the method identifier instead
of using context variables.

To check the validity of the previous rule, we use a simple
reachability analysis which computes the transitive closure of
the call graph with respect to permission usage. The result
of the analysis is a map associating with each method the
set of permissions corresponding to API methods which are
potentially reachable from it. Starting with the initial map

setAudioSource : RECORD AUDIO

the analysis returns the new map

setAudioSource : RECORD AUDIO
onClick : RECORD AUDIO

onCreate :

startRecording : RECORD AUDIO

Entry points are underlined. We can see that
RECORD AUDIO is only associated with onClick, thus
our policy is valid. If we uncomment the line 8 (Figure 2),
the policy is violated as RECORD AUDIO will be reachable
from the entry point onCreate as well.

Certificate. Now the question is how can a client of the
analysis trust its claim? The analysis might contain errors
or, even worse, an attacker can provide such a result without
applying the analysis at all. For this, the computed map will
serve as a certificate. To test its validity, we just need to
check that for each pair of (caller, callee) methods, the set
of permissions associated with the caller includes the ones
associated with the callee. An auxiliary implicit condition is
that all methods must have entries in the map. Let us try to
tamper with the certificate generated for the previous example
by omitting RECORD AUDIO from the entry corresponding to
onClick. This will be detected as RECORD AUDIO is included
in startRecording which is called by onClick, so it must be
included in the caller as well. Let us have a more extreme sce-
nario where we remove RECORD AUDIO from all entries. This

1 p u b l i c c l a s s u p l o a d e r ex tends I n t e n t S e r v i c e {
2

3 p r o t e c t e d void o n H a n d l e I n t e n t (I n t e n t i n t e n t){
4 . . .

5 s e n d F i l e (/∗ f i l e name ∗ /) ;

6 }
7

8 p r i v a t e void s e n d F i l e (s t r i n g f i l e n a m e){
9 / / read c o n t e n t o f f i l e n a m e

10 / / needs p e r m i s s i o n READ EXTERNAL STORAGE

11

12 / / send c o n t e n t o f f i l e n a m e v i a a s o c k e t

13 / / needs p e r m i s s i o n INTERNET

14 }
15 }

Fig. 3: Code illustrating file transfer from the phone to a
remote destination in the background using an IntentService
component

case also is detected as RECORD AUDIO is associated with
setAudioSource by definition (framework implementation), it
represents the seeds for the analysis. How about suppressing
all the entries? Our analysis will be aware of this case as the
first step in the certificate integrity check is to make sure that
all the methods used in the program have entries in the map.
We would like to emphasize that the call graph is not part
of the certificate. It is computed the same way by both the
provider and the client of the analysis.

B. Stealing data

The previous scenario illustrates a behaviour which is
undesirable, but remains harmless as long as the recorded data
do not leave the phone. What if the recorded file is sent out to
a remote server via the network connection? This can be done
by sending the file just after the user terminates its recording.
To make this stealthy, a non-blocking service running in the
background is used as shown in Figure 3. The service is called
uploader and the file transfer is performed via the method
sendFile. We abstract away the implementation details of
sendFile as this is not relevant to the presentation. We can
specify a policy that rules out such a malicious behaviour as
follows:

SERVICE
or

: ¬INTERNET
¬READ EXTERNAL STORAGE

The context variable SERVICE ranges over the set of methods
which are members of service components. The rule says:
“in each method belonging to a service component, either
the INTERNET or the READ EXTERNAL STORAGE permission

can be used but not both”. The notation
or
: stipulates that

the right side of the rule is a disjunction (by default, it is
a conjunction). If the previous rule is violated, it does not
necessarily mean that we have a data leak, but it serves as
a lightweight alarm trigger which points out to parts of code
to scrutinise more carefully. On the other hand, as the rule
represents an over-conservative constraint, its validity rules out
the undesirable scenario. We provide a more formal description
of the rules semantics in the next section.

III. POLICY AND DIGITAL EVIDENCE

In this section, we describe the semantics of our policy lan-
guage and provide an algorithm for checking the satisfiability
of a given policy. We also show how to use the result as a
certificate.

A. Policy language

Our policy language has the following grammar:

R := H (: |
or
:) T

H := mid | (CV |¬CV)+

CV := ENTRY POINT | ACTIVITY | SERVICE | RECEIVER

| ONCLICK HANDLER | ONTOUCH HANDLER | LC
LC := ONCREATE | ONSTART | ONRESUME | . . .
T := (¬id)∗

In the grammar, mid represents a method identifier which
consists of the method name, its signature and the class it
belongs to. Also we have CV for context variables, which
can be ENTRY POINT referring to all entry points of the app,
ACTIVITY representing methods belonging to activities, SER-
VICE for methods belonging to service components, RECEIVER

for methods belonging to receiver components, in addition to
ONCLICK HANDLER and ONTOUCH HANDLER respectively
referring to the click and touch event handlers. Moreover, CV
can also be an activity life cycle callback such as ONCREATE,
ONSTART, ONRESUME, etc. Activity callbacks as well as the
touch and click event handlers are considered to be entry
points. For a context variable CV , we write SA(CV) to denote
the set of methods of the application A represented by CV ,
e.g., SA(ENTRY POINT) is the set of all entry points of the
application and SA(∗) represents the set of all methods of the
program. Finally, id simply represents an identifier or a tag
such as a permission.

B. Semantics

A policy is given as a set of rules. It is satisfied if all the
rules it contains are satisfied. In what follows we show when
a rule is satisfied by an application. First, for a rule R we call
H the head of the rule and T its tail. A rule can have either
an or-semantics (

or
:) or an and-semantics (:). We define the

function Interpret which gives an interpretation for the rule’s
head within an application; it simply returns a set of method
identifiers. If H consists of just one method identifier mid,
then Interpret(H,A) = {mid}. If H is a list of (negated)
context variables CV1, . . . , CVm,¬CVm+1, . . . ,¬CVn then

Interpret(H,A) = (

m⋂

i=1

SA(CVi))∩(
n⋂

i=m+1

(SA(∗)\SA(CVi)))

Example 1: Let us assume that H is of the form

¬ONTOUCH HANDLER ENTRY POINT ACTIVITY

In this case Interpret(H,A) represents the set of entry point
methods belonging to activity components of the application
A, which are not touch event handlers.

Given a rule R of the form H : T , we write Id(T) to
denote the set of identifiers appearing in the rule’s tail T . The

satisfiability of a rule R by an application A is described as
follows:

A |= R if ∀x ∈ Interpret(H,A).

Id(T) ∩ reachA(x) = ∅
(1)

The symbol reachA represents a map associating with each
method of the application A a set of tags (E.g., permissions).
A tag t belongs to reachA(m) if t is by definition associated
with the method m or if m calls another method m′ within
the application A such that t ∈ reachA(m

′). The semantics

of an or-rule R of the form H
or
: T is given by

A |= R if ∀x ∈ Interpret(H,A).

Id(T) 6⊂ reachA(x)
(2)

A policy P is a mixture of and- and or-rules.

C. Call Graph

The call graph is the key representation on which our
analysis relies. It is therefore essential that the generated call
graph is as complete as possible, i.e., any pair of (caller,
callee) in real executions of the application is present in the
call graph. Java and object oriented languages in general have
many features, such as method overriding, which makes the
construction of an exact call graph (statically) at compile
time impossible. Therefore, we over-approximate it using the
class hierarchy approach [25] which permits to conservatively
estimate the run-time types of the receiver objects. For an
object o having a declared type t, its estimated types will
be t plus all the subclasses of t. If t is an interface then its
estimated types are all classes implementing it or implementing
its subinterfaces together with all their subclasses. We write
CG(A) to denote the function returning the call graph of an
application A.

D. Policy verification

As mentioned previously, our verification technique gener-
ates a certificate as an audit for its outcome. This is imple-
mented via Algorithm 1 which takes as input an application
and a policy (set of rules) and returns a pair (Boolean,
tag map) if the policy is satisfied. The returned map is a
certificate for the validity of the analysis. If the policy is
violated no certificate is returned. We have previously seen that
rules interpretation with respect to an application A (formulae
(1) and (2)) depends on the set of tags associated with the
different methods in reachA, hence our algorithm proceeds
in two phases. First, the tag map reachA is computed via a
simple working list procedure (lines 5-12). Tags are propagated
backwards from callees to callers until a fixpoint is reached. In
the second phase, we iterate over rules composing the current
policy and check their validity (line 14) with respect to the
application. This amounts to checking the (non) violation of
the formulas (1) and (2) for and-rules and or-rules respectively.
If no rule is violated, a map (certificate) accompanying the
validity answer is returned (line 17), otherwise the verification
process is terminated without providing a certificate (line 16).

E. Certification

To check the validity of the generated certificate (tag map)
computed by Algorithm 1, we do not need to re-apply a

Algorithm 1: VerifyAppForPolicy

Input: application A, poliy P
Output: (Boolean, tag map)

1 Var list L, set S;
2 Let M be the permission map for API functions;
3 Let reachA(f) = M(f) if f ∈ API and reachA(f) = ∅

otherwise;
4 L := {all functions used in app};
5 while L 6= ∅ do
6 pick up a function f from L;
7 S := reachA(f);
8 foreach f ′ s.t. (f, f ′) ∈ CG(A) do
9 reachA(f) := reachA(f)

⋃
reachA(f

′);

10 if S 6= reachA(f) then
11 foreach f ′′ s.t. (f ′′, f) ∈ CG(A) do
12 add f ′′ to L;

13 foreach rule r in P do
14 if A 6|= r then
15 print ”policy violated”;
16 return (false,-);

17 return (true, reachA);

reachability analysis. In fact, the checking process, which is
implemented via Algorithm 2, is lighter than the generation
one. It takes an app, a tag map and a policy as parameters and
returns true if the certificate is valid and the policy is satisfied
or false otherwise. First, we check that all methods belonging
to the platform API are present in the certificate together with
their predefined tags (lines 1-5). In the next step, it suffices
to go through the different methods and locally check if their
associated set of tags is equal to the union of all the sets of
tags associated with the functions they call (line 6-10). As
illustrated by the tests at lines 3 and 8, it suffices to find one
inconsistency to invalidate the certificate. If no inconsistency
is found then the final step consists of assigning the certificate
to reachA (line 11) and then checking the satisfiability of the
policy by the application (lines 12-16), similar to Algorithm 1.

The procedure CheckCertificate has a linear complexity
in the number of methods of the program. It also has a
constant space complexity as we are just performing checks
without generating any information which needs to be stored.
Moreover, we do not require the complete call graph to be
present in memory. As we are performing a single (linear)
pass, we can get rid of the current entry as soon as we move
to the next one.

As the call graph is not part of the certificate, it is
computed the same way via function CG in both the verifier
(Algorithm 1) and the checker ((Algorithm 2).

F. Discussion

As mentioned previously, generating the call graph by itself
is not a trivial task due virtual method dynamic resolution.
Reflection is also a known issue for static analysis. A simple
and conservative solution for this problem is to associate a tag
tref with methods of the class java/lang/reflect/Method. We
then use the tag tref to make the policy reflection-aware, e.g.,

Algorithm 2: CheckCertificate

Input: application A, policy P , map M
Output: Boolean

1 Let M0 be the permission map for API functions;
2 foreach f ∈ API do
3 if M [f] 6= M0[f] then
4 print ”certificate invalid”;
5 return false;

6 foreach (f,−) ∈ CG(A) do
7 Let S =

⋃
{M [f ′] | (f, f ′) ∈ CG(A)};

8 if M [f] 6= S then
9 print ”certificate invalid”;

10 return false;

11 reachA := M ;
12 foreach rule r in P do
13 if A 6|= r then
14 print ”policy violated”;
15 return (false);

16 return (true);

c : ¬tref to express that reflection should not be used in the
context c. A similar solution can be adopted for dynamic code
loading by associating a tag tdyn with methods of the class
dalvik/system/DexClassLoader.

Another key point is related to the nature of our analysis
which is a may-analysis. It can show that an application may
use a given permission but cannot show that the permission is
actually used. This makes it more appropriate for disproving
permission usage rather than proving it and explains the oc-
currence of identifiers in negated form in our policy language.

Finally, a question that needs to be addressed is: who pro-
vides policies? Although our tool gives the user the possibility
of specifying policies, we do not expect an average user to
do it by himself. Security experts could prescribe a bunch
of policies based on application categories. What can we do
in the absence of expertise? We are currently working on
a data-driven automatic approach for policy generation. The
preliminary prototype already provides encouraging results.

IV. IMPLEMENTATION AND EXPERIMENTS

a) Implementation: We have implemented the checker,
which runs on mobile devices, as part of our tool EviCheck
[24]2. EviCheck accepts apps directly in bytecode (APK)
format and uses Androguard [12] as back-end for parsing them.
As EviCheck is written in Python, we use kivy3 to facilitate
the deployment of the checker module on Android mobile
devices. The verifier module takes an app together with a
policy as input, and answers whether the policy is satisfied
by the app, and eventually outputs a certificate. The checker
takes as input an app, a certificate and a policy, and answers
whether the certificate is valid. Both the verifier and checker
return diagnostic information pointing to the first violated rule
in case of policy violation or to the first inconsistent map

2http://groups.inf.ed.ac.uk/security/appguarden/tools/EviCheck
3https://kivy.org

entry when checking the certificate. They also generate chain
of method calls as witness.

b) Experiments: We have performed experiments on 13
real-world popular applications, from the Google Play store4,
ranging over different domains: banking, multimedia, games,
social, etc. We use a typical Linux desktop to host the verifier
and a Motorola G3 mobile phone (Qualcom Snapdragon
1.4GHz processor) running Android to host the checker. In
our study, we have specified a policy consisting of 6 rules
which can potentially match undesirable behaviour. For ex-
ample, reading contacts and using Internet in the background,
which might indicate that private contacts are sent over the
Internet. First, we call the verifier to verify the validity of
the policy and to generate a certificate. In a second step,
the checker is invoked to check the generated certificate.
The results are illustrated in Table I. Column #M shows the
number of methods per application as an indicator of the
application size. Columns V(d) and C(d) respectively represent
the verification and checking times on desktop computer.
Column C(m) contains the checking times on mobile device.
We have included checking times on desktop on purpose to
illustrate how checking is more efficient than verification on
a similar architecture. This motivated us to carry out the
checking directly on mobile device. While the performance
of the checker on mobile is not as good as on desktop, it still
runs in less than 10 minutes and for one case in less than one
minute. This is encouraging given the size of the considered
applications and the limitations of mobile devices. To give
an idea about the complexity of these apps for static analysis
tools, Flowdroid [2] is unable to analyze the Hsbc app within
a bound of 30 minutes on a desktop computer.

The remaining part of the table concerns the rules forming
the policy. The presence of the symbol ✗ indicates that the
concerned rule is violated. A description of each rule is
given in Figure 4. Policy violation does not necessarily mean
malicious behaviour, but it can serve as an alarm to trigger
more careful scrutinizing. For example, rule 6 is violated by
the Hsbc app. This was surprising, knowing that it is a banking
app. Why would it use the camera at all? Our investigation
revealed that this app offers a mobile check deposit service 5

which uses the camera to take a picture of the check. Further
to this, we wanted to know if the app is taking pictures without
user consent as rule 6 indicates that the camera is used in a
method which is not a click handler. By analysing the bytecode
of the application, we found out that there are camera-related
methods which are reachable from an onResume callback of
an activity. However, they are used for configuration purposes.

1. ENTRY POINT SERVICE :OR ¬ACCESS FINE LOCATION ¬SEND SMS

2. ENTRY POINT SERVICE :OR ¬ACCESS FINE LOCATION ¬INTERNET

3. ENTRY POINT SERVICE :OR ¬READ CONTACTS ¬SEND SMS

4. ENTRY POINT SERVICE :OR ¬READ CONTACTS ¬INTERNET

5. ACTIVITY ENTRY POINT ¬ONCLICK HANDLER : ¬RECORD AUDIO

6. ACTIVITY ENTRY POINT ¬ONCLICK HANDLER : ¬CAMERA

Fig. 4: Rules composing the policy used in the study

4https://play.google.com/store/apps
5https://www.us.hsbc.com/1/2/home/personal-banking/pib/mobile/mobile-

deposit

Policy rules

App #M V(d) C(d) C(m) 1 2 3 4 5 6

Angrybirds 48324 123.1 50.11 436.27

CandyCrushSaga 23877 25.38 19.12 182.51

Facebook 7969 12.16 11.36 67.56

FacebookMessenger 4201 7.02 6.78 34.34

FirefoxBrowser 28442 50.52 30.07 287.07

Hsbc 18365 18.32 13.83 122.56 ✗

Instagram 39062 94.55 50.63 427.32

LinkedIn 50743 191.97 56.88 550.89

OperaBrowser 28137 34.68 23.61 218.71

Skyscanner 44374 121.78 55.57 449.75

Twitter 45700 151.03 47.95 462.65

Uber 48600 113.84 46.15 426.05

Viber 50876 153.6 53.69 479.64

TABLE I: Results of checking a policy composed of 6 rules
against 13 popular apps from the Google Play store. The
symbol ✗ indicates that a rule (policy) is violated.

V. RELATED WORK

Recently, many tools for analysing different security as-
pects of Android have emerged. Some of them rely on dy-
namic analysis [5], [14], [23], [26], [27]. Others are based
on static analysis [2], [4], [9], [16], [18]. The last family
of tools perform an exhaustive exploration of the application
behaviour. This is made possible thanks to abstraction (over-
approximation) which also leads to some imprecision. We
are interested in this category (static analysis) of tools as
our aim is to certify the absence of bad behaviours. Our
work is a complement to these tools. In addition to analysing
applications, we also return a verifiable evidence attesting the
validity of the analysis. The tool Kirin [15] uses lightweight
rules which conservatively match undesirable behaviour. Their
policy language can refer to permissions but does not refer to
their usage context. Our language does not have this limitation.
Moreover, our analysis is more faithful to the application
behaviour by operating on its code as opposed to Kirin’s
analysis which is restricted to the manifest file. Chen et
al. use temporal logic and model checking to specify and
verify API and permission sequences in a given context [8].
While their approach can capture more interesting properties
than ours, it does not generate a certificate for the result. A
combination of their approach with ours is an interesting track
for investigation.

Jeon et al. proposed an approach for inferring and enforcing
fine-grained permissions for Android by making them bound
to a set of arguments [17]. Our policy language also defines
a kind of fine-grained permissions, but they are bound to the
usage context. Enforcing fine-grained access control policies
was also investigated in the context of runtime monitoring [7],
[10], [13], [20] where the policy is checked at runtime. In
our case, the policy is statically checked, and we do not have
further checks when the application is executed.

The idea of associating proofs with code was initially
proposed by Necula under the moniker Proof-Carrying Code
(PCC) [21], [22]. It was then used to support resource policies
for mobile code [3], [6]. Furthermore, Desmet et al. presented
an implementation of PCC for the .NET platform [11]. To
the best of our knowledge, Cassandra is the only work in the
literature about applying PCC to Android [19]. Their approach
proposes a type system to precisely track information flows.

While precision is an advantage, it is hard to assess the prac-
ticability of their approach as no experiments involving real-
world applications are reported6. Our approach is applicable
to real-world large applications.

VI. CONCLUSION AND FURTHER WORK

We have presented a policy-based lightweight approach
for the verification and certification of Android applications
with respect to a given policy. It consists of a simple policy
language, a verifier running on a conventional computer and a
checker residing on an Android mobile device. We described
an implementation of this technique and reported on experi-
mental results obtained on real-world applications. This policy-
based scheme represents a potential future model for app
stores, where apps are equipped with policies and checkable
evidence. Our next step is to increase the efficiency of the
checking process on device and to integrate more sophisticated
analyses, such as information flow tracking.

REFERENCES

[1] C. Arthur. Android torch app with over 50m downloads silently sent
user location and device data to advertisers. The Guardian. 6 December
2013.

[2] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. L.
Traon, D. Octeau, and P. McDaniel. Flowdroid: precise context, flow,
field, object-sensitive and lifecycle-aware taint analysis for android
apps. In PLDI, page 29, 2014.

[3] D. Aspinall and K. MacKenzie. Mobile resource guarantees and
policies. In CASSIS, pages 16–36, 2005.

[4] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. Pscout: analyzing the
Android permission specification. In ACM Conference on Computer

and Communications Security, pages 217–228, 2012.

[5] M. Backes, S. Gerling, C. Hammer, M. Maffei, and P. von Styp-
Rekowsky. Appguard - enforcing user requirements on Android apps.
In TACAS, pages 543–548, 2013.

[6] G. Barthe, P. Crégut, B. Grégoire, T. P. Jensen, and D. Pichardie. The
mobius proof carrying code infrastructure. In FMCO, pages 1–24, 2007.

[7] S. Bugiel, S. Heuser, and A.-R. Sadeghi. Flexible and fine-grained
mandatory access control on Android for diverse security and privacy
policies. In Presented as part of the 22nd USENIX Security Symposium,
pages 131–146, Berkeley, CA, 2013. USENIX.

[8] K. Z. Chen, N. M. Johnson, V. D’Silva, S. Dai, K. MacNamara,
T. Magrino, E. X. Wu, M. Rinard, and D. X. Song. Contextual policy
enforcement in Android applications with permission event graphs. In
NDSS, 2013.

[9] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-
application communication in Android. In MobiSys, pages 239–252,
2011.

[10] M. Conti, B. Crispo, E. Fernandes, and Y. Zhauniarovich. Crêpe: A
system for enforcing fine-grained context-related policies on Android.
IEEE Transactions on Information Forensics and Security, 7(5):1426–
1438, 2012.

[11] L. Desmet, W. Joosen, F. Massacci, P. Philippaerts, F. Piessens, I. Sia-
haan, and D. Vanoverberghe. Security-by-contract on the .net platform.
Inf. Sec. Techn. Report, 13(1):25–32, 2008.

[12] A. Desnos. Androguard. http://code.google.com/p/androguard/.

[13] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach. Quire:
Lightweight provenance for smart phone operating systems. In USENIX

Security Symposium, 2011.

[14] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. Sheth. Taintdroid: An information-flow tracking system for realtime
privacy monitoring on smartphones. In OSDI, pages 393–407, 2010.

6We have contacted the author with regards to the applicability of Cassandra
to real-world apps but so far we have not received a response.

[15] W. Enck, M. Ongtang, and P. D. McDaniel. On lightweight mobile
phone application certification. In ACM Conference on Computer and

Communications Security, pages 235–245, 2009.

[16] S. Fahl, M. Harbach, T. Muders, M. Smith, L. Baumgärtner, and
B. Freisleben. Why Eve and Mallory love Android: an analysis of
Android SSL (in)security. In ACM Conference on Computer and

Communications Security, pages 50–61, 2012.

[17] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster,
and T. D. Millstein. Dr. Android and mr. hide: fine-grained permissions
in Android applications. In SPSM@CCS, pages 3–14, 2012.

[18] J. Kim, Y. Yoon, K. Yi, and J. Shin. Scandal: Static analyzer for
detecting privacy leaks in Android applications. In Mobile Security

Technologies (MOST), 2012.

[19] S. Lortz, H. Mantel, A. Starostin, T. Bähr, D. Schneider, and A. Weber.
Cassandra: Towards a certifying app store for android. In SPSM@CCS,
pages 93–104, 2014.

[20] M. Nauman, S. Khan, and X. Zhang. Apex: extending android permis-
sion model and enforcement with user-defined runtime constraints. In
ASIACCS, pages 328–332, 2010.

[21] G. C. Necula. Proof-carrying code. In POPL, pages 106–119, 1997.

[22] G. C. Necula and P. Lee. Safe kernel extensions without run-time
checking. In OSDI, pages 229–243, 1996.

[23] A. Reina, A. Fattori, and L. Cavallaro. A system call-centric analysis
and stimulation technique to automatically reconstruct Android malware
behaviors. In Proceedings of the 6th European Workshop on System

Security (EUROSEC 2013), Prague, Czech Republic, April 2013.

[24] M. N. Seghir and D. Aspinall. Evicheck: Digital evidence for android.
In ATVA, pages 221–227, 2015.

[25] V. Sundaresan, L. J. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam,
E. Gagnon, and C. Godin. Practical virtual method call resolution for
java. In OOPSLA, pages 264–280, 2000.

[26] R. Xu, H. Saı̈di, and R. Anderson. Aurasium: Practical policy enforce-
ment for Android applications. In Presented as part of the 21st USENIX

Security Symposium, pages 539–552, Berkeley, CA, 2012. USENIX.

[27] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and
B. Zang. Vetting undesirable behaviors in android apps with permission
use analysis. In ACM Conference on Computer and Communications

Security, pages 611–622, 2013.

