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ABSTRACT
Multidimensional synchronous dataflow (MDSDF) provides
an effective model of computation for a variety of multidi-
mensional DSP systems that have static dataflow structures.
In this paper, we develop new methods for optimized imple-
mentation ofMDSDF graphs on embedded platforms that em-
ploy multiple levels of parallelism to enhance performance at
different levels of granularity. Our approach allows design-
ers to systematically represent and transform multi-level par-
allelism specifications from a common, MDSDF-based ap-
plication level model. We demonstrate our methods with a
case study of image histogram implementation on a graphics
processing unit (GPU). Experimental results from this study
show that our approach can be used to derive fast GPU im-
plementations, and enhance trade-off analysis during design
space exploration.

Index Terms— Dataflow graph, multidimensional syn-
chronous dataflow, graphics processing unit, integral his-
togram.

1. INTRODUCTION

Dataflow models are widely used for expressing the func-
tionality of digital signal processing (DSP) applications, such
as those associated with audio and video data stream pro-
cessing, digital communications, and image processing (e.g.,
see [1]). Dataflow provides a formal mechanism for de-
scribing specifications of DSP applications, imposes minimal
data-dependency constraints in specifications, and is effective
in exposing and exploiting task or data level parallelism for
achieving high performance implementations. Synchronous
dataflow [2] has been popular in design of DSP applica-
tions because of its useful features, including compile-time,
formal validation of deadlock-free operation and bounded
buffer memory requirements, as well as support for efficient

scheduling and buffer size optimization [1]. However, the
SDF model is well suited only for one-dimensional DSP
algorithms, such as those in the domains of speech, audio,
and digital communication. Multidimensional synchronous
dataflow (MDSDF) [3] is a generalization of SDF to multi-
ple dimensions. MDSDF provides an effective model for a
variety of multidimensional DSP systems that have statically
structured dataflow characteristics.

In this paper, we develop new methods for efficient imple-
mentation of parallel processing solutions for signal process-
ing systems using MDSDF representations. Our proposed
design methods apply dataflow transformations to exploit
data parallelism hierarchically for multidimensional dataflow
graphs. Our design methods provide a systematic approach
for exposing and exploiting parallelism from multidimen-
sional dataflow specifications across different levels of the
specification hierarchy. We demonstrate our proposed new
modeling techniques and design methods by applying them to
optimize implementations on the NVIDIA graphics program-
ming unit (GPU) programming model [4]. Using our new
MDSDF-based design techniques, we demonstrate efficient
GPU implementations for integral histogram computations,
which form an important class of image processing oper-
ations for surveillance and monitoring applications. The
results of our experiments demonstrate concretely that our
proposed design methods are effective in mapping formal de-
sign models for multidimensional DSP systems into efficient
implementations on complex multicore processors.

2. RELATED WORK

A variety of dataflow based design tools has evolved in recent
years for design and implementation of signal processing sys-
tems (e.g., see [1, 5, 6]). In this section, we summarize a num-
ber of recent efforts beyond MDSDF (see Section 1) that have
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focused especially on multidimensional dataflow modeling.
Keinert et al. propose an extension of MDSDF, called

windowed synchronous dataflow (WSDF) [7]. WSDF allows
modeling of sliding window algorithms for a multidimen-
sional applications. Array–OL [8] is a language devoted to
applications that involve multidimensional intensive signal
processing. Two levels of description are used for modeling
parallelism in Array–OL— one is the global model for defin-
ing task parallelism, while the other is the local model for
expressing data parallelism. Blocked dataflow (BLDF) [9]
provides meta-modeling semantics that can be used to repre-
sent block-based and multidimensional processing in terms
of different specialized dataflow models. BLDF provides
a unified framework that leads to efficient dataflow graph
scheduling and memory management.

McAllister et al. [10] augment the MDSDF model with
parameterized array expressions. Their modeling approach,
called Multidimensional Arrayed Synchronous Dataflow
(MASD), provides graph range parameters to control to-
ken dimensions at input and output ports, which enables
systematic trade-off exploration between actor network size
and token size.

The distinguishing contribution of this paper is that it
presents a novel design method, building on the MDSDF
model of computation, for hierarchical exploitation of par-
allelism in DSP applications. The method developed in
this paper helps to expose multidimensional parallelism at
different design levels in a platform-independent way, and
to exploit such parallelism using suitable platform-specific
mapping optimizations at the back-end of the design flow.
Graph clustering and MDSDF dataflow analysis are applied
in novel ways to provide a systematic approach for map-
ping applications to DSP platforms that employ parallelism
at multiple levels. In addition to motivating and concretely
illustrating our proposed design method, we demonstrate its
utility through a case study of an important, practical multi-
dimensional signal processing application.

3. MODELING

In this section, we present a structured design method based
on MDSDF graphs for hierarchical mapping of DSP systems
onto parallel architectures. In various forms of data parallel
programming, programmers can define functions, and have
multiple calls to the functions execute in parallel on different
data sets (e.g., see [4, 11]). Recent data parallel programming
environments emphasize support for exploiting multi-level or
hierarchical parallelism, where parallelism is exploited pro-
grammatically at multiple levels of granularity. For exam-
ple, CUDA [4] provides a two-level thread hierarchy, where
a set of threads makes up a thread block, and multiple thread
blocks form a grid.

Such hierarchical support for representing parallelism is
important for multidimensional signal processing applica-

Fig. 1. An example of a three-actor MDSDF graph.

tions, where parallelism exists in different forms at different
levels of the design hierarchy (DH) (e.g., inter-frame, inter-
block, and inter-pixel parallelism in video processing). In this
section, we build on the MDSDF model of computation, and
develop a design method to represent and apply parallelism
hierarchically for multidimensional dataflow graphs.

Let G = (V,E) denote an MDSDF graph where V =
{v1, v2, ..., vL} is a set of vertices (actors), and
E = {e1, e2, ..., eK} is a set of directed edges, which repre-
sent communication between actors according to MDSDF se-
mantics. In MDSDF graphs, actor firings are indexed (in their
associated “firing spaces”) by n-dimensional vectors, where
the values of n depend on the dimensions of the data that are
produced and consumed (n = 1 corresponds to conventional
single-dimensional, SDF-like firing sequences) [3].

Suppose that v is an MDSDF actor with a firing space
of M dimensions, and let rv,i, for i = 1, 2, . . . ,M , denote
the size of the ith dimension of the firing space for v in a
given periodic schedule S for G. A periodic schedule is a se-
quence of actor firings that executes each actor at least once
and produces no net change in the numbers of tokens queued
on the edges of G [2, 3]. We refer to the M -vector rv =
[rv,1, rv,2, ..., rv,M ] as the firing vector for actor v associated
with S. The product of the M elements of this vector gives
the total number of firings of v within S. For a properly
constructed MDSDF graph, rv can be computed by solving
a system of equations called the balance equations for the
graph [3].

Consider, for example, the 3-node graph illustrated in
Fig. 3. The firing vectors rA, rB , and rC can be found by
solving the following balance equations for i = 1, 2, ...,M :

rA,iOA,i = rB,iIB,i, rB,iOB,i = rC,iIC,i, (1)

where IX = [IX,1, IX,2, ..., IX,M ] and OX = [OX,1, OX,2,
..., OX,M ] are the M -dimensional consumption and produc-
tion rates, respectively, for actor X .

Now suppose that we have an N -level hierarchical par-
allel programming model (platform hierarchy) P , which we
want to use to implement a given MDSDF graph G. For ex-
ample, such a parallel programming model could be used as a
target for code generation or could be used for an implementa-
tion that is derived from hand based on a functional reference
(“golden model”) that is based on the MDSDF specification.
We develop an N -level hierarchical dataflow graph transfor-
mation approach to achieve such a mapping from MDSDF to
P . We refer to N in this context as the platform depth.

First, we introduce some definitions and notation related
to hierarchical dataflow graphs. For a dataflow graph G =



(V,E), let Pi(V ) and Po(V ) be the sets of input and output
ports of all actors in V , respectively. A supernode s inG is an
actor (i.e., s ∈ V ) that is associated with a “nested dataflow
graph” H(s), where execution of s in G corresponds to exe-
cution ofH(s). In general, not all actor ports inH(s) are con-
nected in H(s) (i.e., not all of them connect to edges within
H(s)). The “unconnected actor ports” are referred to as the
interface ports ofH(s), and these ports are in one-to-one cor-
respondence with ports of actor s.

If G is the “top” of the DH (i.e., G is not encapsulated by
a supernode in another graph), then we say that the nesting
level (or simply level) ofG, denoted λ(G), is 1. Similarly, for
each supernode s inG, λ(H(s)) = 2; for each supernode t in
any of these H(s)’s, λ(H(t)) = 3, and so on.

The DHs in our model are non-overlapping, which means
that for all supernodes within a DH (i.e., across all levels),
their corresponding nested dataflow graphs do not share any
actors or edges. Furthermore, we assume that these DHs are
finite, which means that the levels (λ values) are all bounded.

We refer to the maximum λ value in a DHD as the depth
δ of D. For each i ∈ {1, 2, . . . , δ}, we denote by Li the set
of all actors that are “at level i”. That is, L1 = V , and for
i = 2, 3, . . . , δ,

Li = ∪{Vh(s)|λ(H(s)) = i}, (2)

where Vh(s) denotes the set of actors in the nested dataflow
graph H(s).

DHs in our decomposition approach can be constructed
by designers as they explore alternative methods to structure
the hierarchies such that they map efficiently into the par-
allelism hierarchy supported by the targeted platform. The
key constraint in construction of a DH D is that the depth of
each candidate DH should equal the platform depth. In Sec-
tion 4.3, we illustrate how a DH can be constructed naturally
from understanding of the flowgraph structure of an applica-
tion. However, DHs can also be targeted by automated tools.
Exploration of such automated DH construction tools is a use-
ful topic for future work.

We have developed a systematic method, called multidi-
mensional DH mapping, to specify and map these DHs into
hierarchies of smaller graphs, which can be mapped to succes-
sively lower levels of the targeted platform hierarchy. Fig. 2
illustrates this approach for an MDSDF graph. The designer
can construct the DHs bottom-up or top-down. At each ith
level (i > 1) of the DH, one or more groups (clusters) of con-
nected actors are combined into units that are viewed as indi-
vidual supernodes from level (i−1). Groups of actors, includ-
ing supernodes, that are contained within such clusters are
then scheduled together by adapting techniques for SDF- and
MDSDF-based clustered graph analysis and scheduling [12,
3]. Use of these techniques to systematically derive produc-
tion and consumption tuples associated with actors at differ-
ent levels of the design hierarchy, as well as firing vectors,
which determine the relative rates at which different actors in

(a) The overall graph

(b) The level-1 graph (c) The level-2 graph

Fig. 2. An example of a DH for an MDSDF specification.

a cluster execute, is illustrated in Fig. 2.
The actors labeled with the prefixes intin and intout

in Fig. 2(c) represent interface input and interface output ac-
tors that are inserted based on the selected DH. These actors
represent interfaces to the enclosing supernodes and serve to
inject data from input edges and to output edges of the su-
pernodes, while providing “standalone” dataflow graph rep-
resentations for each level of the DH. Using these standalone
representations, buffer management and scheduling are per-
formed to ensure correct, consistent execution while mapping
the actors in each DH level Li into the corresponding ith level
of the targeted DSP platform.

The production and consumption rates associated with the
interface input and interface output actors are derived system-
atically using the cluster analysis techniques described above.
Presently, we compute these rates by hand, as our emphasis
in this work is on demonstrating the overall design method-
ology and its utility on a practical case study. However, the
process can readily be automated since it is based on formal
dataflow principles. Development of automated tool support
for the design methodology developed in this paper is a useful
direction for further work.

We omit further details of our multidimensional DH map-
ping approach in this paper due to space limitations. We
demonstrate the utility of the approach in the next section with
a case study of an important multidimensional signal process-
ing subsystem, image histogram computation.

4. CASE STUDY

To demonstrate our proposed method for mapping MDSDF
design hierarchies, we map an image processing application
based on integral histogram computation [13] onto a GPU tar-
get platform.

The integral histogram (IH) first maps pixels into a set
of non-overlapping ranges (“bins”), and then performs a 2-
D scan. Two scan orders, cross-weave and wavefront, are



explored in [14]. The cross-weave scan processes the image
in the first dimension (horizontal scan) followed by a scan
in the second dimension (vertical scan). Instead of applying
two passes, the wavefront scan propagates an anti-diagonal
wavefront calculation as it operates through a single scan.

In our experiments, we incorporate use of a tiled image
processing approach, where the image is separated into blocks
(tiles) of neighboring pixels. Tiled approaches can be useful
for GPU implementation to enhance parallel execution across
multiple threads [4]. In particular, we explore in this case
study a tiled integral histogram (TIH) approach for efficient
mapping into GPU implementations.

The overall input image size for IH computation is de-
noted as (Iw × Ih) pixels, and the number of histogram bins
is denoted as Nb. In TIH computation, an image is tiled as
an (Nw × Nh) rectangular arrangement of tiles, where each
tile has a (Tw × Th) rectangular arrangement of pixels. Here,
Tw = Iw/Nw, and Th = Ih/Nh. For each (Tw × Th) tile,
the IH is calculated independently. After computation of all
(Nw ×Nh) tile-level IHs, the results can be processed to de-
rive the image-level IH result.

We experiment with both tiled and non-tiled versions for
the cross-weave scan. We have observed that non-tiled con-
figurations of our wavefront-based IH actor perform with un-
acceptable latency on the targeted GPU, and therefore, we
employ only tiled configurations when using the wavefront
scan.

4.1. Actor Design

For GPU-based implementation of IH computation, we de-
sign three types of two-dimensional signal processing actors.
These actors are parameterized so that they can be stati-
cally or dynamically configured (e.g., using parameterized
dataflow [15] integration with MDSDF) for the desired type
of IH computation. This parameterization in conjunction with
our multidimensional DH mapping approach helps design-
ers to explore trade-offs involving different IH computation
strategies in conjunction with efficient parallel realizations of
these strategies.

Each of the three actors employed in our IH case study
has a single input port and a single output port. These actors
are described as follows.

First, the Bin-Check actor determines bin member-
ship for pixels. The actor executes pixel checks of an
image column for all bins with CONS = (1, Ih) and
PROD = (1, Ih × Nb). Here, and in the remainder of
this section, we denote the two-dimensional (MDSDF) pro-
duction and consumption rates of a given actor port as PROD

and CONS , respectively.
Second, the Intra-Tile-IH actor computes the IH, where

the size of the input tile is specified by the actor parameters
Tw (width) and Th (height), and the scan order is specified by
the scan order parameter of the actor. The supported settings
for the scan order parameter are:

Fig. 3. MDSDF graph for optionally-tiled IH computation.

Table 1. Application modes.
App

mode
Method

V2

SOP

V3

SOP

V4

SOP

APP-CWS cross-weave TIH CWS HS VS

APP-WFS wavefront TIH WFS WFS IDLE

APP-NT no tiling NT IDLE IDLE

• CWS: Compute the IH using a cross-weave scan with
tiling. The actor ports satisfy CONS = PROD =
(Tw, Th)

• WFS: Compute the IH using a wavefront scan with
tiling. The ports again satisfy CONS = PROD =
(Tw, Th)

• NT: Compute the IH using a cross-weave scan without
tiling — that is, calculate the IH for the input image
directly with CONS = PROD = (Tw, Th).

The Inter-Tile-IH actor performs accumulation among
tiles with a parameter, called the accumulation order param-
eter, to support different scan orders for performing the ac-
cumulation. In particular, horizontal, vertical, and wavefront
scans are used for accumulation order settings that are de-
noted HS, VS, and WFS, respectively. The actor ports of
this actor (regardless of the accumulation order setting) sat-
isfy CONS = PROD = (Iw, Ih). In addition, the accumu-
lation order parameter can be set to the value IDLE to bypass
any accumulation. While in the IDLE configuration, the ac-
tor performs no computation, and simply passes its input to
its output (through a simple pointer transfer to avoid memory
transfer overhead).

4.2. Application Graph

Given the actors developed in Section 4.1, one can implement
the IH application with the MDSDF graph shown in Fig. 3.
The desired scan orders and tiling settings can be achieved
by setting the actor parameter values appropriately. In the
experiments, we show performance comparisons among three
specific application modes, which are defined by the groups
of parameter settings shown in Table 1. Here, SOP stands for
“scan order parameter.”

4.3. DH Exploration

We customize the implementations for the different applica-
tion modes by examining their MDSDF application graph
representations separately, and deriving separate DHs to



(a) Grid level

(b) Block level for the Intra-Tile-IH actor.

Fig. 4. Hierarchical dataflow graphs for cross-weave TIH.

guide the application mapping processing. Taking the ap-
plication mode labeled APP-CWS as an example, we show
a DH in Fig. 4 that can be used to derive an efficient imple-
mentation on the targeted GPU. In the grid level of target
platform parallelism, which is illustrated in Fig. 4(a), the 2-D
indices shown above the actors represent the corresponding
firing vectors that are derived from the DH (see Section 3).
Each actor in the top level of the DH is mapped to a kernel
function in the GPU, and the firing vector is used to configure
the grid size.

Fig. 4(b) depicts the second level (i.e., block level) for the
Intra-Tile-IH actor. Fig. 4(b) shows a hierarchical dataflow
subgraph that specifies the internal functionality for the Intra-
Tile-IH actor. To avoid non-coalesced memory access, the in-
put data is loaded and transposed in the shared memory by the
G-to-S Loader actor before the horizontal scan (G-to-S stands
for “global-to-shared”). After the scan for each data row, the
results are transferred from the shared memory back to the
global memory by the S-to-G (“shared to global”) Loader ac-
tor. Finally, a vertical scan is performed to obtain the IH for
the input tile.

4.4. Experiments

In our experiments, an NVIDIA GTX260 GPU and an Intel
Xeon 3GHz CPU are used. We compare the three different
application modes in Table 1. Table 2 depicts the grid and
block sizes for GPU kernels. Performance is compared for
four image sizes (Iw × Ih): 32x32, 64x64, 256x256, and
512x512. Based on the number of GPU threads employed
for each kernel, we choose a tile size of (32×16) in the APP-
CWS mode for all image sizes. For the APP-WFS mode, tile
sizes of (4×4), (8×8), (16×8), and (32×16) are chosen for
successively larger image sizes. We evaluate the frame pro-
cessing time, including the time required for memory transfer
from the host to the device (GPU) and the processing time on
the device. We do not include the time for memory transfer
from the device back to the host because many applications

Table 2. Grid sizes (upper) and block sizes (lower) derived
from DH in our experiments.

mode V2 kernel V3 kernel V4 kernel

APP-CWS
(Nw, NhNb)

(Tw, 1)

(1, Nb)

(Tw, Th)

(1, Nb)

(Tw, Th)

APP-WFS
(1, Nb)

(Nw, Nh)

(1, Nb)

(Tw, Th)
N/A

APP-NT
(1, Nb)

(Iw, 1)
N/A N/A

that employ IH can be implemented on the GPU efficiently
without need for data transfer back to the CPU.

Fig. 5 shows the frame rates (i.e., 1/τ , where τ repre-
sents the average time in seconds required to process a single
frame) for various bin sizes ranging from 16 to 1024. From
the experimental results, we see that the GPU implementation
of the IH consistently outperforms the CPU implementation,
and that the speedup gains are approximately 35X for image
sizes 32x32 and 64x64, 67X for image size 256x256, and 75X
for image size 512x512.

Among the different GPU implementations for the 32x32
image size case, IH without tiling (APP-NT) provides the
best performance since it avoids overhead from tiling. In
the 64x64 case, however, APP-NT suffers from reduced inter-
thread parallelism due to the large amount of shared memory
required. The best performance is achieved in the APP-WFS
mode, as this mode provides more threads in the V2 kernel
and less overhead due to tiling (V4 is bypassed). With im-
age sizes of 256x256 and 512x512, we must use tiling due
to the size limitations of the shared memory. Compared to
APP-WFS, APP-CWS can offer better frame rates by provid-
ing more effective parallel execution on the target platform.

In summary, the best application mode for IH calculation
depends on the image size, and thus parameterized MDSDF
application modeling in conjunction with our multidimen-
sional DH mapping approach are useful design methods to
map IH computations systematically onto the targeted GPU
platform. Such a systematic mapping approach leads to de-
signs that can be mapped more efficiently, and that are more
portable, and easier to maintain and extend.

5. CONCLUSION

In this paper, we have developed a novel design method,
building on the MDSDF model of computation, for hierar-
chical exploitation of parallelism in multidimensional signal
processing applications. This method allows designers to
explore alternative implementations in a manner that sepa-
rates platform-specific parallel processing optimization from
the behavioral specification, thereby enhancing portability
and trade-off exploration. More specifically, our multidi-
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Fig. 5. Performance comparisons for different image sizes.

mensional design hierarchy model provides an intermediate
model that provides a formal linkage between hierarchical
layers of parallelism in the target platform and correspond-
ing subsystems of the application that will be mapped onto
these layers. In our approach, graph clustering and MDSDF
dataflow analysis are applied in novel ways to map applica-
tions to target platforms that employ parallelism at multiple
levels. Experimental results show that fast GPU implemen-
tations can be derived from the approach, as well as efficient
trade-off analysis and optimization across different applica-
tion modes.
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