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Abstract—Information-flow security typing statically preserves
confidentiality by enforcing noninterference. To address the prac-
tical need of selective and flexible declassification of confidential
information, several approaches have developed a notion of
relaxed noninterference, where security labels are either functions
or types. The labels-as-types approach to relaxed noninterference
supports expressive declassification policies, including recursive
ones, via a simple subtyping-based ordering, and provides a
local, modular reasoning principle. In this work, we extend this
expressive declassification approach in order to support poly-
morphic declassification. First, we identify the need for bounded
polymorphism through concrete examples. We then formalize
polymorphic relaxed noninterference in a typed object-oriented
calculus, using a step-indexed logical relation to prove that all
well-typed terms are secure. Finally, we address the case of
primitive types, which requires a form of ad-hoc polymorphism.
Therefore, this work addresses practical hurdles to providing
controlled and expressive declassification for the construction of
information-flow secure systems.

I. INTRODUCTION

An information-flow security type system statically ensures
that public outputs (e.g. StringL) cannot depend on secret
inputs (e.g. StringH), a property known as noninterference
(NI) [1]. NI provides a modular reasoning principle about
security, indexed by the observational power of an adversary.
For instance, a function f : StringH → StringL does not reveal
any information about its argument; in fact, in a pure language,
it is necessarily a constant function.

But noninterference is too strict in practice: for a system
to be useful, confidential information sometimes needs to be
declassified. Beyond introducing a declassification operator in
the language, which compromises formal reasoning, various
approaches have explored structured ways to support declas-
sification policies [2, 3, 4, 5]. In particular, Li and Zdancewic
[3] introduce relaxed noninterference, supporting expressive
declassification policies via security labels as functions. In
this approach, instead of having security labels such as H for
private and L for public information that are drawn from a
fixed lattice of symbols, security labels are the very functions
that describe how a given secret can be manipulated in order
to produce a public value: for instance, one can realize the
declassification policy “only the result of comparing the hash
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of the secret string s with a public guess can be made
public” by attaching to s a function that implements this
declassification (λx.λy. hash(x) = y). Any use of the secret
that does not follow the declassification policy yields private
results. One can express the standard label H (resp. L) as a
constant function (resp. the identity function). A challenging
aspect of this approach is that label ordering relies on a
semantic interpretation of declassification functions.

A more practical approach than this labels-as-functions ap-
proach was recently developed by Cruz et al. [5] in an object-
oriented setting, with a labels-as-types perspective: security
types are faceted types of the form T / U where the first
facet T—called the safety type—represents the implementation
type, exposed to the private observer, and the second facet U—
called the declassification type–represents the declassification
policy as an object interface exposed to the public observer.1

For instance, the type String />, where > is the empty object
interface, denotes private values (no method is declassified)
and the type String / String represents public values (all meth-
ods are declassified). These security types are abbreviated as
StringH and StringL, respectively. Interesting declassification
policies stand in between these two extremes: for instance,
given the interface StringLen , [length : UnitL → IntL], the
faceted type String / StringLen exposes the method length
to declassify the length of a string as a public integer, but
not its content. This type-based approach to declassification
is expressive as well as simple—in particular, because la-
bels are types, label ordering is simply subtyping. Also, it
extends the modular reasoning principle of NI to account
for declassification [5], a property named type-based relaxed
noninterference (TRNI). For instance, with TRNI one can
prove that a function of type String / StringLen→ BoolL must
produce equal results for strings of equal lengths.

The labels-as-types approach of Cruz et al. however lacks
security label polymorphism. Security label polymorphism is a
very useful feature of practical security-typed languages such
as JIF [6] and FlowCaml [7], which has only been explored
in the context of standard security labels (symbols from a
lattice). To the best of our knowledge, polymorphism has not
been studied for expressive declassification mechanisms, such
as labels-as-functions [3] or labels-as-types [5]. We extend the

1To account for k > 2 observation levels, faceted types can be extended to
have k facets [5]. Here, we restrict the presentation to two observation levels.
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labels-as-types approach with declassification polymorphism,
specifically bounded polymorphism that specifies both a lower
and an upper bound for a polymorphic declassification type.

The main contribution of this paper is to develop the theory
of bounded polymorphic declassification as an extension of
TRNI, called polymorphic relaxed noninterference (PRNI for
short). PRNI brings new benefits in the expressiveness and
design of declassification interfaces. Additionally, we address
the necessary support for primitive types, through a form of
ad-hoc polymorphism.

The labels-as-types approach has the practical benefits of
relying on concepts that are well-known to developers—object
interfaces and subtyping—in order to build systems with in-
formation flow security that cleanly account for controlled and
expressive declassification. This work addresses the two major
shortcomings of prior work in order to bring this approach
closer to real-world secure programming.

Section II provides background on labels-as-types and
TRNI. Section III then explains the main aspects of polymor-
phic relaxed noninterference (PRNI). Section IV formalizes
polymorphic declassification in a core object-oriented lan-
guage Ob

〈〉
SEC. Then, Section V develops a logical relation for

PRNI and shows that all well-typed Ob
〈〉
SEC terms satisfy PRNI.

Section VI extends Ob
〈〉
SEC with primitive types. Section VII

discusses related work and Section VIII concludes. We have
implemented an interactive prototype of Ob

〈〉
SEC that is avail-

able at https://pleiad.cl/gobsec/.

II. BACKGROUND:TYPE-BASED RELAXED
NONINTERFERENCE

We start with a quick review of type-based relaxed non-
interference [5]. Faceted security types allow programmers
to express declassification policies as type interfaces. For
instance, one can express that a login function can reveal
the result of comparing a secret password for equality with
a public guess.

StringL login(StringL guess , String / StringEq password ){
if(password.eq(guess))

return "Login Successful"
else

return "Login failed"
}

Note that leaking the secret password by directly returning
it would not typecheck, since StringEq is not a subtype
of String (recall that StringL is short for String / String).
Taking advantage of the fact that object types are recursive,
one can also express recursive declassification, for instance
that a list of secret strings can only be declassified by
comparing its elements for equality. Likewise, one can ex-
press progressive declassification by nesting type interfaces.
For instance, assuming that String has a method hash :
UnitL → IntL, we can specify that only the hash of the
password can be compared for equality with the interface
type StringHashEq , [hash : UnitL → Int / IntEq], where
IntEq , [eq : IntL → BoolL]:

StringL login(IntL guess , String / StringHashEq password ){

e ::= v | e.m(e) | x (terms)
v ::=

[
z : S ⇒ m (x) e

]
(values)

T,U ::= O | α (types)
O ::= Obj(α).

[
m : S → S

]
(object types)

S ::= T / U (security types)

Γ ` e : S Γ ::= • | Γ, x : S (type environment)

(TmD)

Γ ` e1 : T / U m ∈ U
msig(U,m) = S1 → S2 Γ ` e2 : S1

Γ ` e1.m(e2) : S2

(TmH)

Γ ` e1 : T / U m /∈ U
msig(T,m) = S1 → T2 / U2 Γ ` e2 : S1

Γ ` e1.m(e2) : T2 / >

Fig. 1. ObSEC: Syntax and Static semantics (excerpts from [5])

if(password.hash ().eq(guess)) ...
}

Cruz et al. formalize faceted security types in ObSEC, a
core object-oriented language with three kinds of expressions:
variables, objects and method invocations (Figure 1). An objectî
z : S ⇒ m (x) e

ó
is a collection of methods that can refer to

the defining object with the self variable z. An object type
Obj(α).

[
m : S → S

]
is a collection of method signatures

that have access to the defining type through the self type
variable α. Security types S = T / U are composed of two
object types T and U . Note that to be well-formed, a security
type T / U requires U to be a supertype of T . The type
abstraction mechanism of subtyping (by which a supertype
“hides” members of its subtypes) is the key element to express
declassification.

The ObSEC type system defines two rules to give a type to a
method invocation depending on whether the invoked method
is in the declassification type or not. Rule (TmD) specifies
that if the invoked method m is in the declassification type
U with type S1 → S2, then the result type of the method
invocation expression is S2. Conversely, if the method m is
only present in the safety type T with type S1 → T2 / U2, then
the result type of the method invocation is T2 /> (TmH): if we
bypass the declassification type, the result must be protected
as a secret.

The security property obtained by this approach is called
Type-based Relaxed Noninterference (TRNI). At the core of
TRNI is a notion of observational equivalence between objects
up to the discrimination power of the public observer, which
is specified by the declassification type. More precisely, two
objects o1 and o2 are equivalent at type T / U if, for any
method m with type S1 → S2 in the declassification type
U , invoking m with equivalent values v1 and v2 at type S1,
produces equivalent results at type S2.

TRNI is formulated as a modular reasoning principle, over
open terms: TRNI(Γ, e, S). The closing typing environment

https://pleiad.cl/gobsec/


Γ specifies the secrecy of the inputs that e can use, and
the security type S specifies the observation power of the
adversary on the output.

For instance, suppose StringLen is an interface that ex-
poses a length : UnitL → IntL method. Then, with Γ =
x : String / StringLen, the judgment TRNI(Γ, x.length(), IntL)
implies: given the knowledge that two input strings v1
and v2 have the same length, the lower observer does
not learn anything new about the inputs by executing
x.length(). Conversely, TRNI(Γ, x.eq(”a”),BoolL) does not
hold: executing x.eq(”a”) and exposing the result as a pub-
lic value would reveal more information than permitted by
the input declassification type (eq /∈ StringLen). However,
TRNI(Γ, x.eq(”a”),BoolH) does hold, because the result is
private and therefore unaccessible to the public observer.

III. POLYMORPHIC RELAXED NONINTERFERENCE

We first motivate polymorphic declassification with faceted
types, and then we illustrate the role of bounded polymorphism
for declassification. Finally, we give an overview of the
modular reasoning principle of polymorphic relaxed nonin-
terference.

A. Polymorphic Declassification

When informally discussing the possible extensions to their
approach to declassification, Cruz et al. [5] illustrate the
potential benefits of polymorphic declassification by giving the
example of a list of strings that is polymorphic with respect
to the declassification type of its elements:

ListStr〈X〉 , [ isEmpty : UnitL → BoolL,

head : UnitL → String / X,

tail : UnitL → ListStr 〈X〉L]

This recursive polymorphic declassification policy allows a
public observer to traverse the list, and to observe up to X on
each of the elements. This restriction is visible in the signature
of the head method, which returns a value of type String / X .

Then, with polymorphic declassification we can implement
data structures that are agnostic to the declassification policies
of their elements, as well as polymorphic methods over these
data structures. For example, we can construct declassification-
polymorphic lists of strings with the following cons method:

ListStr 〈X〉L cons <X >(String / X s, ListStr 〈X〉L l){
return new {

self: ListStr 〈X〉L
isEmpty () => false
head() => s
tail() => l

}
}

The cons method does not even access any method of list
l, it simply returns a new declassification-polymorphic list of
strings as a new object with the expected methods. We can then
use this method to define a declassification-polymorphic list
concatenation method concat: ListStr 〈X〉L × ListStr 〈X〉L →
ListStr 〈X〉L defined below:

ListStr 〈X〉L concat <X >(ListStr 〈X〉L l1, ListStr 〈X〉L l2){
if(l1.isEmpty ()) return l2
return cons <X >(l1.head(),

concat <X >(l1.tail(),l2))
}

The concat and cons methods are standard object-oriented
implementations of list concatenation and construction, re-
spectively. The concat method respects the declassification
type ListStr 〈X〉 of both lists because it uses l1.isEmpty() and
l1.tail() to iterate over l1, and it uses l1.head() to create a
new declassification-polymorphic list of type ListStr 〈X〉L. In
particular, it uses no string-specific methods.

B. Bounded Polymorphic Declassification

The declassification interface ListStr 〈X〉 above is fully
polymorphic, in that a public observer cannot exploit a priori
any information about the elements of the list. In particular, it
is not possible to implement a polymorphic contains method
that would yield publicly-observable results. Indeed, contains
needs to invoke eq over the elements of the list (obtained with
head). Because the result of head has declassification type X ,
for any X , the results of equality comparisons are necessarily
private.

In order to support polymorphic declassification more
flexibly, we turn to bounded parametric polymorphism.
Bounded parametric polymorphism supports the specification
of both upper and lower bounds on type variables. The type
ListStr 〈X〉 is therefore equivalent to ListStr 〈X : String..>〉,
where the notation X : A..B is used to denote that X is type
variable that ranges between A and B). Note that for ListStr
to be well-formed, the declassification type variable X must
at least be a supertype of the safety type String.

Going back to declassification-polymorphic lists, if we want
to allow the definition of methods like contains, we can further
constrain the type variable X to be a subtype of StringEq:

ListEqStr〈X : String..StringEq〉 ,
[ · · · , tail : UnitL → ListEqStr 〈X 〉L]

The type ListEqStr denotes a recursive polymorphic declas-
sification policy that allows a public observer to traverse the
list and compare its elements for equality with a given public
element. With this policy we can implement a generic contains
function with publicly-observable result:

BoolL contains <X : String..StringEq>
(ListEqStr 〈X〉L l, StringL s){

if(l.isEmpty ()) return false
if(l.head ().eq(s)) return true
return contains(l.tail(),s)

}

The key here is that l.head().eq(s) is guaranteed to be publicly
observable, because the actual declassification policy with
which X will be instantiated necessarily includes (at least) the
eq method. Thus, upper bounds on declassification variables
are useful for supporting polymorphic clients.

As mentioned above, the lower bound of a type variable
used for declassification must at least be the safety type for
well-formedness. More interestingly, the lower bound plays



a critical (dual) role for implementors of declassification-
polymorphic functions. Consider a method with signature

〈X : String..>〉 String / StringLen→ String / X

Can this method return non-public values? For instance, can
it be the identity function? No, because returning a string of
type String / StringLen would be unsound. Indeed, a client
could instantiate X with String, yielding

String / StringLen→ String / String

Therefore, to be sound for all possible instantiations of X ,
the implementor of the method has no choice but to return a
public string.

To recover flexibility and allow a polymorphic implemen-
tation to return non-public values, we can constrain the lower
bound of X . For instance

〈X : StringLen..>〉String / StringLen→ String / X

admits the identity function as an implementation, in addition
to other implementations that produce public results. Returned
values cannot be more private than specified by the lower
bound of X; their type must be a subtype of the lower bound.

Having illustrated the interest of upper and lower bounds
of declassification type variables in isolation, we now present
an example that combines both. Consider two lists of strings,
each with one of the following declassification policies:

ListStrLen 〈X : String..StringLen〉 4=
[ isEmpty : UnitL → BoolL,

head : UnitL → String / X,

tail : UnitL → ListStrLenL]

ListStrFstLen
4
= [ isEmpty : UnitL → BoolL,

head : UnitL → String / StrFstLen,

tail : UnitL → ListStrFstLenL]

ListStrLen is declassification polymorphic, ensuring that at
least the length of its elements is declassified (X has up-
per bound StringLen). The second policy, ListStrFstLen, is
monomorphic: it declassifies both the first character and the
length of its elements. If we want a function able to con-
catenate these two string lists, its most general polymorphic
signature ought to be:

〈X : StrFstLen..StringLen〉
ListStrLen 〈X〉L × ListStrFstLenL → ListStrLen 〈X〉L

The upper bound StringLen is required to have a valid in-
stantiation of ListStrLen 〈X〉; the lower bound StrFstLen is
required to be able to add elements of the second list to the
returned list.

C. Reasoning principles for PRNI

Introducing polymorphism in declassification types yields
an extended notion of type-based relaxed noninterference
called polymorphic relaxed noninterference (PRNI). PRNI
exactly characterizes that a program with polymorphic types

must be secure for any instantiation of its type variables.
To account for type variables, the judgment PRNI(∆,Γ, e, S)
is parametrized by ∆, a set of bounded type variables (i.e.
∆ ::= · | ∆, X : A..B). As in TRNI(Γ, e, S), the closing
typing environment Γ specifies the secrecy of the inputs that
e can use, and S specifies the observation level for the output.
∆ gives meaning to the type variables that can occur in both
S and Γ: e is secure for any instantiation of type variables
that respects the bounds.

For instance, given ∆
4
= X : StrFstLen..StringLen and Γ

4
=

x : String / X , PRNI(∆,Γ, x.length(), IntL) holds because for
any type T such as StrFstLen <: T <: StringLen, and the
knowledge that two input strings are related at String / T , and
hence at String / StringLen (i.e. both strings have the same
length), the public observer does not learn anything new by
executing x.length(). However, PRNI(∆,Γ, x.first(),StringL)
does not hold. Note that if we substitute X by StringLen, given
two strings with the same length “abc” and “123”, the public
observer is able to distinguish them by executing “abc”.first()
and “123”.first() and observing the results “a” and “1” as
public values.

Also, PRNI(∆,Γ, x,String / StringFst) does not hold.
Again, we can substitute X by StringLen, and take in-
put strings “abc” and “123”, which can be discriminated
by the public observer at type String / StringFst. However,
PRNI(∆,Γ, x,String / StringLen) does hold: any two equiva-
lent values at String / T where StrFstLen <: T <: StringLen
have at least the same length.

The rest of this paper dives into the formalization of
polymorphic relaxed noninterference in a pure object-oriented
setting (Sections IV and V), before discussing the necessary
extensions to accommodate primitive types (Section VI).

IV. FORMAL SEMANTICS

We model polymorphic type-based declassification in
Ob
〈〉
SEC, an extension of the language ObSEC [5] with polymor-

phic declassification. ObSEC is based on the object calculi of
Abadi and Cardelli [8], and our treatment of type variables and
bounded polymorphism is inspired by Featherweight Java [9]
and DOT [10].

A. Syntax

Figure 2 presents the syntax of Ob
〈〉
SEC. We highlight the

extension for polymorphic declassification, compared to the
syntax of ObSEC.

The language has three kind of expressions: objects, method
invocations, variables. Objects

î
z : S ⇒ m (x) e

ó
are collec-

tions of method definitions. Recall that the self variable z binds
the current object.

A security type is a faceted type T / U , where T is called
the safety type of S, and U is called the declassification type of
S. Types T include object types O and self type variables α.
Declassification types U additionally feature type variables X ,
to express polymorphic declassification. We use metavariables
A and B for declassification type bounds.



e ::= v | e.m
¨
U
∂

(e) | x (terms)

v ::= o (values)
o ::=

[
z : S ⇒ m (x) e

]
(objects)

S ::= T / U (security types)
T ::= O | α (types)

U,A,B ::= T | X (declassification types)
O ::= Obj(α).R (object types)
R ::=

[
m : M

]
(record types)

M ::=
¨
X : A..B

∂
S → S (method signatures)

Γ ::= • | Γ, x : S (type environments)
Φ ::= • | Φ, α <: β (subtyping environments)

∆ ::= • | ∆, X : A..B (type
variable environments)

α, β (self type variables)

Fig. 2. Ob
〈〉
SEC: Syntax

An object type Obj(α).
[
m : M

]
is a collection of method

signatures with unique names (we sometimes use R to refer
to just a collection of methods). The self type variable α
binds to the defined object type (i.e. object types are recursive
types). A method signature 〈X : A..B〉S1 → S2 introduces
the type variable X with lower bound A and upper bound B.
To simplify the presentation of the calculus, we model single-
argument methods with a single type variable.2

B. Subtyping

Figure 3 presents the Ob
〈〉
SEC subtyping judgment ∆; Φ `

U1 <: U2. The type variable environment ∆ is a set of type
variables with their bounds, i.e. ∆ ::= • | ∆, X : A..B. The
subtyping environment Φ is a set of subtyping assumptions
between self type variables, i.e. Φ ::= • | Φ, α <: β

The rules for the monomorphic part of the language are
similar to ObSEC. Rule (SObj) justifies subtyping between two
object types; it holds if the methods of the left object type
O1 are subtypes of the corresponding methods on O2. Both
width and depth subtyping are supported. Note that to verify
subtyping of method collections, i.e. ∆; Φ, α <: β ` R1 <:
R2, we put in subtyping relation in Φ the self variables α
and β. Rule (SVar) accounts for subtyping between self type
variables and it holds if such subtyping relation exists in the
subtyping environment.

The rules (STrans) and (SSubEq) justify subtyping by
transitivity and type equivalence respectively. We consider
type equivalence up to renaming and folding/unfolding of self
type variables [5].

The novel part of Ob
〈〉
SEC are type variables, handled by rules

(SGVar1) and (SGVar2). We follow the approach of Rompf
and Amin [10]. Rule (SGVar1) justifies subtyping between a
type variable X and a type B, if B is the upper bound of

2The implementation supports both multiple arguments and multiple type
variables.

∆; Φ ` U1 <: U2

(SObj)

O1 , Obj(α).R1 O2 , Obj(β).R2

∆; Φ, α <: β ` R1 <: R2

∆; Φ ` O1 <: O2

(SVar)
α <: β ∈ Φ

∆; Φ ` α <: β
(SSubEq)

O1 ≡ O2

∆X ; Φ ` O1 <: O2

(SGVar1)
X : A..B ∈ ∆

∆; Φ ` X <: B
(SGVar2)

X : A..B ∈ ∆
∆; Φ ` A <: X

(STrans)
∆; Φ ` U1 <: U2 ∆; Φ ` U2 <: U3

∆; Φ ` U1 <: U3

∆; Φ ` R1 <: R2

(SR)
m′ ⊆ m mi = m′j =⇒ ∆; Φ `M <: M ′

∆; Φ `
[
m : M

]
<:
[
m′ : M ′

]
∆; Φ `M1 <: M2

(SM)

∆; Φ ` B′ <: B ∆; Φ ` A <: A′

∆, X : A′..B′ ; Φ ` S′1 <: S1

∆, X : A′..B′ ; Φ ` S2 <: S′2

∆; Φ ` 〈X : A..B〉S1 → S2 <: 〈X : A′..B′〉S′1 → S′2

∆; Φ ` S1 <: S2

(SST)
∆; Φ ` T1 <: T2 ∆; Φ ` U1 <: U2

∆; Φ ` T1 / U1 <: T2 / U2

Fig. 3. Ob
〈〉
SEC: Subtyping rules

the type variable in ∆. Rule (SGVar2) is dual to (SGVar1),
justifying that A <: X if A is the lower bound of X .

The judgment ∆; Φ ` R1 <: R2 accounts for subtyping
between collections of methods, and is used in rule (SObj).
The judgment ∆; Φ ` M1 <: M2 denotes subtyping between
method signatures. For this judgment to hold, the type variable
bounds A′..B′ of the supertype (on the right) must be included
within the bounds A..B of the subtype (on the left); this
ensures that any instantiation on the right is valid on the
left. Then, in a type variable environment extended with X :
A′..B′, standard function subtyping must hold (contravariant
on the argument type, covariant on the return type).

Finally, rule (SST) accounts for subtyping between security
types, which requires facets to be pointwise subtypes.

C. Type System

The typing rules of Ob
〈〉
SEC appeal to some auxiliary def-

initions, given in Figure 4. Function ub(∆, U) returns the
upper bound of a type U in the type variable environment
∆. Since Ob

〈〉
SEC has a top type (Obj(α). [ ]) this recursive

definition of ub is well-founded; as in Featherweight Java [9],
we assume that ∆ does not contain cycles. The auxiliary
judgment ∆ ` m ∈ U holds if method m belongs to type
U . For a type variable, this means that the method is in the



ub(∆, U) = T

T 6= X

ub(∆, T ) = T

X : A..B ∈ ∆

ub(∆, X) = ub(∆, B)

∆ ` m ∈ U

O , Obj(α).
[
m : M

]
∆ ` mi ∈ O

∆ ` m ∈ ub(∆, X)

∆ ` m ∈ X

msig(∆, U,m) = M

msig(∆, X,m) = msig( , ub(∆, X),m)

O , Obj(α).
[
m : M

]
msig( , O,mi) = M [O/α]

∆ ` U ∈ A..B

∆; • ` A <: U ∆; • ` U <: B

∆ ` U ∈ A..B

Fig. 4. Ob
〈〉
SEC: Some auxiliary definitions

upper bound ub(∆, X). Function msig(∆, U,m) returns the
polymorphic method signature of method m in type U . The
rule for type variables looks up the signature in the upper
bound. The rule for object types is standard; remark that it
returns closed type signatures with respect to the self type
variable. Finally, the judgment ∆ ` U ∈ A..B holds if the
type U is a super type of A and a subtype of B in the type
variable environment ∆.

Figure 5 presents the typing judgment ∆; Γ ` e : S for
Ob
〈〉
SEC, which denotes that “expression e has type S under

type variable environment ∆ and type environment Γ”. Note
that in our presentation, we omit well-formedness rules for
types and environments. They are included in Appendix A-E.

The first three typing rules are standard: rule (TVar) types
a variable according to the environment, rule (TSub) is the
subsumption rule and rule (TObj) types an object. The method
definitions of the object must be well-typed with respect to
the method signatures taken from the safety type T of the
security type S ascribed to the self variable z. For this, the
method body ei must be well-typed in an extended type
variable environment with the type variable ∆, X : Ai..Bi,
and an extended type environment with the self variable and
the method argument.

Rules (TmD) and (TmH) cover method invocation, and
account for declassification. The actual argument type U ′ must
satisfy the variable bounds ∆ ` U ′ ∈ A..B. On the one hand,
rule (TmD) applies when the method m is in U with signature
〈X : A..B〉S1 → S2; this corresponds to a use of the object at
its declassification interface. Then, the method invocation has
type S2 substituting U ′ for X . On the other hand, rule (TmH)
applies when m is not in U , but it is in T ; this corresponds
to a use beyond declassification and should raise the security

∆; Γ ` e : S

(TVar)
x ∈ dom(Γ)

∆; Γ ` x : Γ(x)
(TSub)

∆; Γ ` e : S′ ∆; • ` S′ <: S

∆; Γ ` e : S

(TObj)

S , T / U msig( , T,mi) = 〈X : Ai..Bi〉S′i → S′′i
∆, X : Ai..Bi; Γ, z : S, x : S

′
i ` ei : S′′i

∆; Γ `
[
z : S ⇒ m (x) e

]
: S

(TmD)

∆; Γ ` e1 : T / U ∆ ` m ∈ U
msig(∆;U,m) = 〈X : A..B〉S1 → S2

∆ ` U ′ ∈ A..B ∆; Γ ` e2 : S1 [U ′/X]

∆; Γ ` e1.m 〈U ′〉 (e2) : S2 [U ′/X]

(TmH)

∆; Γ ` e1 : T / U ∆ ` m /∈ U
msig(∆;T,m) = 〈X : A..B〉S1 → T2 / U2

∆ ` U ′ ∈ A..B ∆; Γ ` e2 : S1 [U ′/X]

∆; Γ ` e1.m 〈U ′〉 (e2) : T2 [U ′/X] />

Fig. 5. Ob
〈〉
SEC: Static semantics

methimpl(o,m) = x.e

o ,
[
z : S ⇒ m (x) e

]
methimpl(o,mi) = x.ei

E ::= [ ] | E.m(e) | v.m(E) (evaluation contexts)

(EMInvO)
o , [z : ⇒ ] methimpl(o,m) = x.e

E[o.m 〈 〉 (v)] 7−→ E[e [o/z] [v/x]]

Fig. 6. Ob
〈〉
SEC: Dynamic semantics

to high. This is why the result type is T2 [X/U ′] />. This is
all similar to the non-polymorphic rules (Figure 1), save for
the type bounds check, and the type-level substitution.

D. Dynamic Semantics

The small-step dynamic semantics of Ob
〈〉
SEC are standard,

given in Figure 6. They rely on evaluation contexts and use
the auxiliary function methimpl(o.m) to lookup a method
implementation. Note that types in general, and type variables
in particular, do not play any role at runtime.

E. Safety

We first define what it means for a closed expression e to
be safe: an expression is safe if it evaluates to a value, or
diverges without getting stuck.

Definition 1 (Safety). safe(e)⇐⇒ ∀e′. e 7−→∗ e′ =⇒ e′ =
v or ∃e′′. e′ 7−→ e′′

Well-typed Ob
〈〉
SEC closed terms are safe.

Theorem 1 (Syntactic type safety). ` e : S =⇒ safe(e)

But of course, type safety is far from sufficient; we want
to make sure that well-typed Ob

〈〉
SEC terms are secure. To this



end, the next section formalizes the precise notion of security
we consider in Ob

〈〉
SEC, and proves that it is implied by typing.

V. POLYMORPHIC RELAXED NONINTERFERENCE,
FORMALLY

We now formally define the security property of polymor-
phic type-based relaxed noninterference (PRNI), and prove
that the Ob

〈〉
SEC type system soundly enforces PRNI.

A. Logical Relation

We define how values, terms and environments are related
through a step-indexed logical relation [11] (Figure 7). Step-
indexing is needed to ensure that the logical relation is well-
founded in presence of recursive object types.

The main novelty of this logical relation with respect that of
ObSEC is that it needs to give an interpretation to polymorphic
security types of the form T / X . We do this by quantifying
over all possible actual types U for X and interpreting T / U .
The interpretation of a security type is expressed as sets of
atoms of the form (k, e1, e2), where k is a step index meaning
that e1 and e2 are related for k steps.

The definition also appeals to a simple typing judgment
Γ `1 e : T , which disregards the declassification types, and
is therefore standard (Appendix A-J). We have that ∆; Γ ` e :
T / U ⇒ Γ `1 e : T . The use of this simple type system in
the logical relation clearly separates the definitions of security
from its static enforcement by the type system of §IV-C [5].

The logical relation uses several auxiliary definitions.
Atomn [T ] requires e1 and e2 to be simply well-typed expres-
sions of type T and the index k to be strictly less than n.
Atomval

n [T ] restricts Atomn [T ] to values. Atom [T ] are atoms
of simply well-typed expressions of type T (i.e. for any step-
index k).

The definition of VJT / OK relates two objects o1, o2 for
k steps if for any method m ∈ O and with signature
〈X : A..B〉S′ → S′′ and j < k, given related arguments for
j steps at S′, invocations of m produce related results for j
steps at S′′. More specifically, given any actual type T ′ that
satisfies the bounds of the type parameter X (i.e., T ′ ∈ A..B)
and given related arguments in VJS′ [T ′/X]K we must obtain
related computations in VJS′′ [T ′/X]K.

The relational interpretation of expressions CJT / UK relates
atoms of the form (k, e1, e2) that satisfy that for all j < k,
if both expressions e1 and e2 reduce to values v1 and v2
in at most k steps then v1 and v2 must be equivalent for
the remaining k − j steps. This definition is termination-
insensitive: if one expression does not terminate in less that k
steps, then the two expressions are trivially equivalent.

Type environments have standard interpretations. GJΓK re-
lates value substitutions γ, i.e. mappings from variables to
closed values, as triples of the form (k, γ1, γ2), where γ1 and
γ2 are related if they have the same variables as Γ, and for any
variable x, the associated values are related for k steps at type
Γ(x). Finally, a type substitution σ, i.e. a mapping from type
variables to closed types, satisfies a type variable environment

∆, noted DJ∆K, if it has the same type variables that ∆ and
the mapped type T is within the type variable bounds.

B. Defining Polymorphic Relaxed Noninterference

Having defined the logical relation, we can now formally
define PRNI. As standard, noninterference properties allow
modular reasoning about open terms with respect to (term-
level) variables. For PRNI, we extend this modular reason-
ing principle to open terms with respect to type variables.
Then, a simply well-typed expression e under ∆ and a
well-formed Γ satisfies PRNI at well-formed type S, written
PRNI(∆,Γ, e, S), if for any type substitution σ that satisfies
∆ and two value substitutions γ1 and γ2 in the relational
interpretation of σ(Γ), applying the two value substitutions
to the expression e produces equivalent expressions at type
σ(S). As usual, the definition quantifies universally on the
step index k. We need only consider a single type substitution
σ; indeed, type variables happen only in declassification types,
which express the observation power of the public observer.
Therefore, for each security type of the form T / X we only
need to consider one actual type U within the bounds of X
to pick the observation power of the public observer. The
substitution σ captures all these choices.

Definition 2 (Polymorphic relaxed noninterference).

PRNI(∆,Γ, e, S)⇐⇒
S , T / U Γ `1 e : T ∧ ∆ ` Γ ∧ ∆ ` S ∧
∀k ≥ 0. ∀σ, γ1, γ2. σ ∈ DJ∆K. (k, γ1, γ2) ∈ GJσ(Γ)K
=⇒ (k, σ(γ1(e)), σ(γ2(e))) ∈ CJσ(S)K

This definition captures the intuitive security notion that an
expression is secure if it produces indistinguishable outputs up
to the declassification power of the public observer (specified
by S), when linked with indistinguishable inputs up to their
declassification (specified by Γ).

C. Security Type Soundness

To establish that all well-typed Ob
〈〉
SEC terms satisfy PRNI,

we first introduce a notion of logically-related open terms,
and prove that if an expression is related to itself, then it
satisfies PRNI. We then prove the fundamental property of
the logical relation, which states that well-typed terms are
logically-related to themselves.

Two open expressions e1 and e2 are logically related at
type S in environments ∆ and Γ if, given a type substitution σ
satisfying ∆ and value substitutions γ1 and γ2 in the relational
interpretation of σ(Γ), closing these expressions with the given
substitutions produces related expressions related at type σ(S).

Definition 3 (Logical relatedness of open terms).

∆; Γ ` e1 ≈ e2 : S ⇐⇒
∆; Γ ` ei : S ∧ ∆ ` Γ ∧ ∆ ` S ∧
∀k ≥ 0. ∀σ, γ1, γ2. σ ∈ DJ∆K.

(k, γ1, γ2) ∈ GJσ(Γ)K
=⇒ (k, σ(γ1(e1)), σ(γ2(e2)) ∈ CJσ(S)K



Atomn [T ] = {(k, e1, e2) | k < n ∧ `1 e1 : T ∧ `1 e2 : T}
Atomval

n [T ] = {(k, v1, v2) ∈ Atomn [T ]}
Atom [T ] = {(k, e1, e2) ∈

⋃
n≥0

Atomn [T ]}

VJT / OK = {(k, v1, v2) ∈ Atom [T ] |
(∀m ∈ O. msig(O,m) = 〈X : A..B〉S′ → S′′

∀j < k, T ′ , v′1, v
′
2. ` T ′ ∧ T ′ ∈ A..B ∧

(j, v1, v2) ∈ VJT / OK ∧ (j, v′1, v
′
2) ∈ VJS′ [T ′/X]K =⇒

(j, v1.m 〈 〉 (v′1), v2.m 〈 〉 (v′2)) ∈ CJS′′ [T ′/X]K)}
CJT / UK = {(k, e1, e2) ∈ Atom [T ] | (∀j < k.(e1 7−→≤j v1 ∧ e2 7−→≤j v2) =⇒ (k − j, v1, v2) ∈ VJT / UK)}
GJ·K = {(k, ∅, ∅)}
GJΓ;x : SK = {(k, γ1 [x 7→ v1] , γ2 [x 7→ v2]) | (k, γ1, γ2) ∈ GJΓK ∧ (k, v1, v2) ∈ VJSK}
DJ·K = {∅}
DJ∆;X : A..BK = {σ [X 7→ T ] | σ ∈ DJ∆K ∧∆ ` T ∈ A..B}

Fig. 7. Ob
〈〉
SEC Step-indexed logical relation for type-based equivalence

Trivially, if an expression is logically related to itself, then
it satisfies PRNI.

Lemma 2 (Self logical relation implies PRNI).
∆; Γ ` e ≈ e : S =⇒ PRNI(∆,Γ, e, S)

We then turn to proving that all well-typed terms are
logically-related to themselves, i.e. the fundamental property
of the logical relation.

Theorem 3 (Fundamental property).
∆; Γ ` e : S =⇒ ∆; Γ ` e ≈ e : S

Proof. The proof is by induction on the typing derivation of
e. We use the common approach of defining compatibility
lemmas for each typing rule [11]. Each case follows from
the corresponding compatibility lemma.

Security type soundness follows directly from Theorem 3
and Lemma 2.

Theorem 4 (Security type soundness).
∆; Γ ` e : S =⇒ PRNI(∆,Γ, e, S)

Having proven that well-typed Ob
〈〉
SEC programs are secure,

we are almost ready to revisit the examples of Section III to
illustrate PRNI. We must first address the case of primitive
types, discussed next.

VI. AD-HOC POLYMORPHISM FOR PRIMITIVE TYPES

Both ObSEC [5] and Ob
〈〉
SEC (so far) ignore the case of

primitive types, such as integers and strings. However, in an
object-oriented language, primitive types are both necessary
and challenging from a security viewpoint. In particular, inte-
grating type-based declassification with faceted types requires
appealing to a form of ad hoc polymorphism.

A. The Need and Challenge of Primitive Types

In a pure object-oriented calculus (as in a pure functional
calculus) without primitive types, the only real observation

that can be made on programs is termination. A termination-
insensitive notion of noninterference is therefore useless in a
pure setting: one needs some primitive types with a purely
syntactic notion of equality. Indeed, all the examples we
presented in earlier sections assume a syntactic notion of
observation for strings and integers.

Introducing primitive types calls for some form of label
polymorphism. Indeed, we do not want to fix the security level
of primitive operations, as this would be either impractical for
the public observer (if all security labels were high) or for
the secret observer (if all security labels were low). This is
why practical security-typed languages like FlowCaml [7] and
Jif [6] use label-polymorphic primitive operators, specifying
that the return label is the least upper bound of the argument
labels. For instance, a binary integer operator would have type
∀`1, `2.Int`1 × Int`2 → Int`1t`2 . In a monomorphic security
language, the same principle is hardcoded in the typing rules
for primitive operators [12].

Unfortunately this approach does not work with labels-as-
types, even in a label-monomorphic setting. Indeed, because
labels are types, returning the join of the argument security
labels means computing the subtyping join (denoted t<: here-
after) of the declassification types. This is both impractical,
incorrect, and potentially unsound from a security viewpoint:

• Impractical. Consider a function of type Bool / X1 ×
Int / X2 → Bool / (X1 t<: X2). Given two public ar-
guments (i.e. X1 = Bool, X2 = Int), then assuming
Boolt<: Int = >, the result is necessarily private. While
sound, this is way too conservative; it is impractical for
primitive operations to always return private values even
when given public inputs.

• Incorrect. Consider an integer comparison of type
Int / X1 × Int / X2 → Bool / (X1 t<: X2). If we in-
stantiate this signature with Int and Int we obtain an ill-
formed return type, Bool / Int.

• Insecure. Consider a unary integer operator Int / X →
Int / X; this signature is not sound security-wise for all



unary integer operators. Take an operator that trims the
most-significant bit of its argument. If one declassifies
only the parity of the argument, two equivalent inputs
will not always yield two equivalent outputs (as the parity
of the trimmed values might differ).

B. Sound Signatures for Primitive Types

The observations above reveal one of the flip sides of
expressive declassification policies: because declassification
is captured semantically, declassification polymorphism is a
very strong notion compared to standard label polymorphism.
In the general case, without appealing to intricate semantic
conditions, there are therefore only two simple syntactic
principles to define sound signatures for primitive operators:3

(P1) if every argument is public (e.g. StringL) then the return
type can be public.

(P2) if any argument is not public (e.g. String / StringFst)
then the return type must be secret (e.g. StringH).

As typical, we provide an object-oriented interface for
primitive types (e.g. a+ b is a.+ (b) as in Scala for instance).
Therefore the principles above must be extended to account
for the status of the receiver object: if the primitive method
invoked on the primitive value is part of its declassification
type, then it is considered a public “argument”; otherwise, it
is private.

Note that, without any form of polymorphism, i.e. picking
a single syntactic principle above, primitive types would be
impractical. Duplicating all definitions to offer both options is
also not a viable approach.

C. Polymorphic Primitive Signatures

To support the two syntactic principles exposed above, we
propose to use ad-hoc polymorphism (akin to overloading)
for primitive types P in Ob

〈〉
SEC. We introduce polymorphic

primitive signatures, written P / ∗ → P / ∗. A primitive
security type P / ∗ is resolved polymorphically at use site,
following principles (P1) and (P2) above. Object-oriented
interfaces for primitive types are exclusively composed of
polymorphic primitive signatures. For instance, in Ob

〈〉
SEC

strings are primitives, declared by the following String type:

String
4
= [ concat : String / ∗ → String / ∗,

first : Unit / ∗ → String / ∗,
length : Unit / ∗ → Int / ∗,
eq : String / ∗ → Bool / ∗,
· · · ]

To illustrate, assume a : StringL, b : StringL and c : StringH.
Then a.eq(b) has type BoolL, while a.eq(c) has type BoolH.

Primitive types can also be subject to declassification poli-
cies. For instance, consider:

StringEqPoly
4
= [eq : String / ∗ → Bool / ∗]

3The syntactic principles (P1) and (P2) are formally justified by the proof
of Lemma 5, discussed in Section 11.

e ::= · · · | e.m(e) (terms)
v ::= · · · | p (values)
T ::= · · · | P (types)
M ::= · · · | I (method signatures)
S ::= · · · | P / ∗ (security types)
I ::= P / ∗ → P / ∗ (primitive signatures)
P ::= (eg. Int, String) (primitive types)
Φ ::= · · · | Φ, P <: β (subtyping environments)

Fig. 8. Ob
〈〉
SEC: Extended syntax for primitive types

∆; Φ ` U1 <: U2

· · · (SPObj)

meths(P ) = R1 O , Obj(β).R2

∆; Φ, P <: β ` R1 <: R2

∆; Φ ` P <: O

(SPVar)
P <: β ∈ Φ

∆; Φ ` P <: β

∆; Φ `M1 <: M2

· · · (SImpl)
∆; Φ ` I <: I

Fig. 9. Ob
〈〉
SEC: Subtyping rules for primitive types

and d : String / StringEqPoly. Then d.eq(b) has type BoolL,
while d.concat(a) : StringH.

Furthermore, one can use any type signature in a declassi-
fication policy for a primitive type, as long as it is sound. For
instance, StringEqL

4
= [eq : StringL → BoolL] respects prin-

ciple 1). Conversely, StringEqBad
4
= [eq : StringH → BoolL]

cannot be used as it would violate the soundness principles
above (in Ob

〈〉
SEC, String / StringEqBad is ill-formed).

D. Formal Semantics

We now formalize the treatment of primitive types in Ob
〈〉
SEC.

Figure 8 presents the extended syntax to support primitive
values p and primitive types P . Expression e.m(e) is for
method invocation on primitives; as explained previously,
primitive types expose an object-oriented interface, so a + b
is a. + (b). We extend the category S with security types of
the form P / ∗ and introduce a new category I , for primitive
signatures P / ∗ → P / ∗. The security type P / ∗ can be used
for standard signatures 〈X : A..B〉S1 → S2 as well.

The changes to subtyping are in Figure 9. Now, subtyping
assumptions can be also made between a primitive type
and a self type variable, i.e. Φ ::= • | Φ, α <: β | Φ, P <: β,
and function meths returns the methods of a primitive type.
Rule (SPObj) justifies subtyping between a primitive type
and an object type, and it is very similar to rule (SObj) of
Figure 3 for object types. Rule (SPVar) accounts for subtyping
between primitive types and type variables and it holds if such
subtyping relation exists in the subtyping environment Φ. Note
that there is no rule for subtyping between an object type



∆; Γ ` e : S

· · · (TPrim)
P = Θ(p)

∆; Γ ` p : P / P

(TPmD)

∆; Γ ` e1 : T / U ∆ ` m ∈ U
msig(∆, U,m) = P1 / ∗ → P2 / ∗

∆; Γ ` e2 : P1 / U1

rdecl(P1 / U1, P2) = P ′2

∆; Γ ` e1.m(e2) : P2 / P
′
2

(TPmH)

∆; Γ ` e1 : T / U ∆ ` m /∈ U
msig(∆, T,m) = P1 / ∗ → P2 / ∗

∆; Γ ` e2 : P1 / U1

∆; Γ ` e1.m(e2) : P2 />

rdecl(P1 / U1, P1) = U

rdecl(P1 / U1, P2) =

ß
P2 P1 = U1

> otherwise

Fig. 10. Ob
〈〉
SEC: Extended static semantics for primitive types

and a primitive type, because this would not be sound. Rule
(SImpl) accounts for subtyping between the same primitive
signature. There is no rule to justify subtyping between a
primitive signature and a standard signature.

As we discussed at the end of Section VI-B, we need an
extra condition for the well-formedness of security types to
ensure sound declassification. Given the type T / U , if T has
a method m : I , the method signature of m in U must be
either the same primitive signature I , or a normal signature
that is sound. We use the predicate soundsig to express that
signature 〈X : A..B〉S1 → S2 is sound, which must satisfy
that either the argument type is public, or the return type is
private:

soundsig(〈 〉P / U1 → T2 / U2)⇐⇒ U1 = P ∨ U2 = >

Figure 10 presents the extension to the typing rules of
Ob
〈〉
SEC. Rule (TPrim) justifies typing for primitive values,

using a function Θ that specifies each primitive type. The
new typing rules (TPmD) and (TPmH) realize ad hoc poly-
morphism for primitive types. Rule (TPmD) is key: it applies
when m is in the declassification type U , and uses the function
rdecl to calculate the declassification type of the return type,
based on the type of the argument: if the argument is public,
so is the returned value. Rule (TPmH) applies when m is not
in the declassification type U , and similarly to (TmH), ensures
that the returned value is private.

Figure 11 shows the extension to the dynamic semantics to
support primitive values. Rule (EMInvP) executes a method
invocation on a primitive value using the function θ, which
abstracts over the internal implementation of primitive values.

To prove type safety for Ob
〈〉
SEC with primitives, we only

need to assume that Θ and θ—which are parameters of the
language—agree on the specification and implementation of
all primitive types and their operations.

(EMInvP)
E[p1.m(p2)] 7−→ E[θ(m, p1, p2)]

Fig. 11. Ob
〈〉
SEC: Dynamic semantics of primitive values

VJP / P K = {(k, p, p) ∈ Atom [P ]}
VJT / OK = {(k, v1, v2) ∈ Atom [T ] | . . .

∀m ∈ O. msig(•, O,m) = P1 / ∗ → P2 / ∗
∀j < k, v′1, v

′
2.U1 >: P1

((j, v′1, v
′
2) ∈ VJP1 / U1K =⇒

(j, v1.m(v′1), v2.m(v′2)) ∈ CJP2 / rdecl(P1 / U1, P2)K)}

Fig. 12. Ob
〈〉
SEC: Step-indexed logical relation with new definitions for

primitive types

E. Logical Relation for Primitive Types

Figure 12 presents the extension to the logical relation of
Figure 7 to account for primitive types. First, VJP / P K relates
syntactically equal primitive values of type P . Second, the
definition of VJT / OK now accounts for primitive values that
are observed with a declassification type O. VJT / OK still
relates values v1 and v2 if, for all methods of O, given related
arguments, the invocations of m on v1 and v2 produce related
computations. However, the definition now discriminates be-
tween each type of signatures. For a method m with primitive
signature P1 / ∗ → P2 / ∗, we require one of the following
conditions to hold. If we get related arguments v′1 and v′2
at P1 / P1 (i.e. public values), method invocations v1.m(v′1)
and v2.m(v′2) need to be related at the public type P2 / P2.
Otherwise, if the arguments v′1 and v′2 are related at a non-
public type (P1 / U, P1 6= U ), then v1.m(v′1) and v2.m(v′2)
need to be related at the top type P />. These conditions
are expressed in the definition by requiring related method
invocations in CJP2 / rdecl(P1 / U1, P2)K.

Extending the fundamental property (Lemma 3) for prim-
itive types requires the following lemma, which states that
syntactically-equal primitive values of type P are in the object-
oriented interpretation of any type P / O—essentially, equal
values cannot be discriminated.

Lemma 5 (Equal values are logically related).
∀k ≥ 0, p, P,O.

`1 p : O ∧ P <: O =⇒ (k, p, p) ∈ VJP / OK

Proof. Because P / O is a well-formed security type, O
consists of primitive signatures and standard, sound signa-
tures. For the case of primitive signatures, at some point we
have P1 / ∗ → P2 / ∗ and equivalent values at (j, v1, v2) ∈
P1 / U1 and we have to prove that (j, δ(m, b, v1), δ(m, b, v2) ∈
CJP2 / rdecl(P1 / U1, P2)K. We do case analysis on U . If
U1 = P1, we know that v1 = v2 and hence if δ(m, b, v1)
and δ(m, b, v2) are defined, their results are syntactically
equal, so (j, δ(m, b, v1), δ(m, b, v2)) ∈ CJP2 / P2)K. If U 6=
P1, then the proof obligation is (j, δ(m, b, v1), δ(m, b, v2) ∈
CJP2 />K; this is trivial because any two values are re-



lated at >. For the case of standard signatures, at some
point we have P1 / U1 → P2 / U2 and we have to prove
that (j, δ(m, b, v1), δ(m, b, v2)) ∈ CJP2 / rdecl(P1 / U1, P2)K.
Since the signature is sound, we know that either U1 = P1

or U2 = >; then the result follows similarly to the primitive
signature case.

Note that the two syntactic principles for sound signatures
of primitive types introduced in Section VI-B are justified by
the need to establish Lemma 5. Principle (P1) is necessary
because we cannot assume anything about two invocations of
an arbitrary partial function δ, except that given syntactically
equal arguments, if it produces results, then those results are
syntactically equal. Principle (P2) is justified because any
two invocations of δ are observationally equivalent at > (like
any computation in general), so the actual relation between
the arguments does not matter. For any primitive operator
signature that does not abide to either (P1) or (P2), it is
possible to devise a δ that violates Lemma 5

Consequently, Ob
〈〉
SEC with primitive types is a sound

security-typed language, i.e. all well-typed programs satisfy
PRNI (Theorem 4).

F. Illustration

In Section III we gave informal examples of secure and
insecure programs with respect to PRNI. Now, armed with
Theorem 4, and the definitions for primitive types, we can
formally check if a given program is secure by typechecking
it. The prototype implementation of Ob

〈〉
SEC features a number

of examples and allows one to try out the language and type-
checker. In this section, we unfold the reasoning underlying the
proof of Theorem 4 for a specific example, in order to illustrate
the technical details of PRNI and the relational interpretation
of object types, including primitive signatures.

To alleviate notation, we omit unused type parameters in
method declarations and type instantiations in method invo-
cations. Note that we introduce the Unit type with its unique
unit primitive value.

We illustrate polymorphic declassification by considering
type and variable environments ∆

4
= X : String..StringLen

and Γ
4
= x : String / X . We discuss two possible formal defi-

nitions for StringLen, either using standard method signatures,
or using primitive signatures:

1) Obj(α). [length : UnitL → IntL]
2) Obj(α). [length : Unit / ∗ → Int / ∗]
With definition 1) above, the program x.length(unit) has

type IntL; i.e. ∆; Γ ` x.length(unit) : IntL. Then, by Theo-
rem 4, we know that PRNI(∆,Γ, x.length(unit), IntL) holds;
the program is secure for any public observer.

Let us unfold PRNI(∆,Γ, x.length(unit), IntL) to ver-
ify why it holds. For any type substitution X 7→
T ∈ DJ∆K and equivalent value substitutions (k, x 7→
v1, x 7→ v2) ∈ GJ•, x : String / T K, we have that
(k, v1.length(unit)), v2.length(unit)) ∈ CJInt / IntK.

To verify this:

1) By (k, x 7→ v1, x 7→ v2) ∈ GJ•, x : String / T K
we know that (k, v1, v2) ∈ VJString / T K. Be-
cause T <: StringLen, we have VJString / T K ⊆
VJString / StringLenK by a subtyping lemma, and hence
(k, v1, v2) ∈ VJString / StringLenK.

2) Then, instantiate the definition of VJString / StringLenK
with length, k, T, unit, unit. Note that:
• length ∈ StringLen
• msig(•,StringLen, length) = UnitL → IntL
• T ∈ String..StringLen, which follows from X 7→
T ∈ DJ∆K

• and (k, unit, unit) ∈ VJUnit / UnitK (by definition
of VJP / P K),

Then (k, v1.length(unit), v2.length(unit)) ∈ CJInt / IntK.
With definition 2) above of StringLen, we apply the same

steps until the instantiation of VJString / StringLenK. At this
point, since length has a primitive signature, we have to
consider the extended case for primitive type signatures from
Figure 12. Instantiate it with length, k, unit, unit, and observe
that msig(•,StringLen, length) = Unit / ∗ → Int / ∗.
Then, given that (k, unit, unit) ∈ VJUnit / UnitK,
we have that (k, v1.length(unit), v2.length(unit)) ∈
CJInt / rdecl(Unit / Unit, Int)K = CJInt / IntK.

VII. RELATED WORK

Declassification. Expressive declassification policies were
introduced by Li and Zdancewic [3] with the labels-as-
functions approach. They define two kinds of declassification
policies: local and global. Local policies are concerned with
one secret, while global policies express coordinated declas-
sification of several secrets. Label operations in this approach
rely on a semantic interpretation of declassification functions
based on a general notion of program equivalence. In addition
to the induced complexity, this precludes recursive policies.

The labels-as-types approach [5] uses type interfaces instead
of functions to express declassification policies. This simplifies
the concepts involved (label ordering is simply subtyping),
making an implementation more easily realizable. The ap-
proach naturally support local policies. More advanced typing
disciplines such as refinement types [13] could in principle be
used to express global policies.

Conceptually, Cruz et al. [5] relate secure information
flow with type abstraction, a connection also explored under
different angles by Bowman and Ahmed [14] and Wash-
burn and Weirich [15]. Bowman and Ahmed [14] translate
the noninterference result of the Dependency Core Calculus
(DCC) [16] to parametricity, while Washburn and Weirich [15]
use information control mechanisms to ensure a generalized
from of parametricity in presence of runtime type inspection.

The Decentralized Label Model (DLM) [17] of Jif enforces
robust declassification [18]: restricting who can declassify val-
ues, using the integrity policy to ensure that the declassification
is not triggered by conditions affected by an active attacker.
Here, we do not model any notion of authority, focusing on
the what dimension of declassification [2].



As noted by Sabelfeld and Sands [2], many declassification
approaches of the what dimension can be expressed using
partial equivalence relations to model the public observer
knowledge. Here, we use the logical interpretation of security
types (Figure 7) to specify the partial equivalence relation
that a public observer can use to distinguish values and
computations.

Label polymorphism. Support for label polymorphism in
security-typed programming languages can be classified in two
categories: static and dynamic label polymorphism. Static label
polymorphism can either be provided via explicit syntactic
constructions to introduce generic labels [6], or implicitly with
constraint-based label inference [6, 7, 19]. The dynamic form
of label polymorphism relies on labels as first-class entities
that can be passed around like standard values [6, 20, 21].

The Jif language [6] supports all three forms of label
polymorphism. It provides a direct syntax to introduce labels
at the method and class levels, which can be constrained.
Also, Jif features label inference: local variables are inferred
to have a fresh generic label that is resolved using constraints
from the context. Inferred fields and method arguments have
default labels. In addition, Jif supports first-class labels. Our
work focuses on the foundations of explicit declassification
polymorphism, and currently does not address label inference
and first-class labels. Because labels are types, label inference
would boil down to fairly standard type inference; first-class
labels however would require a notion of first-class types,
which should be considered with care.

Sun et al. [19] design a constraint-based label inference
mechanism for an object-oriented language with classes and
inheritance. Classes and methods are label polymorphic. The
programmer can rely on the inference mechanism to achieve
label polymorphism or to specify generic labels at the class
level; method-level explicit polymorphism is not considered.
Stefan et al. [20, 21] provide label-polymorphism via first-
class labels much like Jif.

Declassification and Polymorphism. When present, the
declassification mechanisms of the label-polymorphic propos-
als discussed above [6, 7, 19, 21] are completely orthogo-
nal to label polymorphism. The polymorphic labels-as-types
approach developed in this work allows us to reason about
declassification and label polymorphism with the single and
unified concept of standard types.

Our approach is closely related to that of Hicks et al. [4],
which propose trusted declassification in an object-oriented
language based on the DLM [17], where each label is com-
posed of principals. Declassification is globally defined, asso-
ciating principals to the trusted methods that can be used to
declassify an expression to another principal. Because classes
are polymorphic with respect to principals, this induces a form
of implicit label polymorphism. More precisely, a class defini-
tion is checked at instantiation-time with the actual principals
provided for the instantiation. This use-site polymorphism for
principals is similar to our treatment of polymorphic primitive
signatures (Section VI).

Tse and Zdancewic [22] propose certificate-based declas-

sification and conditioned noninterference. They extend Sys-
tem F<: with monadic labels similarly to DCC [16], using
DLM [17]. Declassification is modeled as a read privilege
that a principal is allowed to give to another principal in a
certain context. Their work merges standard types with labels,
principals and privileges in the same syntactic category of
types. Since System F<: supports type polymorphism, the
language supports label polymorphism. However, it is not
clear how to use label polymorphism to express polymorphic
declassification in that setting.

Finally, the syntactic principles we introduce for primitive
signatures are related to the work of Li and Zdancewic [3]
on labels-as-functions. For local policies, the typing rules for
integer primitive operators follow the same principles, but are
more expressive. In particular, they provide typing rules for
binary integer operators where one operand has an arbitrary
declassification policy and the other operand is public; the
resulting label is a functional composition of the operand label
with a function wrapping the operator. As explained before,
this semantic implication cannot be expressed with the labels-
as-types approach, unless one is willing to consider much more
advanced typing disciplines.

VIII. CONCLUSION

We extend relaxed noninterference in a labels-as-types ap-
proach to selective and expressive declassification in order
to account for polymorphism. The proposed declassification
polymorphism is novel and useful to precisely control declas-
sification of polymorphic structures and to define procedures
that are polymorphic over the declassification policies of their
arguments. Bounded polymorphism further controls the guar-
antees and expectations of clients and providers with respect to
declassification. Bringing type-based declassification to real-
world programming also requires addressing the issue of
primitive types, which were ignored in prior work. For this we
introduce a novel form of ad-hoc polymorphism. We formalize
the approach, prove its soundness, and provide a prototype
implementation.

This work provides a necessary and solid basis to integrate
type-based declassification in existing languages. A particu-
larly appealing alternative is to study the realization of our
approach in Scala: its type system is expressive enough to
encode bounded polymorphic declassification, and adjusting
the typechecker to account for security levels (i.e. the addi-
tional rule for method invocation) should be achievable via a
compiler plugin.
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APPENDIX A
FULL SYNTAX AND SEMANTICS

A. Syntax

e ::= v | e.m(e) | e.m 〈U〉 (e) | x | p (terms)

o ::=
[
z : S ⇒ m (x) e

]
(objects)

v ::= o | p (values)

T ::= O | α | P (types)
U,A,B ::= T | X (policies)

O ::= Obj(α).
[
m : M

]
(object type)

R ::=
[
m : M

]
(record types)

M ::=
¨
X : A..B

∂
S → S | I (method signature)

I ::= P / ∗ → P / ∗ (primitive signatures)
S ::= T / U | P / ∗ (security types)
P ::= (eg. Int) (primitive type)

Fig. 13. Ob
〈〉
SEC: Full Syntax



B. Environments

Γ ::= • | Γ, x : S (type environment)
∆ ::= • | ∆, X : A..B (generic type variable environment)

Φ ::= • | Φ, α <: β | Φ, P <: β (subtyping environment)
∆ok ::= • | ∆ok, α | ∆ok, X : A..B (type variable environment)

Σ ::= • | Σ, α , O (type definition environment)

The type variable environment ∆ok keeps track of the type variable definitions, both self type variables and generic type
variables. This environment is not directly used in the static semantics presented in the body of the paper. Recall that in the
typing judgment ∆; Γ ` e : S of Figure 5, we extend the typing environment Γ with closed types regarding self type variables.
For this reason we use ∆ instead of ∆ok. Note that ∆ just keeps track of generic type variable definition. Then, the environment
∆ok is just an auxiliary mechanism to verify that an object type is well-formed (Figure 17)



C. Type Equivalence

The type equivalence judgment (Figure 14) is essentially the same that the work of Cruz et al. [5], with minor modifications
to the rule (O-congr) to support type variables.

Two types are equivalent (Figure 14) if the equivalence can be derived through the congruence induced by rules (Alpha-Eq)
and (Fold-Unfold). For example:
Obj(α). [m : 〈X : α..>〉α→ α] ≡ Obj(β). [m : 〈X : β..>〉β → β]
Obj(α). [m : 〈X : α..>〉> → α] ≡ Obj(α). [m : 〈X : α..>〉> → Obj(β). [m : 〈Y : β..>〉> → β]]

U ≡ U

(Sym)
U ≡ U (Refl)

U1 ≡ U2

U2 ≡ U1
(Trans)

U1 ≡ U2 U2 ≡ U3

U1 ≡ U3

(O-Congr)
Li ≡ L′i Ui ≡ U ′i S1i ≡ S′1i S2i ≡ S′2i

Obj(α).
[
m : 〈X : A..B〉S1 → S2

]
≡ Obj(α).

[
m : 〈X : L′..U ′〉S′1 → S′2

]
(Alpha-Eq)

O , Obj(α).
[
m : M

]
β fresh

O ≡ O [β/α]
(Fold-Unfold)

O ≡ O [O/α]

S ≡ S

T1 ≡ T2 U1 ≡ U2

T1 / U1 ≡ T2 / U2

Fig. 14. Ob
〈〉
SEC: Type equivalence



D. Subtyping

∆; Φ ` U <: U

(SPObj)

meths(P ) = R1 O , Obj(β).R2

∆; Φ, P <: β ` R1 <: R2

∆; Φ ` P <: O
(SPVar)

P <: β ∈ Φ

∆; Φ ` P <: β

(SObj)

O1 , Obj(α).R1 O2 , Obj(β).R2

∆; Φ, α <: β ` R1 <: R2

∆; Φ ` O1 <: O2
(SGVar1)

X : A..B ∈ ∆
∆; Φ ` X <: B

(SGVar2)
X : A..B ∈ ∆
∆; Φ ` A <: X

(SVar)
α <: β ∈ Φ

∆; Φ ` α <: β
(SSubEq)

O1 ≡ O2

∆; Φ ` O1 <: O2

(STrans)
∆; Φ ` U1 <: U2 ∆; Φ ` U2 <: U3

∆; Φ ` U1 <: U3

∆; Φ ` R1 <: R2

(SR)
m′ ⊆ m mi = m′j =⇒ ∆; Φ `M <: M ′

∆; Φ `
[
m : M

]
<:
[
m′ : M ′

]
∆; Φ `M <: M

(SM)

∆; Φ ` B′ <: B ∆; Φ ` A <: A′

∆, X : A′..B′; Φ ` S′1 <: S1 ∆, X : A′..B′; Φ ` S2 <: S′2

∆; Φ ` 〈X : A..B〉S1 → S2 <: 〈X : A′..B′〉S′1 → S′2
(SImpl)

∆; Φ ` I <: I

∆; Φ ` S <: S

(TSubST)
∆; Φ ` T1 <: T2 ∆; Φ ` U1 <: U2

∆; Φ ` T1 / U1 <: T2 / U2

Fig. 15. Ob
〈〉
SEC: Subtyping rules



E. Standard well formedness of types and environments

The Fig. 16 and Fig. 17 show the rules for well formedness of environments and types respectively.
Since ∆ match the syntax of ∆ok, we can use the judgments ∆ok ` U and ∆ok ` S with ∆ and they hold if U (an S

respectively) are closed with respecto to self type variables α.

∆ ` Γ

∆ ` ·
∆ ` Γ ∆ |= S x /∈ dom(Γ)

∆ ` Γ, x : S

` ∆

` ·
` ∆ X /∈ dom(∆) ∆ ` A ∆ ` B

` ∆, X : A..B

` Φ

` ·
` Φ αi /∈ dom(Φ) ∪ cod(Φ)

` Φ, α1 <: α2

` Φ α2 /∈ dom(Φ) ∪ cod(Φ) |= P

` Φ, P <: α2

Fig. 16. Ob
〈〉
SEC: Environments well-formedness

∆ok ` U

|= P

∆ok ` P
X ∈ ∆ok

∆ok ` X
α ∈ ∆ok

∆ok ` α

O ≡ Obj(α).
[
m : 〈X : A..B〉S1 → S2

]
(i 6= j =⇒ mi 6= mj)

∆ok, α ` A ∆ok, α ` B
∆ok, α,X : A..B ` S1i ∆ok, α,X : A..B ` S2i

∆ok ` O

∆ok ` S

∆ok ` T ∆ok ` U
∆ok ` T / U

Fig. 17. Ob
〈〉
SEC: Well-formedness of types



F. Well-formedness of security types facet-wise

soundsig(〈 〉P1 / U1 → T2 / U2)⇐⇒ P1 = U1 ∨ U2 = >

Fig. 18 shows extended subtyping judgments that are the same the ones of Figure 15, except that the judgment ∆; Φ `M J
M adds the rule (IG) justifying that is OK to declassify a primitive signature with a concrete sound signature.

The judgment ∆ |= S holds if the type S is a closed type and a well-formed security type.
Having formalized well-formedness of environments and types, we assume them in most definitions.

∆; Φ ` U J U

· · ·

∆; Φ ` R1 J R2

· · ·

∆; Φ `M JM

· · · (IG)
∆; Φ ` T1 J P1 ∆; Φ ` P2 J T2 soundsig(〈 〉T1 / U1 → T2 / U2)

∆; Φ ` P1 / ∗ → P2 / ∗ J 〈 〉T1 / U1 → T2 / U2

∆; Φ ` S J S

· · ·

Fig. 18. Ob
〈〉
SEC: Rules for valid relation between facets

∆; Σ `/ U

O ≡ Obj(α).
[
m : M

]
∆; Σ, α : O `/ M

∆; Σ `/ O ∆; Σ `/ α ∆; Σ `/ X ∆; Σ `/ P

∆; Σ `/ M

∆, X : A..B; Σ `/ S1 ∆, X : A..B; Σ `/ S2

∆; Σ `/ 〈X : A..B〉S1 → S2 ∆; Σ `/ I

∆; Σ `/ S

∆; Σ `/ T ∆; Σ `/ U ∆; · ` Σ [T ] J Σ [U ]

∆; Σ `/ T / U

∆ |= S

∆ ` S ∆; · `/ S
∆ |= S

Fig. 19. Ob
〈〉
SEC: Well-formedness of security types facet-wise



G. Auxiliary definitions

ub(∆, U) = T

T 6= X

ub(∆, T ) = T

X : A..B ∈ ∆
ub(∆, B) = T2

ub(∆, X) = T2

∆ ` m ∈ U

O , Obj(α).
[
m : M

]
∆ ` mi ∈ O

meths(P ) =
[
m : I

]
∆ ` mi ∈ P

∆ ` m ∈ ub(∆, X)

∆ ` m ∈ X

msig(∆, U,m) = M

O , Obj(α).
[
m : Mi

]
msig( , O,mi) = Mi [O/α]

meths(P ) =
[
m : I

]
msig( , P,mi) = Ii

msig(∆, X,m) = msig( , ub(∆, X),m)

methimpl(o,m) = x.e

o ,
[
z : S ⇒ m (x) e

]
methimpl(o,mi) = x.ei

∆ ` U ∈ A..B

∆; • ` A <: U ∆; • ` U <: B

∆ ` U ∈ A..B

rdecl(P / U, P ) = U

rdecl(P1 / U1, P2) =

ß
P2 P1 = U1

> otherwise

Fig. 20. Ob
〈〉
SEC: Auxiliary definitions



H. Typing

∆; Γ ` e : S

(TVar)
x ∈ dom(Γ)

∆; Γ ` x : Γ(x)
(TSub)

∆; Γ ` e : S′ ` S′ <: S

∆; Γ ` e : S

(TPrim)
P = ∆p(p)

Γ ` p : P / P
(TObj)

S , T / U msig( , T,mi) = 〈X : Ai..Bi〉S′i → S′′i
∆, X : Ai..Bi; Γ, z : S, x : S

′
i ` ei : S′′i

∆; Γ `
[
z : S ⇒ m (x) e

]
: S

(TmD)

∆; Γ ` e1 : T / U ∆ ` m ∈ U msig(∆;U,m) = 〈X : A..B〉S1 → S2

∆ ` U ′ ∈ A..B ∆; Γ ` e2 : S1 [U ′/X]

∆; Γ ` e1.m 〈U ′〉 (e2) : S2 [U ′/X]

(TmH)

∆; Γ ` e1 : T / U ∆ ` m /∈ U msig( , T,m)〈X : A..B〉S1 → T2 / U2

∆ ` U ′ ∈ A..B ∆; Γ ` e2 : S1 [U ′/X]

∆; Γ ` e1.m 〈U ′〉 (e2) : T2 [U ′/X] />

(TPmD)

∆; Γ ` e1 : T / U ∆ ` m ∈ U msig(∆, U,m) = P1 / ∗ → P2 / ∗
∆; Γ ` e2 : P1 / U1 rdecl(P1 / U1, P2) = P ′2

∆; Γ ` e1.m(e2) : P2 / P
′
2

(TPmH)

∆; Γ ` e1 : T / U ∆ ` m /∈ U msig(∆, T,m) = P1 / ∗ → P2 / ∗
∆; Γ ` e2 : P1 / U1

∆; Γ ` e1.m(e2) : P2 />

Fig. 21. Ob
〈〉
SEC: Static semantics



I. Dynamic semantics

E ::= [ ] | E.m(e) | v.m(E) (evaluation contexts)

(EMInvO)
o , [z : ⇒ ] methimpl(o,m) = x.e

E[o.m 〈 〉 (v)] 7−→ E[e [o/z] [v/x]]

(EMInvP)
E[p1.m(p2)] 7−→ E[θ(m, p1, p2)]

Fig. 22. Ob
〈〉
SEC: Full Dynamic semantics



J. Simple Type System

Figure 23 and Figure 24 define a simple type system and simple subtyping judgments respectively that do not take into
account the declassification type. The typing judgment Γ `sf e : S uses the subtyping judgment Φ `sf S <: S. The definition
of the judgment Φ `sf T <: T is straightforward and then omit here.

Γ `sf e : S

(T1Var)
x ∈ dom(Γ)

Γ `sf x : Γ(x)
(T1Sub)

Γ `sf e : S′ `sf S′ <: S

Γ `sf e : S
(T1Prim)

P = Θ(p)

Γ `sf p : P / P

(T1Obj)
msig( , T,mi) = 〈 〉S′i → S′′i Γ, z : S, xi : S

′
i `sf ei : S′′i

Γ `sf
[
z : S ⇒ m (x) e

]
: S

(T1mI)
Γ `sf e1 : T / U msig( , T,m) = 〈 〉S1 → S2 Γ `sf e2 : S1

Γ `sf e1.m 〈 〉 (e2) : S2

(T1PmI)
Γ `sf e1 : T / U msig( , T,m) = P1 / ∗ → P2 / ∗ Γ `sf e2 : P1 / ∗

Γ `sf e1.m(e2) : P2 / ∗

Γ `1 e : T

Γ `sf e : T / U

Γ `1 e : T

Fig. 23. Ob
〈〉
SEC simple typing, defined in terms of single-facet typing

Φ `sf T <: T

· · ·

Φ `sf S <: S

Φ `sf T1 <: U1

Φ `sf T1 / U1 <: T2 / U2

Fig. 24. Ob
〈〉
SEC simple subtyping



APPENDIX B
UNARY MODEL

We present the logical predicate for safety (Figure 25). This logical predicate gives a safety meaning to a safety type, hence
the declassification type does not play any role in the definitions.

VkJP K = {p |
(∀j < k. v ∈ VjJP K ∧

(∀m ∈ P, p′. msig(•, P,m) = P ′ / ∗ → P ′′ / ∗
p′ ∈ VjJP ′K =⇒ θ(m, p, p′) ∈ CjJP ′′K))}

VkJOK = {v = [z : O1 / ⇒ ] | `1 O1 / <: O / ∧
(∀j < k. v ∈ VjJO1K ∧

(∀m ∈ O, v′. msig(•;O,m) = 〈 〉T ′ / → T ′′ / methimpl(v,m) = x.e

v′ ∈ VjJT ′K =⇒ e [v/z] [v′/x] ∈ CjJT ′′K))}

CkJT K = {e | ∀j < k. ∀e′.(e 7−→j e′ ∧ irred(e′)) =⇒ e′ ∈ Vk−jJT K}

Fig. 25. Unary logical relation for safety



APPENDIX C
TYPE SAFETY

Definition 1 (Safety). safe(e)⇐⇒ ∀e′. e 7−→∗ e′ =⇒ e′ = v or ∃e′′. e′ 7−→ e′′

Definition 4 (Semantic typing). |= e : T / U ⇐⇒ ∀k ≥ 0. e ∈ CkJT K.

Lemma 6 (Semantic type safety). |= e : S =⇒ safe(e)

Proof. The proof follows directly from definitions 1 and 4 .

Lemma 7 (Type Safety). Γ ` e : S =⇒ Γ |= e : S

Proof. The proof is by induction on the typing derivation of e. The different case with respect to the proof of type safety of
ObSEC [5] is the case (TPrim). For that case we only need to assume that Θ and θ—which are parameters of the language—agree
on the specification and implementation of all primitive types and their operations.

Theorem 1 (Syntactic type safety). ` e : S =⇒ safe(e)

Proof. This follows directly from Lemmas 6 and 7



APPENDIX D
POLYMORPHIC RELAXED NONINTERFERENCE

A. Logical relation for PRNI

Figure 26 shows the full logical relation for PRNI

σ ::= ∅ | σ[X 7→ T ]

Atomn [T ] = {(k, e1, e2) | k < n ∧ `1 e1 : T ∧ `1 e2 : T}
Atomval

n [T ] = {(k, v1, v2) ∈ Atomn [T ]}
Atom [T ] = {(k, e1, e2) ∈

⋃
n≥0

Atomn [T ]}

VJP / P K = {(k, p, p) ∈ Atom [P ]}
VJT / OK = {(k, v1, v2) ∈ Atom [T ] |

((∀m ∈ O. msig(O,m) = 〈X : A..B〉S′ → S′′

∀j < k, T ′, v′1, v
′
2. ` T ′ ∧ T ′ ∈ A..B ∧

(j, v1, v2) ∈ VJT / OK ∧ (j, v′1, v
′
2) ∈ VJS′ [T ′/X]K =⇒

(j, v1.m 〈 〉 (v′1), v2.m 〈 〉 (v′2)) ∈ CJS′′ [T ′/X]K) ∧
(∀m ∈ O. msig(O,m) = P1 / ∗ → P2 / ∗
∀j < k, v′1, v

′
2.U1 >: P1

((j, v′1, v
′
2) ∈ VJP1 / U1K =⇒ (j, v1.m(v′1), v2.m(v′2)) ∈ CJP2 / rdecl(P1 / U1, P2)K))}

CJT / UK = {(k, e1, e2) ∈ Atom [T ] | (∀j < k.(e1 7−→≤j v1 ∧ e2 7−→≤j v2) =⇒ (k − j, v1, v2) ∈ VJT / UK)}
GJ·K = {(k, ∅, ∅)}
GJΓ;x : SK = {(k, γ1 [x 7→ v1] , γ2 [x 7→ v2]) | (k, γ1, γ2) ∈ GJΓK ∧ (k, v1, v2) ∈ VJSK}
DJ·K = {∅}
DJ∆;X : A..BK = {σ [X 7→ T ] | σ ∈ DJ∆K ∧∆ ` T ∈ A..B}
PRNI(∆,Γ, e, S) ⇐⇒ S , T / U Γ `1 e : T ∧ ∆ ` Γ ∧ ∆ ` S

∀k ≥ 0. ∀σ, γ1, γ2. σ ∈ DJ∆K. (k, γ1, γ2) ∈ GJσ(Γ)K
=⇒ (k, σ(γ1(e)), σ(γ2(e))) ∈ CJσ(S)K

∆; Γ ` e1 ≈ e2 : S ⇐⇒ ∆; Γ ` ei : S ∧ ∀k ≥ 0. ∀σ, γ1, γ2. σ ∈ DJ∆K.
(k, γ1, γ2) ∈ GJσ(Γ)K =⇒ (k, σ(γ1(e1)), σ(γ2(e2)) ∈ CJσ(S)K

Fig. 26. Ob
〈〉
SEC. Step-indexed logical relations for PRNI

γ ::= ∅ | γ [x 7→ v]

∅ |= Γ

γ [x 7→ v] |= Γ, x : S ⇐⇒ γ |= Γ ∧ •; • ` v : S

Fig. 27. Ob
〈〉
SEC. PRNI. Auxiliary definition (used in proofs)



B. Auxiliary Lemma: Simple typing

Lemma 8 (Well-type programs are simple well-typed).
If ∆; Γ ` e : T / U then Γ `1 e : T

Lemma 9 (Security subtyping implies simple subtyping).
If ∆; Φ ` T ′ <: T then Φ `sf T ′ <: T

Lemma 10 (Value substitution preserves simple typing).
If Γ `1 e : T and γ |= Γ then `1 γ(e) : T

Proof. By induction on Γ.



C. Auxiliary Lemma: Logical relation

1) Atom subtyping:

Lemma 11 (Atom subtyping).
If (k, v1, v2) ∈ Atom [T ′] and •; • ` T ′ <: T
then (k, v1, v2) ∈ Atom [T ]

Proof. Proof obligations:
`1 ei : T (i ∈ {1, 2}). Apply rule (T1Sub). Note that •; • ` T ′ <: T ⇒ • `sf T ′ <: T (Lemma 9, Security subtyping implies

simple subtyping)

2) Atom reduction:

Lemma 12 (Atom reduction).
Let e1 7−→∗ e′1 and e2 7−→∗ e′2
Let (k, e1, e2) ∈ Atom [T ]
Then (k, e′1, e

′
2) ∈ Atom [T ]

Proof. The proof is straightforward. Each subgoal follows by induction on the typing derivation of ei (i ∈ {1, 2}) .

3) Type substitution preserves subtyping:

Lemma 13 (Type substitution preserves subtyping).
Let σ ∈ DJ∆K
If ∆, • ` S <: S′ then •; • ` σ(S) <: σ(S′)
If ∆, • ` T <: T ′ then •; • ` σ(T ) <: σ(T ′)

4) Type substitution preserves interval subtyping:

Lemma 14 (Type substitution preserves interval subtyping).
Let σ ∈ DJ∆K and ∆ ` U , ∆ ` A, ∆ ` B
If ∆ ` U ∈ A..B
then σ(U) ∈ σ(A)..σ(B)

Proof. Apply Lemma 13 (Type substitution preserves subtyping) for each subgoal.

5) Interval subtyping expansion:

Lemma 15 (Interval subtyping expansion).
Let σ ∈ DJ∆K and • ` U , ∆ ` A, ∆ ` B
If • ` U ∈ σ(A)..σ(B)
then ∆ ` U ∈ A..B

6) Downward closed/Monotonicity:

Lemma 16 (Downward closed/Monotonicity).
Let • ` S
If (k, v1, v2) ∈ VJSK and j ≤ k
then (j, v1, v2) ∈ VJSK

Proof. The proof is by induction on S. All valid cases boil down to P / P and T / O

Case (S = P / P ). This is direct from the definition of VJP / P K

Case (S = T / O).
Proof obligations:
1) (j, v1, v2) ∈ Atom [T ]. This follows directly from (k, v1, v2) ∈ VJSK
2) Assuming arbitrary m, j′, T ′, v′1, v

′
2 such as:

• m ∈ O ∧ msig(•;O,m) = 〈X : A..B〉S1 → S2

• j′ < j
• ` T ′ ∧ T ′ ∈ A..B
• (j′, v1, v2) ∈ VJSK
• (j′, v′1, v

′
2) ∈ VJS1 [X/T ′]K



Show:
(j, v1.m 〈T ′〉 (v′1), v2.m 〈T ′〉 (v′2)) ∈ CJS′′ [X/T ′]K

Instantiate the first conjunct of (k, v1, v2) ∈ VJSK with m, j′, T ′, v′1, v
′
2. Note that:

• m ∈ O ∧ msig(•;O,m) = 〈X : A..B〉S1 → S2

• j′ < k. It follows from j′ < j ≤ k
• ` T ′ ∧ T ′ ∈ A..B
• (j′, v1, v2) ∈ VJSK
• (j′, v′1, v

′
2) ∈ VJS1 [X/T ′]K

Hence (j, v1.m 〈T ′〉 (v′1), v2.m 〈T ′〉 (v′2)) ∈ CJS′′ [X/T ′]K
3) Assuming arbitrary m, j, v′1, v

′
2 such as:

• m ∈ O msig(•, O,m) = P1 / ∗ → P2 / ∗
• (j, v′1, v

′
2) ∈ VJP1 / U1K

Show:
(j′, v1.m(v′1), v2.m(v′2)) ∈ CJP2 / rdecl(P1 / U1, P2)K

Instantiate the second conjunct of (k, v1, v2) ∈ VJSK with m, j′, v′1, v
′
2. Note that:

• m ∈ O msig(•, O,m) = P1 / ∗ → P2 / ∗
• j′ < k. It follows from j′ < j ≤ k
• (j, v′1, v

′
2) ∈ VJP1 / U1K

Hence (j′, v1.m(v′1), v2.m(v′2)) ∈ CJP2 / rdecl(P1 / U1, P2)K

7) Syntactic equivalences implies semantic equivalence:

Lemma 5 (Equal values are logically related).
∀k ≥ 0, p, P,O.

`1 p : O ∧ P <: O =⇒ (k, p, p) ∈ VJP / OK

Proof. Assuming arbitrary m, j, v′1, v
′
2 such as:

• m ∈ O msig(•, O,m) = P1 / ∗ → P2 / ∗
• (j, v′1, v

′
2) ∈ VJP1 / U1K

Show:

(j, v1.m(v′1), v2.m(v′2)) ∈ CJP2 / rdecl(P1 / U1, P2)K

Case (U1 = P1). The v′1 = v′2 = p′ and we have to show

(j, p.m(p′), p.m(p′)) ∈ CJP2 / P2K
≡ (j, θ(m, p, p′), θ(m, p, p′)) ∈ CJP2 / P2K

which follows from the assumption that θ is partial function that respects that signatures of meths(P ).

Case (U1 6= P1). Then we have to show

(j, p.m(v′1), p.m(v′2)) ∈ CJP2 />K

which trivially follows by using Lemma 21 (Well-typed terms are related at top)

8) PER Subtyping:

Lemma 17 (PER Subtyping).
Let • ` S , • ` S′ and •; • ` S′ <: S
(1) If (k, v1, v2) ∈ VJS′K then (k, v1, v2) ∈ VJSK
(2) If (k, e1, e2) ∈ CJS′K then (k, e1, e2) ∈ CJSK

Proof. We proof the statements (1) and (2) simultaneously.
Induction on k and then nested induction on S.
We focus on k > 0 (the case k = 0 is trivial).
Statement (1):



All valid cases for S boils down to P / P and T / O.

Case (S = P / P ).
Proof obligations:
1) (k, v1, v2) ∈ Atom [P ]. Apply Lemma 11 (Atom subtyping)
2) v1 = v2 = b. From the third hypothesis we know that S′ = P / P and for the second one we know that v1 = v2 = b

Case (S = T / O).
Denote S′ = T ′ / O′

Proof obligations:
1) (k, v1, v2) ∈ Atom [T ]. Apply Lemma 11 (Atom subtyping)
2) Assuming arbitrary m, j < k, T ′, v′1, v

′
2 such as:

• m ∈ O msig(•, O,m) = 〈X : A..B〉S1 → S2

• ` T ′ ∧ T ′ ∈ A..B
• (j, v1, v2) ∈ VJSK
• (j, v′1, v

′
2) ∈ VJS1 [X/T ′]K

Show:
(j, o1.m 〈T ′〉 (v′1), o2.m 〈T ′〉 (v′2)) ∈ CJS2 [X/T ′]K)

Instantiate (k, v1, v2) ∈ VJT ′ / O′K with m, j, T ′, v′1, v
′
2. Note that:

• m ∈ O′ msig(•, O′,m) = 〈X : L′..U ′〉S′1 → S′2
• j < k
• ` T ′ ∧ T ′ ∈ A′..B′.
• (j, v′1, v

′
2) ∈ VJS′1 [X/T ′]K. Apply the IH with (j, v′1, v

′
2) ∈ VJS1 [X/T ′]K and •; • ` S1 [X/T ′] <: S′1 [X/T ′]

Hence, (j, o1.m 〈T ′〉 (v′1), o2.m 〈T ′〉 (v′2)) ∈ CJS′′2 [X/T ′]K)
Apply IH, statement (2) with •; • ` S′′2 [X/T ′] <: S2 [X/T ′] to obtain
(j, o1.m 〈T ′〉 (v′1), o2.m 〈T ′〉 (v′2)) ∈ CJS2 [X/T ′]K)

3) Assuming arbitrary m, j, v′1, v
′
2 such as:

• m ∈ O msig(•, O,m) = P1 / ∗ → P2 / ∗
• (j, v′1, v

′
2) ∈ VJP1 / U1K

Show:
(j, v1.m(v′1), v2.m(v′2)) ∈ CJP2 / rdecl(P1 / U1, P2)K

Do a case analysis on S′. Each case reduces to S′ = T ′ / O′ or S′ = P ′ / P ′

Case (S′ = T ′ / O′). Instantiate (k, v1, v2) ∈ VJT ′ / O′K with m, j, v′1, v
′
2. Note that:

• m ∈ O msig(•, O,m) = P1 / ∗ → P2 / ∗. Recall, that there is no subtyping rules between primitive types.
• (j, v′1, v

′
2) ∈ VJP1 / U1K

Hence (j, v1.m(v′1), v2.m(v′2)) ∈ CJP2 / rdecl(P1 / U1, P2)K
Case (S′ = P ′ / P ′).
It means that v1 = v2 = b. Apply Lemma 5 (Equal values are logically related) with b,P ′ and O. Note that `1 b : P ′

and P ′ <: O.

Statement (2):
Denote S

4
= T / U and S′

4
= T ′ / U ′

Proof obligations:
1) (k, e1, e2) ∈ Atom [T ]. Apply Lemma 11 (Atom subtyping) with (k, e1, e2) ∈ Atom [T ′] ((k, e1, e2) ∈ CJS′K) and

•; • ` T ′ <: T
2) Assuming arbitrary j < k, v1, v2 such as j < k:

• e1 7−→j v1
• e2 7−→j v2

Show:
(j, v1, v2) ∈ VJSK

Instantiate (k, e1, e2) ∈ CJS′K with j, v1, v2 to obtain: (k, v1, v2) ∈ VJS′K.
Apply the IH, statement (1) with (k, v1, v2) ∈ VJS′K and •; • ` S′ <: S to obtain:
(k, v1, v2) ∈ VJSK



9) Anti reduction:

Lemma 18 (Anti reduction).
Let S

4
= T / U

Let (j, e1, e2) ∈ Atom [T ]
Let j′ ≤ j and j ≤ j′ + k
Let e1 7−→≤k e′1 and e2 7−→≤k e′2
Let (j′, e′1, e

′
2) ∈ CJSK

Then (j, e1, e2) ∈ CJSK

Proof. Denote S
4
= T / U .

Proof obligations:

1) (j, e1, e2) ∈ Atom [T ]. Apply Lemma 12 (Atom reduction) with (j′, e′1, e
′
2) ∈ Atom [T ] which follows from (j′, e′1, e

′
2) ∈

CJSK
2) Assuming j1 < j, v1, v2 such as:

• e1 7−→≤j1 v1
• e1 7−→≤j1 v2

Show:

(j − j1, v1, v2) ∈ VJSK
We have that:

e1 7−→≤k e′1 7−→j′1 v1
e2 7−→≤k e′2 7−→j′1 v2

where j′1 < j′.
Instantiate (j′, e′1, e

′
2) ∈ CJSK with j′1. Note that j′1 < j′.

Hence, (j′ − j′1, v1, v2) ∈ VJSK.
Apply Lemma 16 (Downward closed/Monotonicity) with j − j1 ≤ j − (k + j′1) ≤ j′ − j′1 (j − k ≤ j′) to obtain:
(j − j1, v1, v2) ∈ VJSK

10) Monadic bind:

Lemma 19 (Monadic bind).
If (k, e1, e2) ∈ CJSK
and ∀j ≤ k.∀v1, v2. (j, v1, v2) ∈ VJSK =⇒ (j, E [v1] , E [v2]) ∈ CJS′K
then (k,E [e1] , E [e2]) ∈ CJS′K

Proof. Let us assume that e2 7−→≤j
′
v′1 and e2 7−→≤j

′
v′2 where j′ ≤ k (in other case the lemma vacuously holds)

Instantiate (k, e1, e2) ∈ CJSK with j′, v′1, v
′
2.

Hence, (k − j′, v′1, v′2) ∈ VJS′K
By the dynamic semantics we have know that:

E [e1] 7−→≤j′ E [v′1]
E [e2] 7−→≤j′ E [v′2]

Instantiate the second premise with k − j′, v′1, v′2. Note that k − j′ ≤ k and (k − j′, v′1, v′2) ∈ VJSK.
Hence, (k − j′, E [v′1] , E [v′2]) ∈ CJS′K
Instantiate Lemma 18 (Anti reduction). Note that:

• k − j′ ≤ k
• k ≤ k − j′ + j′

• E [e1] 7−→≤j′ E [v′1]
• E [e2] 7−→≤j′ E [v′2]
• (k − j′, E [v′1] , E [v′2]) ∈ CJS′K
Hence, (k,E [e1] , E [e2]) ∈ CJS′K



11) Substitutions preserve simple typing:

Lemma 20 (Substitutions preserve simple typing).
Let ∆,Γ ` e1 : T1 / U1 and ∆,Γ ` e2 : T1 / U1

Let σ ∈ DJ∆K and (k, γ1, γ2) ∈ GJσ(Γ)K
Then (k, σ(γ1(e1)), σ(γ2(e2))) ∈ Atom [σ(T1)]

Proof. The proof is straightforward. Then the goal is equivalent to show: (k, γ1(e1), γ2(e2)) ∈ Atom [σ(T1)] (because type
variable are not taken into account by the simple type system).

For each value substitution apply Lemma 10 (Value substitution preserves simple typing) with Γ `1: ei and γi |= Γ to obtain
`1 γi(ei) : σ(T1)

12) Well-typed terms are related at top:

Lemma 21 (Well-typed terms are related at top).
Let σ ∈ DJ∆K and (k, γ1, γ2) ∈ GJσ(Γ)K
Let ∆; Γ ` e1 : T />
Let ∆; Γ ` e2 : T />
Then (k, σ(γ1(e1)), σ(γ2(e2))) ∈ CJσ(T ) />K

Proof. Proof obligations
1) (k, σ(γ1(e1)), σ(γ1(e2))) ∈ Atom [σ(U)]. It follows from Lemma 20 (Substitutions preserve simple typing).
2) Assuming j < k, v1, v2 such as:

• σ(γ1(e1)) 7−→≤j v1
• σ(γ2(e2)) 7−→≤j v2

Show
(k − j, v1, v2) ∈ VJσ(T ) />K

Which is equivalent to show
(k − j, v1, v2) ∈ Atom [σ(T )]

Apply Lemma 12 (Atom reduction) with (k, σ(γ1(e1)), σ(γ1(e2))) ∈ Atom [σ(T )], v1 and v2 to obtain
(k − j, v1, v2) ∈ Atom [σ(T )]

13) Related values are related terms:

Lemma 22 (Related values are related terms). If (k, v1, v2) ∈ VJSK then (k, v1, v2) ∈ CJSK

Proof. The proof trivially follows.



D. Proof of Fundamental Property

1) Pre-compatibility: Method Invocation:

Lemma 23 (Pre-compatibility: Method Invocation).
Let σ ∈ DJ∆K, ∆ ` T1 / U1

Let k′′ ≤ k′ ≤ k
Let (k′, v1, v2) ∈ VJσ(T1 / U1)K
Let ∆ ` m ∈ U1 and msig(∆;U1,m) = 〈X : A..B〉S2 → S
Let ∆ ` U ′ ∧ ∆ ` U ′ ∈ A..B
Let (k, v′′1 , v

′′
2 ) ∈ VJσ(S2 [U ′/X])K

then (k′′, v1.m 〈σ(U ′)〉 (v′′1 ), v2.m 〈σ(U ′)〉 (v′′2 )) ∈ CJσ(S [U ′/X])K

Proof. Instantiate (k′, v1, v2) ∈ VJσ(T1 / U1)K with: m, k′′, σ(U ′), v′′1 , v
′′
2 . Note that:

• m ∈ σ(T1). It follows from ∆ ` m ∈ U1, σ ∈ DJ∆K and ∆ ` T1 / U1. Then
msig(•, σ(T1),m) = 〈X : σ(A)..σ(B)〉σ(S2)→ σ(S).

• k′′ < k which follows directly from hypothesis.
• ` σ(U ′) which is direct from ∆ ` U ′ and ρ ∈ DJ∆K.
• σ(U ′) ∈ σ(A)..σ(B). Apply Lemma 14 (Type substitution preserves interval subtyping) with σ ∈ DJ∆K and ∆ ` U ′ ∈
A..B

• (k′′, v′′1 , v
′′
2 ) ∈ VJσ(S2) [σ(U ′)/X]K. It follows from

– (k, v′′1 , v
′′
2 ) ∈ VJσ(S2) [σ(U ′)/X]K. Note that σ(S2 [U ′/X]) = σ(S2) [σ(U ′)/X] and (k, v′′1 , v

′′
2 ) ∈ VJσ(S2 [U ′/X])K

is given in hypothesis
– Apply Lemma 16 (Downward closed/Monotonicity) with (k, v′′1 , v

′′
2 ) ∈ VJσ(S2) [σ(U ′)/X]K and k′′ ≤ k we obtain

(k′′, v′′1 , v
′′
2 ) ∈ VJσ(S2) [σ(U ′)/X]K.

Hence, (k′′, v1.m 〈σ(U ′)〉 (v′′1 ), v2.m 〈σ(U ′)〉 (v′′2 )) ∈ CJσ(S) [σ(U ′)/X]K
Note σ(S [U ′/X]) = σ(S) [σ(U ′)/X].
Hence, (k′′, v1.m 〈σ(U ′)〉 (v′′1 ), v2.m 〈σ(U ′)〉 (v′′2 )) ∈ CJσ(S [U ′/X])K

2) Compatibility-Var:

Lemma 24 (Ob
〈〉
SEC Compatibility-Var).

∆; Γ ` x ≈ x : Γ(x)

Proof. First, let us denote S
4
= Γ(x).

Proof obligations:
1) ∆; Γ ` x : S which is direct.
2) Assuming arbitrary k, σ, γ1, γ2 such as: k ≥ 0, σ ∈ DJ∆K, γ1, γ2, (k, γ1, γ2) ∈ GJρ(Γ)K

Show
(k, σ(γ1(x)), σ(γ2(x))) ∈ CJσ(S)K
≡ (k, γ1(x), γ2(x)) ∈ CJσ(S)K

From (k, γ1, γ2) ∈ GJσ(Γ)K we know that exists v1, v2 such as:
• γ1(x) = v1
• γ2(x) = v2
• (k, v1, v2) ∈ VJσ(S)K

Apply Lemma 22 (Related values are related terms) with (k, γ1(x), γ2(x)) ∈ VJσ(S)K to obtain
(k, γ1(x), γ2(x)) ∈ CJσ(S)K

3) Compatibility-Prim:

Lemma 25 (Ob
〈〉
SEC Compatibility-Prim).

Let P = ∆p(p).
Then ∆; Γ ` b ≈ b : P / P

Proof. Proof obligations:
1) ∆; Γ ` b : P / P . Apply rule (TPrim)
2) Assuming arbitrary k, ρ, γ1, γ2 such as:

• k ≥ 0, σ ∈ DJ∆K, (k, γ1, γ2) ∈ GJσ(Γ)K



Show:
(k, σ(γ1(b)), σ(γ2(b))) ∈ CJσ(P / P )K

≡ (k, b, b) ∈ CJP / P K
Apply Lemma 22 (Related values are related terms) with (k, b, b) ∈ VJP / P K to obtain:
(k, b, b) ∈ CJP / P K

4) Compatibility Subsumption:

Lemma 26 (Ob
〈〉
SEC Compatibility-Subsumption).

Let ∆; Γ ` e1 ≈ e2 : S′. Let ∆; • ` S′ <: S.
Then ∆; Γ ` e1 ≈ e2 : S.

Proof. Proof obligations:
1) ∆; Γ ` e1 : S and ∆; Γ ` e2 : S. Apply rule (TSub) with ∆; Γ ` ei : S′ (obtained from ∆; Γ ` e1 ≈ e2 : S′) and

∆; • ` S′ <: S
2) Assuming arbitrary k, σ, γ1, γ2 such as :

• k ≥ 0, ρ ∈ DJ∆K, (k, γ1, γ2) ∈ GJσ(Γ)K
Show:

(k, σ(γ1(e1)), σ(γ2(e2))) ∈ CJρ(S)K.
Instantiate ∆; Γ ` e1 ≈ e2 : S′ with k, σ, γ1, γ2 to obtain:
(k, σ(γ1(e1))), σ(γ2(e2))) ∈ CJσ(S′)K.
Apply Lemma 17 (PER Subtyping) with •; • ` σ(S′) <: σ(S). Note that:
• •; • ` σ(S′) <: σ(S) follows from Lemma 13 (Type substitution preserves subtyping) applied to σ ∈ DJ∆K and

∆; • ` S′ <: S.
Hence, (k, σ(γ1(e1)), σ(γ2(e2))) ∈ CJρ(S)K.

5) Compatibility Object:

Lemma 27 (Ob
〈〉
SEC Compatibility-Object).

Let be S , O / U
Let be O , Obj(α).

î
m : 〈X : A..B〉S′ → S′′

ó
Then:

msig(∆, O,mi) = 〈X : Uli..Uui〉S′i → S′′i
∆, X : Uli..Uui; Γ, z : S, x : S

′

i ` ei ≈ e′i : S′′i

∆; Γ `
î
z : S ⇒ m(x)e

ó
≈
î
z : S ⇒ m(x)e′

ó
: S

Proof. Denote o =
î
z : S ⇒ m(x)e

ó
and o′ =

î
z : S ⇒ m(x)e′

ó
Proof obligations:
1) ∆; Γ ` o : S ∧ ∆; Γ ` o′ : S. Apply rule (TObj)
2) Consider arbitrary k, σ, γ1, γ2 such as: k ≥ 0, σ ∈ DJ∆K, (k, γ1, γ2) ∈ GJσ(Γ)K

Show:
(k, σ(γ1(o)), σ(γ2(o′))) : CJσ(S)K

≡ (k,
î
z : σ(S)⇒ m(x)σ(γ1(e))

ó
,
î
z : σ(S)⇒ m(x)σ(γ2(e′))

ó
) : CJσ(S)K

Apply Lemma 22 (Related values are related terms) to transform the goal to
(k,
î
z : σ(S)⇒ m(x)σ(γ1(e))

ó
,
î
z : σ(S)⇒ m(x)σ(γ2(e′))

ó
) : VJσ(S)K

Let us denote o1 =
î
z : σ(S)⇒ m(x)σ(γ1(e))

ó
, o2 =

î
z : σ(S)⇒ m(x)σ(γ2(e′))

ó
By well-formedness of the type S (Figure 19) we know that ρ(U) is necesarily an object type (i.e. it is not a primitive
type)
Proof of (k, o1, o2) ∈ VJσ(O) / σ(U)K.
Sub goals
• (k, o1, o2) ∈ Atom [σ(O)]. Apply Lemma 20 (Substitutions preserve simple typing) with ∆; Γ ` o : S, ∆; Γ ` o′ : S,
σ ∈ DJ∆K and (k, γ1, γ2) ∈ GJσ(Γ)K



• Assuming arbitrary m, j, T ′, v′1, v
′
2 such as:

– m ∈ ρ(U) msig(•, σ(O),m) = 〈X : σ(A)..σ(B)〉σ(S′)→ σ(S′′)
– j < k
– ` T ′ ∧ T ′ ∈ σ(A)..σ(B)
– (j, o1, o2) ∈ VJσ(S)K
– (j, v′1, v

′
2) ∈ VJσ(S′)K

Show:
(j, o1.m 〈T ′〉 (v′1), o2.m 〈T ′〉 (v′2)) ∈ CJσ(S′′)K

Denote methimpl(o1,m) = x.σ(γ1(e)) and methimpl(o1,m) = x.σ(γ2(e′))
Then, the above goal rewrites to

(j, σ(γ1(e)) [T ′/X] [o1/z] [v′1/x] , σ(γ2(e′)) [T ′/X] [o2/z] [v′2/x]) ∈ CJσ(S′′)K
(j, σ [X 7→ T ′] (γ1(e)) [o1/z] [v′1/x] , σ [X 7→ T ′] (γ2(e′)) [o2/z] [v′2/x]) ∈ CJσ(S′′)K

Instantiate the second conjunct of the IH ∆, X : A..B; Γ, z : S, x : S
′ ` e ≈ e′ : S′′ with

j, σ′ = σ [X 7→ T ′] , γ′1 = γ1 [z 7→ o1] [x 7→ v′1] , γ′1 = γ2 [z 7→ o2] [x 7→ v′2]. Note that:
– j ≥ 0
– σ [X 7→ T ′] ∈ DJ∆, X : A..BK. It follows from:
∗ σ ∈ DJ∆K. It follows from above.
∗ ∆ ` T ′ ∈ A..B. Apply Lemma 15 (Interval subtyping expansion) with σ ∈ DJ∆K and ` T ′ and T ′ ∈
σ(A)..σ(B)

– (j, γ′1, γ
′
2) ∈ GJσ(Γ), z : σ(S), x : σ(S′)K. It follows from:

∗ (j, γ1, γ2) ∈ GJσ(Γ)K. It follows from above.
∗ (j, o1, o2) ∈ VJσ(S)K. It follows from the above.
∗ (j, v′1, v

′
2) ∈ VJσ(S′)K. It follows from the above.

Hence (j, σ [X 7→ T ′] (γ1 [z 7→ o1] [x 7→ v′2] (e)), σ [X 7→ T ′] (γ2 [z 7→ o2] [x 7→ v′2] (e′))) ∈ CJσ(S′′)K
Since o1, o2, v′1, v

′
2 are closed values with respect to type variables we can rewrite this as:

(j, σ [X 7→ T ′] (γ1(e)) [o1/z] [v′1/x] , σ [X 7→ T ′] (γ2(e′)) [o2/z] [v′2/x]) ∈ CJσ(S′′)K



6) Compatibility Method Invocation Declassification:

Lemma 28 (Ob
〈〉
SEC Compatibility-Method-Invocation-Declassification).

Let S1
4
= T1 / U1, S2

4
= T2 / U2

Let ∆; Γ ` e1 ≈ e′1 : T1 / U1

Let ∆ ` m ∈ U1, msig(∆;U1,m) = 〈X : A..B〉S2 → S
Let ∆ ` U ′ ∧ ∆ ` U ′ ∈ A..B
Let ∆; Γ ` e2 ≈ e′2 : S2 [U ′/X]
Then ∆; Γ ` e1.m 〈U ′〉 (e2) ≈ e′1.m 〈U ′〉 (e′2) : S [U ′/X]

Proof. Let us denote e = e1.m 〈U ′〉 (e2) and e′ = e′1.m 〈U ′〉 (e′2)
Proof obligations:

1) ∆; Γ ` e : S [U ′/X] and ∆; Γ ` e′ : S [U ′/X] which follow directly from the premises and the rule (TmD).
2) Assuming arbitrary k, σ, γ1, γ2 such as: k ≥ 0, σ ∈ DJ∆K, (k, γ1, γ2) ∈ GJσ(Γ)K

Show:
(k, σ(γ1(e1.m 〈U ′〉 (e2))), σ(γ2(e′1.m 〈U ′〉 (e′2)))) ∈ CJσ(S [U ′/X])K

≡ (k, σ(γ1(e1)).m 〈σ(U ′)〉 (σ(γ1(e2))), σ(γ2(e′1)).m 〈σ(U ′)〉 (σ(γ2(e′2)))) ∈ CJσ(S [U ′/X])K
(because X /∈ dom(σ))
Instantiate the hypothesis ∆; Γ ` e1 ≈ e′1 : T1 / U1 with k, σ, γ1, γ2, hence:
(k, σ(γ1(e1)), σ(γ2(e′1))) ∈ CJσ(T1 / U1)K
Let k′ ≤ k and let (k′, v1, v2) ∈ VJσ(T1 / U1)K. By Lemma 19 (Monadic bind) we can rewrite the goal to show

(k′, v1.m 〈σ(U ′)〉 (σ(γ1(e2))), v2.m 〈σ(U ′)〉 (σ(γ2(e′2))))) ∈ CJS [U ′/X]K
Instantiate the hypothesis ∆; Γ ` e2 ≈ e′2 : S2 [U ′/X] with k, ρ, γ1, γ2, hence:
(k, σ(γ1(e2)), σ(γ2(e′2)) ∈ CJσ(S2 [U ′/X])K
Let k′′ ≤ k′ and let (k′′, v′′1 , v

′′
2 ) ∈ VJσ(S2 [U ′/X])K. By Lemma 19 (Monadic bind) we can rewrite the goal to show

(k′′, v1.m 〈σ(U ′)〉 (v′′1 ), v2.m 〈σ(U ′)〉 (v′′2 ))) ∈ CJσ(S [U ′/X])K
Then, we apply the Lemma 23 (Pre-compatibility: Method Invocation) with :
• σ ∈ DJ∆K
• ∆ ` T1 / U1

• (k′, v1, v2) ∈ VJσ(T1 / U1)K
• ∆ ` m ∈ U1 and msig(∆;U1,m) = 〈X : A..B〉S2 → S
• ∆ ` U ′ ∧ ∆ ` U ′ ∈ A..B
• (k′′, v′′1 , v

′′
2 ) ∈ VJσ(S2 [U ′/X])K

to obtain: (k′′, v1.m 〈σ(U ′)〉 (v′′1 ), v2.m 〈σ(U ′)〉 (v′′2 ))) ∈ CJσ(S [U ′/X])K

7) Compatibility-Method-Invocation-High:

Lemma 29 (Ob
〈〉
SEC Compatibility-Method-Invocation-High).

Let S1
4
= T1 / U1, S2

4
= T2 / U2

If ∆; Γ ` e1 ≈ e′1 : T1 / U1

∆ ` m /∈ U1, msig(∆;T1,m) = 〈X : A..B〉S2 → T / U
∆ ` U ′ ∧ ∆ ` U ′ ∈ A..B
∆; Γ ` e2 ≈ e′2 : S2 [U ′/X]
then ∆; Γ ` e1.m 〈U ′〉 (e2) ≈ e′1.m 〈U ′〉 (e′2) : T [U ′/X] />

Proof. Proof obligations:
1) ∆; Γ ` e1.m 〈U ′〉 (e2) : T [U ′/X] /> and ∆; Γ ` e′1.m 〈U ′〉 (e′2) : T [U ′/X] />. Apply rule (TmH).
2) Assuming arbitrary k, σ, γ1, γ2 such as: k ≥ 0, σ ∈ DJ∆K, (k, γ1, γ2) ∈ GJσ(Γ)K

Show:
(k, σ(γ1(e1.m 〈U ′〉 (e2))), σ(γ2(e′1.m 〈U ′〉 (e′2)))) ∈ CJσ(T [U ′/X]) />K

Apply Lemma 21 (Well-typed terms are related at top) with:
• ∆; Γ ` e1.m 〈U ′〉 (e2) : T [U ′/X] /> and ∆; Γ ` e′1.m 〈U ′〉 (e′2) : T [U ′/X] />. It follows from above.
• σ ∈ DJ∆K, (k, γ1, γ2) ∈ GJσ(Γ)K. It follows from above.

Hence, (k, σ(γ1(e1.m 〈U ′〉 (e2))), σ(γ2(e′1.m 〈U ′〉 (e′2)))) ∈ CJσ(T [U ′/X]) />K



8) Compatibility TPmD:

Lemma 30 (Ob
〈〉
SEC Compatibility TPmD).

Let ∆; Γ ` e1 ≈ e′1 : T / U
Let ∆ ` m ∈ U, msig(∆, U,m) = P1 / ∗ → P2 / ∗
Let ∆; Γ ` e2 ≈ e′2 : P1 / U1

Let rdecl(P1 / U1, P2) = P ′2
Then ∆; Γ ` e1.m(e2) ≈ e′1.m(e′2) : P2 / P

′
2

Proof. Proof obligations:

1) ∆; Γ ` e1.m(e2) : P2 / P
′
2 and ∆; Γ ` e′1.m(e′2) : P2 / P

′
2. Apply rule (TPmD).

2) Assuming arbitrary k, σ, γ1, γ2 such as: k ≥ 0, σ ∈ DJ∆K, (k, γ1, γ2) ∈ GJσ(Γ)K
Show:

(k, σ(γ1(e1.m(e2))), σ(γ2(e′1.m(e′2)))) ∈ CJσ(P2 / P
′
2)K

≡ (k, σ(γ1(e1)).m(σ(γ1(e2))), σ(γ2(e′1)).m(σ(γ2(e′2)))) ∈ CJσ(P2 / P
′
2)K

≡ (k, σ(γ1(e1)).m(σ(γ1(e2))), σ(γ2(e′1)).m(σ(γ2(e′2)))) ∈ CJ P2 / P
′
2 K

Instantiate the hypothesis ∆; Γ ` e1 ≈ e′1 : T / U with k, σ, γ1, γ2, hence:
(k, σ(γ1(e1)), σ(γ2(e′1))) ∈ CJσ(T / U)K
Let k′ ≤ k and let (k′, v1, v2) ∈ VJσ(T / U)K. By Lemma 19 (Monadic bind) we can rewrite the goal to show

(k′, v1.m(σ(γ1(e2))), v2.m(σ(γ2(e′2)))) ∈ CJP2 / P
′
2K

Instantiate the hypothesis ∆; Γ ` e2 ≈ e′2 : P1 / U1 with k, ρ, γ1, γ2, hence:
(k, σ(γ1(e2)), σ(γ2(e′2)) ∈ CJσ(P1 / U1)K
Let k′′ ≤ k′ and let (k′′, v′′1 , v

′′
2 ) ∈ VJσ(P1 / U1)K. By Lemma 19 (Monadic bind) we can rewrite the goal to show

(k′′, v1.m(v′′1 ), v2.m(v′′2 ))) ∈ CJP2 / P
′
2K

Instantiate (k′, v1, v2) ∈ VJσ(T / U)K with m, k′′, v′′1 , v
′′
2 . Note that:

• m ∈ σ(U). It follows from ∆ ` m ∈ U , σ ∈ DJ∆K and ∆ ` T / U . Then
msig(•, σ(T1),m) = P1 / ∗ → P2 / ∗.

• k′′ < k which follows above assumptions.
• (k′′, v′′1 , v

′′
2 ) ∈ VJP1 / σ(U1)K. Apply Lemma 16 (Downward closed/Monotonicity) with (k, v′′1 , v

′′
2 ) ∈ VJP1 / σ(U1)K

and k′′ ≤ k
Hence, (k′′, v1.m(v′′1 ), v2.m(v′′2 )) ∈ CJP2 / rdecl(P1 / ρ(U1), P2)K
Then, note that rdecl(P1 / ρ(U1), P2) = rdecl(P1 / U1, P2) = P ′2.
Hence, (k′′, v1.m(v′′1 ), v2.m(v′′2 ))) ∈ CJP2 / P

′
2K

9) Compatibility TPmH:

Lemma 31 (Ob
〈〉
SEC Compatibility TPmH).

Let ∆; Γ ` e1 ≈ e′1 : T / U
Let ∆ ` m ∈ T, msig(∆, T,m) = P1 / ∗ → P2 / ∗
Let ∆; Γ ` e2 ≈ e′2 : P1 / U1

Then ∆; Γ ` e1.m(e2) ≈ e′1.m(e′2) : P2 />

Proof. Proof obligations:

1) ∆; Γ ` e1.m(e2) : P2 /> and ∆; Γ ` e′1.m(e′2) : P2 />. Apply rule (TPmH).
2) Assuming arbitrary k, σ, γ1, γ2 such as: k ≥ 0, σ ∈ DJ∆K, (k, γ1, γ2) ∈ GJσ(Γ)K

Show:
(k, σ(γ1(e1.m(e2))), σ(γ2(e′1.m(e′2)))) ∈ CJσ(P2) />K

Apply Lemma 21 (Well-typed terms are related at top) with:
• ∆; Γ ` e1.m(e2) : P2 /> and ∆; Γ ` e′1.m(e′2) : P2 />. It follows from above
• σ ∈ DJ∆K, (k, γ1, γ2) ∈ GJσ(Γ)K. It follows from above.

Hence, (k, σ(γ1(e1.m(e2))), σ(γ2(e′1.m(e′2)))) ∈ CJσ(P2) />K



10) Fundamental property:

Theorem 3 (Fundamental property).
∆; Γ ` e : S =⇒ ∆; Γ ` e ≈ e : S

Proof. The proof is by induction on the typing derivation of ∆; Γ ` e : S.
Each case follows directly from the corresponding compatibility lemma (Lemmas 24 ... 31)

Lemma 2 (Self logical relation implies PRNI).
∆; Γ ` e ≈ e : S =⇒ PRNI(∆,Γ, e, S)

Proof. The proof is direct given the similarity of both definitions. The only difference between both definitions is that
∆,Γ ` e ≈ e : S uses the security type system (Figure 5) and PRNI(∆,Γ, e, S) uses the simple type system (Figure 23).
We use Lemma 8 (Well-type programs are simple well-typed) to show that ∆; Γ ` e : T / U ⇒ Γ `1 e : T
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