
Power Characterization of a Gbit/s

FPGA Convolutional LDPC Decoder

by

Si-Yun Li

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2012

c© Si-Yun Li 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In this thesis, we present an FPGA implementation of parallel-node low-density-parity-

check convolutional-code (PN-LDPC-CC) encoder and decoder. A 2.4 Gbit/s rate-1/2

(3, 6) PN-LDPC-CC encoder and decoder were implemented on an Altera development

and education board (DE4). Detailed power measurements of the FPGA board for various

configurations of the design have been conducted to characterize the power consumption

of the decoder module. For a Eb/N0 of 5 dB, the decoder with 9 processor cores (pipelined

decoder iteration stages) has a bit-error-rate performance of 10−10 and achieves an energy-

per-coded-bit of 1.683 nJ based on raw power measurement results. The increase in Eb/N0

can effectively reduce the decoder power and energy-per-coded-bit for configurations with

5 or more processor cores for Eb/N0 < 5 dB. The incremental decoder power cost and

incremental energy-per-coded-bit also hold a linearly decreasing trend for each additional

processor core. Additional experiments are performed to account for the effect of the

efficiency of the DC/DC converter circuitry on the raw power measurement data. Further

experiments have also been conducted to quantify the effect of clipping thresholds, bit

width for each processor core on bit-error-rate (BER) performance, power consumption,

logic utilization of the decoder. A “6Core” decoder with growing bit-width log-likelihood

ratios (LLRs) has been found to have a BER performance near that of a “6Core” 6-bit

decoder while consuming similar power, and logic utilization to that of a 5-bit “6Core”

decoder.

iii

Acknowledgements

I would like to thank my supervisors Dr. Vincent Gaudet and Dr. Duncan Elliott for

their guidance, support, funding, and their confidence in me and my work.

Many thanks to Dr. Manoj Sachdev and Dr. Siddharth Garg for taking the time to

read my thesis as well as allowing me to borrow the DE4 board from Dr. Sachdev’s group.

Thanks to Dr. Chris Backhouse for lending me the extra equipments for power mea-

surements.

I would also like to thank Dr. Zhengang Chen for developing the PN-LDPC-CC codes

and Dr. Tyler Brandon for providing HDL code for the encoder and decoder modules, and

for making my project possible.

A big thank you to Philip Marshall, Russell Dodd, Brendan Crowley and Stephen

Holmes for their support and guidance for LDPC-related problems and discussions.

Special thanks to Logan Gunthrope and Gary Block for their extensive support in HDL,

LDPC-CC, Tcl and FPGA-related matters.

To Danny Tsuei, thank you for showing me how to make use of the JTAG-MM interface

with the DE4 board, which greatly sped up the data-gathering portion of my work.

Thank you to Karl Jensen for his extensive support with LaTeX-related problems.

Special thanks to Altera for the donation of the DE4 board.

Lastly, I would like to thank University of Waterloo for the QEIIGSST scholarship, and

NSERC and PetroCanada for funding.

iv

Dedication

This is dedicated to my parents and friends.

v

Table of Contents

List of Tables x

List of Figures xiii

Nomenclature xviii

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Organization . 4

2 Background 5

2.1 LDPC Definitions . 5

2.2 LDPC Decoding . 7

2.3 LDPC-CC Definitions . 10

2.4 State-of-the-art LDPC Decoders . 12

2.4.1 ASIC-based LDPC Decoders . 12

2.4.2 FPGA-based LDPC Decoders . 13

vi

3 FPGA Implementation 18

3.1 PN-LPDC-CC . 18

3.2 PN-LDPC-CC Encoder . 20

3.2.1 Gate-Swapping . 22

3.2.2 Clock-gating . 24

3.3 PN-LDPC-CC Decoder . 24

3.3.1 Truncated Min-Sum Check Sum Operation 27

3.3.2 Removal of Reset Circuitry in Check-Node 27

3.3.3 Removal of Saturation Bit . 27

3.3.4 Clock-gated Registers . 28

3.4 System Design . 28

4 Power Measurement 33

4.1 Available Power Measurement Methods . 33

4.2 Board Power Measurement Method . 37

4.3 DC/DC Converter Efficiency . 40

4.3.1 Estimation Based on Data Sheet 40

4.3.2 Estimation Based on Experimental Results 42

4.4 Chapter Summary . 47

vii

5 Measurement Results and Discussion 48

5.1 BER Performance . 48

5.2 Power Measurement Results . 49

5.3 Logic Utilization . 56

5.4 Chapter Summary . 59

6 Power-Driven Architectural Exploration 61

6.1 Clipping Threshold versus BER Performance 62

6.2 Rate of LLR Saturation . 65

6.3 Results and Analysis . 67

7 Conclusions 74

7.1 Summary and Contribution . 74

7.2 Future Research . 76

7.3 Publication Arising out of Thesis . 77

References 78

APPENDICES 86

A A Lean Host-FPGA Interface Using JTAG-MM 87

A.1 Checklist . 88

A.2 Detailed steps for JTAG-MM . 88

viii

A.2.1 Define an SOPC system . 88

A.2.2 Simulation Mode . 93

A.2.3 Hardware Mode . 94

B Verilog Code for device-under-test 96

C Tcl Scripts 99

C.1 Tcl Script for Simulation Mode . 99

C.2 Tcl Script for Hardware Mode . 101

ix

List of Tables

2.1 Summary of ASIC-based Implementation Results 14

2.2 Summary of FPGA Implementation Results 17

4.1 Comparison of average decoder power results from various methods for var-

ious numbers of decoder cores for the Ts = 192, ρ = 16 rate-1/2 (3, 6)

PN-LDPC-CC code with 4-bit LLRs at Eb/N0 = 2 dB running at a clock

frequency of 75 MHz on Altera DE4. Values from columns labeled “Power-

Play”, “PBoard,raw”, “PBoard,mapped” are based on configurations without the

Nios II power measurement unit. Three sets of measurements are taken at

different time instants for each calculation of PBoard value. 35

4.2 Comparison of decoder power results from various methods for various num-

bers of decoder cores for the Ts = 192, ρ = 16 rate-1/2 (3, 6) PN-LDPC-CC

code with 4-bit LLRs at Eb/N0 = 2 dB running at a clock frequency of 75

MHz on Altera DE4. All measurements are performed on the configurations

with the Nios II unit. 37

x

4.3 Summary of measured board power result, deduced output current and effi-

ciency for each LTM4601 under various conditions. The FPGA core power is

calculated by subtracting the measured power for the base case with having

only PLL control logic on the FPGA core from the measured board power

for the cases with the full design on the FPGA core. 43

4.4 Calculated equivalent resistance for the FPGA core power listed in Table 4.3

with the assumption that VV CC0P9 remains constant at 0.9 V 43

4.5 Comparison of mapped power measurement values with estimated values

from PowerPlay of decoder power of different number of processor cores for

the Ts = 192, ρ = 16 rate-1/2 (3, 6) PN-LDPC-CC code with 4-bit LLRs at

Eb/N0 = 2 dB running at a clock frequency of 75 MHz on Altera DE4 . . 46

4.6 Measured input voltage for FPGA chip at various parallel resistances . . . 47

5.1 Maximum achievable clock frequency and maximum coded throughput for

configurations with 1 to 10 decoder processor cores based on reported val-

ues for “slow 900mV 85C model” on Quartus II using default compilation

options for an assigned clock constraint of 75 MHz 51

6.1 Decoder power measurements and energy-per-coded-bit, for PN-LDPC-CC

decoder with 6 cores with various bit widths taken at Eb/N0 of 5 dB at

various clipping thresholds. The target number of error of 100 is used for

BER data gathering for all cases. Energy-per-coded-bit, E/bit, is calculated

using Equation (3.1). Results with subscript “raw” are based on raw power

measurement. Results with subscript “mapped” are based on the mapped

power numbers using the results in Section 4.3.2. 69

xi

6.2 Decoder power measurements and energy-per-coded-bit, for PN-LDPC-CC

decoder with 6 cores with various bit widths taken at Eb/N0 of 6 dB at

various clipping thresholds. The target number of error of 5 is used for

BER data gathering for all cases. Energy-per-coded-bit, E/bit, is calculated

using Equation (3.1). Results with subscript “raw” are based on raw power

measurement. Results with subscript “mapped” are based on the mapped

power numbers using the results in Section 4.3.2. 71

xii

List of Figures

2.1 Example of H matrix for a rate-1/2 LDPC code with n = 16, k = 8 6

2.2 Tanner graph representation of the H matrix in Figure 2.1. Variable nodes

are shown on top, and check nodes at the bottom 7

2.3 Basic Communication System. Channel modulator and demodulator are

not shown in the picture. 7

2.4 H matrix for LDPC-CC. Note the diagonal band structure of non-zero ele-

ments. 11

3.1 Sub-matrice HT
i′ (t
′) for PN-LDPC-CC . 19

3.2 A high-level block diagram of the implemented PN-LDPC-CC encoder. An

example of a single encoder node is shown in Figure 3.5. The one-hot en-

coding of the phase signal is shown in Figure 3.3. Figure 3.4 depicts the

parity output circuitry. 21

3.3 One-hot encoding of the phase signal for the Ts = 192, ρ = 16, rate-1/2

(3,6) PN-LDPC-CC, group period T ′s = 12. [1] 21

3.4 Parity output circuitry for the Ts = 192, ρ = 16, rate-1/2 (3,6) PN-LDPC-

CC, group period T ′s = 12. [1] . 22

xiii

3.5 A single encoder node from the implemented architecture in this thesis for

the Ts = 192, ρ = 16, rate-1/2 (3,6) PN-LDPC-CC. [1] 23

3.6 A single decoder processor. [1] . 26

3.7 An example of a clock-gated register [1] 26

3.8 LP4 block diagram. Counter-based control logics are not shown. 30

3.9 Interaction between LP4 core on the FPGA and computer Tcl terminal . . 31

4.1 Decoder power obtained on configurations of 1 to 5 cores with Nios II unit

incorporated using board power measurement method with mapping step

and Nios II measurement unit . 38

4.2 Power Measurement Set-up . 38

4.3 Efficiency versus Load Current with 12-V Input for LTM4601 Regulator.

(Taken from the LTM4601 data sheet [2]) 42

4.4 Schematic for DC/DC efficiency experiment 44

4.5 Input and output power measured for the DC/DC converter circuitry on the

Altera DE4 using the setup denoted in Figure 4.4 45

5.1 BER for various numbers of decoder cores for the Ts = 192, ρ = 16 rate-1/2

(3, 6) PN-LDPC-CC code with 4-bit LLRs at various Eb/N0 obtained from

measurements on DE4 based a target number of errors of 1000 based on a

BPSK-based AWGN channel. 50

xiv

5.2 Average measured decoder power and energy-per-coded-bit at various Eb/N0

for various numbers of decoder cores on DE4 with 4-bit LLRs at a 75MHz

clock with coded throughput of 2.4 Gbit/s for the Ts = 192, ρ = 16, rate-1/2

(3,6) PN-LDPC-CC code based on three sets of measurements for each data

point. 53

5.3 Average measured decoder power and energy-per-coded-bit at various Eb/N0

for various numbers of decoder cores on DE4 with 4-bit LLRs at a 75MHz

clock with coded throughput of 2.4 Gbit/s for the Ts = 192, ρ = 16, rate-1/2

(3,6) PN-LDPC-CC code based on three sets of measurements for each data

point. 54

5.4 Incremental measured decoder power and energy-per-coded-bit for every dB

of increase in Eb/N0 for various numbers of decoder cores on DE4 with 4-

bit LLRs at a 75MHz clock with coded throughput of 2.4 Gbit/s for the

Ts = 192, ρ = 16, rate-1/2 (3,6) PN-LDPC-CC code. 55

5.5 Incremental measured decoder power and energy-per-coded-bit for each ad-

ditional core at various Eb/N0 on DE4 with 4-bit LLRs at a 75MHz clock

with coded throughput of 2.4 Gbit/s for the Ts = 192, ρ = 16, rate-1/2 (3,6)

PN-LDPC-CC code. 57

5.6 Logic utilization and incremental logic utilization for various configurations

with different numbers of decoder processor cores 58

5.7 Incremental logic utilization for various configurations with 8, 9, 10 decoder

processor cores . 59

xv

6.1 Information BER at Eb/N0 of 2 dB to 8 dB for configurations with 5 to

8 decoder cores on DE4 with 3-bit LLRs at a 75MHz clock with coded

throughput of 2.4 Gbit/s for the Ts = 192, ρ = 16, rate-1/2 (3,6) PN-

LDPC-CC code using clipping thresholds from 1 to 2 during quantization. 63

6.2 Information BER at Eb/N0 of 2 dB to 5.5 dB for configurations with 5

to 8 decoder cores on DE4 with 4-bit LLRs at a 75MHz clock with coded

throughput of 2.4 Gbit/s for the Ts = 192, ρ = 16, rate-1/2 (3,6) PN-LDPC-

CC code using clipping thresholds from 0.8 to 2 during quantization. . . . 64

6.3 Rate of Saturation Events for “6Core” decoder with constant 4-bit, 5-bit,

6-bit LLRs at Eb/N0 of 5, 6 dB . 66

6.4 Information BER at Eb/N0 of 2 dB to 8 dB for configurations with 6 decoder

cores on DE4 with various bit-widths for LLRs at a 75MHz clock with coded

throughput of 2.4 Gbit/s for the Ts = 192, ρ = 16, rate-1/2 (3,6) PN-LDPC-

CC code using clipping thresholds from 0.8 to 2 during quantization. The

5-dB curves are based on a target number of errors of 100, while the 6-dB

curves are based on a target number of errors of 5. 68

6.5 Decoder power, energy-per-coded-bit (E/bit), Logic Utilization, BER nor-

malized to that of the “445566” case. The decoder power and energy-per-

coded-bit values are based on the “mapped” values from the DC/DC con-

verter efficiency experiment. 70

6.6 Decoder power for 4-bit configurations and “6Core” configurations with 4-

bit, 5-bit, 6-bit, and “445566” at Eb/N0 of 5 and 6 dB versus sum of core

bits, where sum of core bits are defined as the sum of LLR bit width used

in each processor core for each configuration. 72

xvi

A.1 Create a new SOPC system . 89

A.2 Clock settings for SOPC . 89

A.3 Configure JTAG to Avalon Master Bridge 91

A.4 Connect components for SOPC system. 91

A.5 HDL code for connecting SOPC system 92

A.6 Modelsim message after loading the design 93

A.7 Returned value on System Console after a read command 94

A.8 Returned value on System Console after a write command 94

xvii

Nomenclature

ASIC Application-Specific Integrated Circuit

AWGN Additive White Gaussian Noise

BER Bit-Error-Rate

BPSK Binary Phase-Shift Keying

FIFO First-In First-Out

FPGA Field-Programmable Gate Array

LDPC Low-Density Parity-Check

LDPC-BC LDPC Block Codes

LDPC-CC LDPC Convolutional Codes

LFSR Linear Feedback Shift Register

LLR Log-Likelihood Ratio

xviii

PN-LDPC-CC Paralllel-Node Low-Density Parity-Check Convolutional-Code

Tcl Tool Command Language

xix

H Parity-check matrix (PCM)

Eb/N0 Energy-per-bit divided by spectral noise density

ρ node-parallelization factor

Ts code period

T ′s group period, Ts/ρ

xx

Chapter 1

Introduction

1.1 Motivation

The goal of forward error control is to minimize the net error rate of a communications

channel and to improve the overall efficiency of data transmission over noisy channels by

adding redundancy to data to avoid complete data retransmission. Low-density parity-

check (LDPC) codes, in particular, are a class of linear error correcting codes which were

first proposed by Gallager in 1962 [3]. LDPC block codes (LDPC-BC) are characterized

by a seemingly random parity-check matrix, known as the H matrix, with mostly 0’s

and a small fixed number of 1’s. However, despite its high performance, the decoding of

LDPC codes was impractical to implement due to limitations imposed by the processing

capabilities available at the time.

After being forgotten, LDPC codes were rediscovered by MacKay and Neal [4]. Through

the use of a probabilistic decoding algorithm, LDPC codes were proven to perform substan-

tially better than standard convolutional codes could, and their performance approaches

1

Shannon’s theoretical channel capacity limit [5]. Since then, LDPC codes have become

one of the most intensive research areas in coding theory. There has been a lot of research

done to analyze the behaviour and performance of LDPC codes over different channels (e.g.

binary erasure channel, binary symmetric channel, additive white Gaussian noise channel)

and under various constraints. Various approaches have been taken to design and construct

good LDPC codes to achieve channel capacity-approaching performance [6]. LDPC codes

have since been widely adopted in numerous digital communications standards, such as the

10GBase-T Ethernet (IEEE 802.3an), wireless-N network standard (IEEE 802.11n), IEEE

802.16e, DVB-S2, an enhanced specification for digital video broadcasting, and wireless

personal area network (802.15.3c). Numerous designs of LDPC block code decoders have

been shown in recent literature to achieve a decoding throughput in the range of multi-

Gb/s through optimizations in decoding algorithms, architecture, and code construction

[7, 8, 9, 10, 11, 12, 13, 14].

Turbo codes are another family of popular error-correction codes with capacity-approaching

performance, which were first introduced in 1993 [15]. In parallel with the development of

LDPC codes, there has also been a lot of active research done in the area of turbo codes.

They have been incorporated in 3G and 4G mobile telephony standards such as HSPA,

EV-DO and LTE, as well as in other standards, such as WIMAX standard (IEEE 802.16),

and DVB-RCS, a specification for interactive satellite communication system. Numerous

turbo decoders with Gbit/s performance have been reported in literature [16, 17, 18, 19].

LDPC convolutional codes (LDPC-CC), on the other hand, were first proposed in [20] as

a convolutional variant of the original LDPC codes, and past studies have shown that well-

designed LDPC-CCs have the same capacity-approaching BER performance as LDPC-BCs

[20, 21]. The flexibility to handle frames of arbitrary lengths, a characteristic shared with

convolutional codes, makes LDPC-CC a suitable candidate for practical implementations

2

of communication scenarios, such as video streaming and packet-switching networking.

LDPC-CCs have been incorporated in the next-generation High Definition Power Line

Communication (HD-PLC) specification [22], and it has also been proposed for use in

Global Navigation Satellite System (GNSS) along with its block-code variant [23]. The

implementation of LDPC-CC encoding has also been shown to be simpler than its block-

oriented counterpart [24, 25]. Recent literature on LDCC-CC-based decoders has also

demonstrated the ability to achieve Gbit/s decoding throughput [26, 27, 28].

Past implementations of LDPC decoders have mostly used Field Programmable Gate

Arrays (FPGA) as an intermediate tool to prototype their designs instead of targeting it as

the final platform [29, 30, 31], because of its relatively slower clock speed, larger area and

higher power consumption compared to full-custom application-specific integrated-circuit

(ASIC) implementation. However, FPGA does provide much faster turnaround time than

ASIC. Therefore, it would be interesting to consider the feasibility of using state-of-the-art

FPGAs as final design platform. Recent literature on LDPC decoders implemented on

FPGAs has shown improvements in decoding throughput and some of them have even

been shown to achieve throughput in the range of several Gigabits per second (Gbit/s)

[32, 33, 31, 34]. However, the lack of reported power measurement figures from existing

FPGA implementations of LDPC decoder designs has made it difficult to analyze the gap in

power consumption between FPGA implementations and ASIC implementations of LDPC

decoders, and to explore FPGA-specific architectural tradeoffs.

This thesis presents an FPGA implementation of a parallel-node low-density-parity-

check-convolutional-code (PN-LDPC-CC) decoder and a set of detailed power measurement

data conducted using a simple power measurement set-up. This work verifies the ability

of an FPGA-based PN-LDPC-CC decoder to achieve decoding throughput in the Gbit/s

range while consuming a reasonable amount of power, which demonstrates the feasibility

3

of using FPGA as a final design platform. Architectural tradeoffs of the PN-LDPC-CCs

are further investigated, and further experiments have also been conducted to quantify the

effect of clipping thresholds, bit width for each processor core on BER performance, power

consumption, logic utilization of the decoder. A “6Core” decoder with growing bit-width

LLRs has been found to have a BER performance near that of a “6Core” 6-bit decoder

while consuming similar power, and logic utilization to that of a 5-bit “6Core” decoder.

1.2 Thesis Organization

This thesis is organized as follows. Chapter 2 includes the background on LDPC-BC as well

as LDPC-CC, and the gap between FPGA and ASIC implementation, and a summary of

performance results from the existing ASIC and FPGA LDPC decoders. Chapter 3 presents

a background on the PN-LDPC-CC encoder and decoder architectures as well as the other

system modules implemented in our experiment. Chapter 4 provides a description of the

power measurement method employed for further power characterization of our system.

Chapter 5 presents the measurement results of our FPGA implementation and the resulting

discussion. Chapter 6 presents the results from a performance optimization of the decoder

by varying the clipping threshold, precision of each decoder processor core. Conclusions,

contributions, and further research directions are presented in Chapter 7.

4

Chapter 2

Background

This chapter first presents a description on LDPC, decoding of LDPC and LDPC-CC

codes respectively in Section 2.1 to 2.3. Then a general background on the gap between

FPGA and ASIC implementation is outlined in Section 2.4 along with a summary of the

performance results from existing ASIC and FPGA implementations of LDPC decoders.

2.1 LDPC Definitions

Low-density parity-check (LDPC) codes are a class of linear error-control codes, which

were first introduced in 1962 [3]. An LDPC code is a linear block code of rate R = k / n,

characterized by a sparse (n - k) by n parity-check matrix, H. The length of the code

is denoted by n, the number of message bits is denoted by k, and (n − k) is the number

of the parity (redundant) bits in the codeword. An example for a rate-1/2 LDPC code

with n = 16 and k = 8 is shown in Figure 2.1. All the valid codewords x of an LDPC

code must satisfy the constraint HxT = 0. An LDPC code can also be represented by

5

a bipartite graph, known as the Tanner Graph [35]. The corresponding Tanner Graph for

the H matrix in Figure 2.1 is depicted in Figure 2.2. Each codeword bit corresponds to a

variable node, labeled vi, and each parity bit corresponds to a check node, labeled ci. Each

entry hij of 1 in the H matrix corresponds directly to an edge (or connection) between

variable node i and check node j in its graphical representation.

The H matrix of a regular LDPC code contains a fixed number of of 1’s in each column,

denoted by dv, and a fixed number of 1’s in each row, denoted by dc. In other words, for

a regular LDPC code, the number of edges connected to a check node and the number of

edges connected to a variable node are constant. An irregular LDPC, on the other hand,

has nodes of varying degrees defined by a degree distribution. Although LDPC codes are

block codes, there also exist LDPC convolutional codes (LDPC-CC), which are further

described in Section 2.3.

H =



1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0

0 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0

0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 1

0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 0

0 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0

1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1

0 1 0 0 0 0 1 1 0 0 0 1 0 0 1 1

1 0 1 0 0 0 0 1 0 0 1 1 0 1 0 0


Figure 2.1: Example of H matrix for a rate-1/2 LDPC code with n = 16, k = 8

6

Figure 2.2: Tanner graph representation of the H matrix in Figure 2.1. Variable nodes are

shown on top, and check nodes at the bottom

Figure 2.3: Basic Communication System. Channel modulator and demodulator are not shown

in the picture.

2.2 LDPC Decoding

In a basic communication system, as depicted in Figure 2.3, an information message ũ is

encoded by the channel encoder to a coded sequence x̃ with added redundancy to provide

error protection. The coded sequence x̃ is then modulated by the modulator to allow

transmission through the channel, where it gets distorted by noise. At the receiving side,

the received signal is demodulated by the demodulator. The demodulated sequence ỹ then

goes through the channel decoder, where it gets decoded into received encoded message,

ṽ, and sent to destination.

For an LDPC decoder, the received channel messages are expressed in the form of

7

log-likelihood-ratios (LLRs), which represent the scaled and quantized channel samples of

original encoded data with added noise scaled according to a Eb/N0, the ratio of the energy-

per-transmitted bit versus the spectral noise density. An LLR is defined by Equation 2.1,

where P (xi = 0/1|yi) is the probability that xi is zero or one respectively knowing the value

of yi, for an additive white Gaussian noise (AWGN) channel based on binary phase-shift

keying (BPSK) modulation scheme. Equation (2.4) describes the operation at the variable

node that computes the final decoder outputs.

LLRi(y) = ln
P (xi = 0|yi)
P (xi = 1|yi)

(2.1)

LDPC codes can be iteratively decoded using the Sum-Product Algorithm (SPA),

which is a general-purpose algorithm for probabilistic inference based on factor graphs

[36]. The variable-node and check-node operations of SPA can be generalized in Equa-

tion (2.2) and (2.3), where L0
i represents the initial received LLR at variable node i, λi→j

represents an LLR from variable node i to check node j, Lj→i represents an LLR from check

node j to variable node i, dc denotes degree of the current check node, and dv denotes the

degree of the current variable node.

λi→j = L0
i +

dv∑
k=1
k 6=j

Lk→i (2.2)

Lj→i = 2 tanh−1

 dc∏
k=1
k 6=i

tanh

(
λk→j

2

) (2.3)

λni→j = L0
i +

dv∑
k=1

Lk→i (2.4)

8

Let yi denote the received message at variable node i, i ∈ {1, dv}, from an AWGN

channel. The SPA decoding procedure can be described as the following steps, where

the extrinsic principle of excluding self-message is applied at both the check-node and

variable-node operations:

1. Set n = 0. Initialize LLR Lni as 2
σ2
N
yi for each variable node i, where σN is the noise

variance and σ2
N = N0

2
, where N0 is the noise power spectral density.

2. Variable node LLRs are passed along all edges to the connected check nodes as

inputs:λi→j = Lni , where j ∈ {1, dc}.

3. At the check node, the outgoing LLR sent from the current check node j along the

edge to each connected variable node i is computed using Equation (2.3).

4. At the variable node, the outgoing LLR sent from the current variable node i to each

connected check node j is computed using Equation (2.2).

5. The result for the current decoding iteration n is λni→j, the sum of the result of the

variable node computations, computed using the Equation (2.4).

6. If λni→j satisfies the constraint λni→j · HT = 0 or a fixed number of iterations are

reached, terminate decoding and output the current result. If neither condition is

met, set n = n + 1, return to Step 2 to start the next iteration.

However, while being capable of achieving excellent bit-error-rate (BER) performance,

the implementation of the SPA has been shown to be rather demanding of hardware re-

sources, because it is an iterative numerically intensive algorithm that performs arithmetic

operations on real-valued information of large blocks of data. However, the SPA is an inher-

ently parallel algorithm. A good alternative to SPA is the Min-Sum algorithm [37, 38, 39],

9

which is an approximation of the SPA that offers reduced complexity. The simplification of

the SPA is achieved by approximating the check-node operation depicted in Equation 2.3

with the operation described in Equation 2.5 instead, where the magnitude of the outgoing

message on edge i is the minimum of the incoming message magnitudes excluding the one

from edge i, and its sign is the XOR of the signs of the incoming messages except the one

from edge i.

its inherent parallelism,

Lj→i =

 dc∏
k=1
k 6=i

sign (λk→j)

× min
k=1,...,dc
k 6=i

|λk→j| (2.5)

This approximation eliminates the use of LUTs to implementation tanh calculations,

which in turn reduces the complexity in hardware implementation. However, a loss of

up to 1.03 dB is observed in decoding performance after the application of the min-sum

approximation [40]. There also exists a number of modifications proposed for the original

min-sum approximation, such as the offset min-sum algorithm and the normalized min-

sum algorithm, which both perform very close to the ideal sum-product algorithm or even

outperform that in some cases, but have hardware complexity closer to that of min-sum

algorithm [39].

2.3 LDPC-CC Definitions

LDPC convolutional codes (LDPC-CC) were first proposed in [20]. An LDPC-CC bears the

same characteristics as conventional convolutional codes, where a current code bit depends

on present and previous information bits only. An LDPC-CC can be characterized by

10

HT =


... ... 0

HT
ms (t) ··· HT

0 (t)

...
...

...
HT
ms (t+ms) ··· HT

0 (t+ms)

0
...

...
...


Figure 2.4: H matrix for LDPC-CC. Note the diagonal band structure of non-zero elements.

a parity-check matrix, H. However, unlike LDPC block codes (LDPC-BC), which have

finite-length parity-check matrices, the parity-check matrix for LDPC-CC in infinite in

length. Like LDPC-BC, all of the valid codewords w of an LDPC-CC must satisfy the

condition, where wHT = 0. The transposed form of the H matrix for an LDPC-CC with

the rate R = b / c (b < c) is shown in Figure 2.4, where the HT
i (t) (i = 0, 1, ...,ms)

represents the periodic time-varying sub-matrices of size c × (c − b) and the parameter

ms is called the code memory. For a finite code period Ts, H
T
i = HT

i (t + Ts) for all

i and t. If Ts = 1, the LDPC-CC is considered time-invariant, else time-varying. The

overall constraint length of the rate -b / c LDPC-CC is defined as ν = c × (ms + 1).

For regular LDPC-CCs, both the column weight (K) and the row weight (J) of HT are

constant, and such a code can be referred to as an (ms, J,K) LDPC- CC code. For a

(ms, J,K) code, the column weight (K) defines the number of LLRs entering check-node

from the variable-node, while the row weight (J) defines the number of LLRs entering each

variable-node from the check-nodes. While the LDPC decoding algorithms described in

Section 2.2 still apply for LDPC-CC, the iterations are realized as pipelined “processor

cores”. Additional parallelism can be achieved through design of the LDPC-CC code to

allow the encoding and decoding of ρ information bits per cycle, as demonstrated in [26],

where ρ is defined as the parallelization ratio.

11

2.4 State-of-the-art LDPC Decoders

An LDPC decoder can be implemented in a digital Application-Specific Integrated Circuit

(ASIC) or Field-Programmable Gate Array (FPGA). There have also been analog imple-

mentations of LDPC decoders [41, 42]. Digital ASIC implementation is usually preferred as

it provides higher clock frequency, smaller area and lower power consumption than FPGA

implementation. In a recent paper, Kuon and Rose presented experimental measurements

of area, speed, and power consumption to analyze the gap between ASICs and FPGAs

[43]. They suggest that by making use of the available hard heterogeneous blocks (such as

memory, DSP blocks) on FPGAs, the resulting gap in area can be narrowed, as can the gap

in power consumption. However, they also suggest that the possibility of narrowing the

gap in clock speed performance would depend largely on how well the designs are tailored

to the functionality of the DSP block.

The performance of several state-of-the-art ASIC-based LDPC decoders that is reviewed

in Section 2.4.1. Preference is given to designs with reported power measurements to

demonstrate the trend of power consumptions of ASIC-based LDPC decoders. A summary

of several Gbit/s FPGA decoders is also provided in Section 2.4.2.

2.4.1 ASIC-based LDPC Decoders

An LDPC decoder that supports four code rates of IEEE 802.15.3c applications is pre-

sented in [13]. The proposed decoder utilizes row-based layered scheduling, and achieves

a maximum throughput of 5.79 Gbit/s at a clock frequency of 197 MHz. Darabiha et al.

introduced a highly-parallel decoder architecture with low routing overhead and proposed

a method to detect early convergence of iterative decoder to allow reduction in dynamic

power [9]. A bit-serial fully-parallel LDPC decoder employing the proposed architecture

12

and optimization is reported to achieve a total throughput of 3.3 Gbit/s. A Reed-Solomon-

based LDPC (RS-LDPC) decoder suitable for 10GBASE-T Ethernet is presented in [14].

The resulting decoder delivers a throughput of 47.7 Gbit/s at a clock frequency of 700

MHz, and is capable of achieving a BER of 10−14 at SNR of 5.5 dB with the use of a

post-processing algorithm. to Lastly, an LDPC-CC decoder fabricated in a 90-nm process

is reported to achieve 2.37 Gbit/s at a clock frequency of 198 MHz [28]. The proposed de-

coder employs the on-demand variable node activation scheduling to improve convergence

speed, and a node-level optimization to increase decoding throughput. A summary of the

results from the aforementioned ASIC-based LDPC decoders is included in Table 2.1.

2.4.2 FPGA-based LDPC Decoders

Darabiha et al. introduced a bit-serial decoding scheme that addresses the issue in in-

terconnect complexity in fully parallel implementations of LDPC decoders, along with

a simplified check node architecture [29]. The reduction in interconnect complexity is

achieved by allowing the multi-bit messages to be communicated between variable node

and check node over single wires. The viability of both ideas is demonstrated on a fully

parallel FPGA implementation of a (480, 355) Reed-Solomon-based LDPC decoder, which

has been shown to achieve a decoding throughput of 650 Mbps at a clock frequency of

61 MHz. A fully parallel LDPC decoder based on revised stochastic decoding was pre-

sented by Tehrani et al. [30]. The method of noise-depending-scaling (NDS) and the use

of edge memories (EM) have been applied to the original stochastic decoding scheme [44].

The resulting decoder has been shown to achieve a decoding throughput of 706 Mbps at

a signal-to-noise ratio of 3 dB. In addition to the methods of NDS and of EM, internal

memories (IMs) are used for each subnode in the high-degree variable nodes to reduce the

13

T
a
b
le

2
.1
:

S
u

m
m

a
ry

o
f

A
S

IC
-b

a
se

d
Im

p
le

m
en

ta
ti

o
n

R
es

u
lt

s

[1
3
]

[9
]

[1
4
]

[2
8
]

C
M

O
S

T
ec

h
n

ol
og

y
6
5-

n
m

1
3
0
-n

m
6
5
-c

m
9
0
-c

m

T
y
p

e
of

L
D

P
C

C
o
d

e
L

D
P

C
-B

C
L

D
P

C
-B

C
L

D
P

C
-B

C
L

D
P

C
-C

C

L
D

P
C

C
o
d

e
(6

72
,

k
)

k
=

3
3
6
,

4
20

,5
04

,5
8
8

(6
6
0
,

4
8
0
)

(2
0
4
8
,

1
7
2
3
)

(4
9
1
,

3
,

6
)

C
o
d

e
R

at
e

1
/2

,
5/

8
,

3
/
4
,

7
/
8

0
.7

4
0
.8

4
1
/
2
,

2
/
3
,

3
/
4
,4

/
5
,5

/
6

C
or

e
A

re
a

[m
m

2
]

1
.5

6
7
.3

5
.3

5
2
.2

4

It
er

at
io

n
or

P
ro

ce
ss

or
C

ou
n
t

5
1
5

8
5

In
p

u
t

Q
u

an
ti

za
ti

on
4
-b

it
4
-b

it
4
-b

it
6
-b

it

B
E

R
1
0
−
6

a
t

9
d

B
fo

r

k
=

5
8
8
,

1
6
-Q

A
M

m
o
d

u
la

ti
o
n

<
1
0
−
8

a
t

5
.5

d
B

<
1
0
−
1
2

a
t

5
.5

d
B

1
0
−
5

a
t

2
.5

d
B

S
u

p
p

ly
V

ol
ta

ge
[V

]
1

1
.2

1
.2

1
V

C
lo

ck
F

eq
u

en
cy

[M
H

z]
1
97

3
0
0

7
0
0

1
9
8

T
h

ro
u

gh
p

u
t

[G
b

it
/s

]
3
9.

9
3
.3

0
(c

o
d

ed
)

4
7
.7

2
.3

7

P
ow

er
[m

W
]

4
50

3
9
8

2
8
0
0

2
8
4

E
n

er
gy

E
ffi

ci
en

cy
[p

J
/b

it
]

1
1.

3
1
2
0

(c
o
d

ed
)

5
8
.7

0
.1

2

14

occurrence of the hold state in a high-degree variable node [32]. A 1.66 Gbit/s fully par-

allel stochastic decoder based on the irregular WiMAX (1056, 528) LDPC code using the

aforementioned techniques has been shown to achieve a BER of 10−8 at an Eb/No of 4.25

dB. In [33], an FPGA-based decoder based on the 1200-bit rate-1/2 LDPC code using a

modified min-sum algorithm has been shown to achieve a decoding throughput of 6 Gbit/s.

Chandrasetty et al. proposed a modified 2-bit Min-Sum Algorithm (MMS2), which is im-

plemented on an FPGA-based LDPC decoder that achieves an average throughput of 10.2

Gbit/s at an Eb/No of 4dB [31]. The difference between the proposed MMS2 algorithm

and the traditional Min-Sum algorithm lies in the variable node operation. In MMS2, the

variable node operation involves an additional mapping step that maps the computed sum

in higher precision to a 2-bit message to be passed to the check node. The mapping is

based on a threshold value obtained from Monte-Carlo simulations.

FPGA-specific architectural techniques named vectorization and folding are proposed

by Chen et al. in [34] for quasi-cyclic LDPC decoders. Vectorization takes advantage of the

configurable data width of embedded memory on FPGAs by packing multiple messages

into the same physical word, which is loaded and stored simultaneously. However, to

concurrently process the messages delivered in each memory access and to take care of the

data alignment and addressing, additional logic resources are needed. The extra required

hardware resources may result in degraded performance, or it may not even fit on the FPGA

due to the alignment logic and interconnect complexity. An additional tool, named QCSyn,

which synthesizes a vector architecture for a given quasi-cyclic code, is also developed to

ensure high resource utilization. Folding, on the other hand, is a memory virtualization

technique that allows large LDPC codes to be implemented on commercially-available

FPGAs with a small number of available block RAMs by mapping messages corresponding

to multiple sub-matrices in the same physical block RAMs.

15

Results of all the aforementioned implementations based on FPGAs are presented in

Table 2.2. None of the included implementations have reported any power values with

the exception of the vectorization-based implementation [34], which has not identified how

power values were obtained. Therefore, this thesis focuses on the power characterization

of an FPGA-based LDPC-CC decoder. The next chapter describes the architecture of our

FPGA implementation of the PN-LDPC-CC, and detailed power measurement set-up is

provided in Chapter 4.

16

T
a
b
le

2
.2
:

S
u

m
m

a
ry

o
f

F
P

G
A

Im
p
le

m
en

ta
ti

o
n

R
es

u
lt

s

R
ef

.
[2

9]
[3

0]
[3

2]
[3

4
]

[3
4
]

[3
1
]

[3
3
]

T
h

is
w

o
rk

F
P

G
A

S
tr

at
ix

E
P

1S
80

V
ir

te
x
4

2
V

ir
te

x
4

2
V

ir
te

x
4

2
V

ir
te

x
4

X
C

4
V

L
X

1
6
0

V
ir

te
x
4

2
V

ir
te

x
4

2
S

tr
a
ti

x
IV

E
P

4
S

G
X

2
3
0

L
D

P
C

C
o
d

e
R

S
-b

as
ed

(4
80

,
35

5)

(1
02

4,
51

2)
Ir

re
g
u

la
r

(1
0
56

,
52

8)

Ir
re

g
u

la
r

(3
9
6
9
,

3
2
1
3
)

Q
C

(8
1
7
6
,

7
1
5
6
)

Q
C

R
eg

u
la

r
(3

,
6
)

P
E

G
-b

a
se

d
(6

,3
)

P
N

-L
D

P
C

-
C

C
(3

,6
)
T
s

=
1
9
2

f C
L
K

61
M

H
z

21
2

M
H

z
22

2
M

H
z

1
9
5
.7

M
H

z
2
1
2
.2

M
H

z
1
2
3

M
H

z
1
0
0

M
H

z
7
5

M
H

z
T

h
ro

u
gh

p
u

t
65

0
M

b
it

/s
70

6
M

b
it

/s
1.

66
G

b
it

/
s

1
.4

7
4

G
b

it
/
s

7
1
3
.8

M
b

it
/
s

1
0
.2

G
b

it
/
s

1
2

G
b

it
/
s

2
.4

G
b

it
/
s

B
E

R
-

10
−
6

at
3

d
B

10
−
8

a
t

4
.2

5
d

B
-

1
0−

1
2

a
t

4
.2

5
d

B
1
0−

5
a
t

3
.9

d
B

-
1
0
−
8

a
t

4
.2

5
d

B
#

of
It

er
.

15
15

-
1
5

1
5

-
1
0

9
(p

ro
c.

)
L

og
ic

U
ti

-
li

za
ti

on
66

58
8

(8
4%

)
-

-
-

-
-

-
8
3
%

S
li

ce
s

-
32

87
5

46
09

7
6
2
3
6
2

(7
0
%

)
1
7
8
5
6

(2
6
%

)
3
3
3
4
5

4
0
6
1
3

(4
5
%

)
-

S
li

ce
F

F
-

-
-

9
8
0
0
3

(5
5
%

)
2
7
2
1
0

(2
0
%

)
1
5
6
9
1

1
8
9
4
5

(1
0
%

)
-

4-
I/

P
L

U
T

s
-

-
-

1
1
1
0
3
5

(6
2
%

)
2
7
0
4
6

(2
0
%

)
5
8
,0

5
3

6
9
0
3
8

(3
8
%

)
-

B
lo

ck
R

A
M

-
-

-
3
3
0

(9
8
%

)
8
0

(2
8
%

)
-

-
-

P
ow

er
-

-
-

7
6
3
2

m
W

3
0
3
3

m
W

-
-

4
1
0
5

m
W

1

E
n

er
gy

/b
it

-
-

-
5
.1

8
n

J
4
.2

5
n

J
-

-
1
.7

1
n

J
1

1
M

ea
su

re
d

,
ra

w
d
a
ta

2
X

C
4V

L
X

20
0

17

Chapter 3

FPGA Implementation

This chapter first provides a brief summary on Parallel-Node Low-Density Parity-Check

Convolutional Codes (PN-LDPC-CCs) in Section 3.1. Then a detailed description on the

architecture of the PN-LDPC-CC-based encoder and decoder implemented is provided in

Section 3.2 and 3.3. Lastly, an overview of the remaining modules of the system imple-

mented on FPGA is presented in Section 3.4.

3.1 PN-LPDC-CC

Architecture-aware PN-LDPC-CCs were initially developed by Chen et al. [26]. Both

implementation-oriented constraints and performance-oriented constraints are applied in

the construction of PN-LDPC-CCs to allow parallelism in the encoder and decoder architec-

ture and to also ensure BER performance of the code. For PN-LDPC-CC, the parity-check

matrix HT is organized into groups of sub-matrices HT
i′ (t
′) of size ρ× ρ, where ρ is defined

as the node-parallelization factor, for parallel processing. The code period Ts and code

18

HT
i′ (t
′) =


HT
i·ρ+ρ−1(ρ·t) HT

i·ρ+ρ−1(ρ·t+1) ··· HT
i·ρ+ρ−1(ρ·t+ρ−1)

HT
i·ρ+ρ−2(ρ·t) HT

i·ρ+ρ−2(ρ·t+1) ··· HT
i·ρ+ρ−2(ρ·t+ρ−1)

...
...

...
...

HT
i·ρ(ρ·t) HT

i·ρ(ρ·t+1) ··· HT
i·ρ(ρ·t+ρ−1)


Figure 3.1: Sub-matrice HT

i′ (t
′) for PN-LDPC-CC

memory ms are also measured in terms of such groups, where the group period, T ′s, is

defined as the ratio of Ts/ρ, and group memory, m′s, is defined as ms/ρ, hence, Ts and ms

must be multiples of ρ by design. The phase parameter, φ, φ ∈ [0, Ts), refers to the specific

row in the parity-check matrix, is also used to specify check constraints at each instant

in time. Additionally, for PN-LDPC-CC, a new parameter group phase, φ′, φ ∈ [0, T ′s) is

introduced. The mapping from HT
i (t) to HT

i′ (t
′) is shown in Figure 3.1.

In [1], it is shown that ρ can be increased significantly with little impact on the BER

performance, and the main factors affecting BER performance are code period (Ts) of the

code and the decoding algorithm.

A series of circuit optimizations to the PN-LDPC-CC encoder/decoder architecture

presented in [26] and the corresponding synthesis results in terms of energy-per-encoded-

bit versus throughput and area versus throughput for each improvement are reported by

Brandon in [1]. The throughput for both the encoder and the decoder is be defined as

the product of clock frequency and node parallelization factor, ρ, divided by the rate of

LDPC-CC code, R, as shown in Equation (3.1).

Nenc/dec Throughput =
fclk × ρ
R

(3.1)

Our implementation of the PN-LDPC-CC encoder and decoder is based on a pre-

existing PN-LDPC-CC architectures by Brandon [1], which are described in details in

19

Section 3.2 and 3.3.

3.2 PN-LDPC-CC Encoder

A high-level architecture of the PN-LDPC-CC-based encoder implemented in our studies is

depicted in Figure 3.2. The input data[ρ-1:0] is connected to each register bank regX[ρ-1:0],

X ∈ {0, T ′s} of the T ′s encoder nodes, where T ′s is the group period of the PN-LDPC-CC,

and ρ is the parallelization ratio of the code. An example of a single encoder node based

on a Ts = 192, ρ = 16, rate-1/2 (3, 6) PN-LDPC-CC is shown in Figure 3.5. The data in

the encoder node is updated according to the regPhase[T ′s-1:0] signals, but remains in the

flip-flop until it gets replaced in the next period. The parity output, v(t), is then actively

chosen from one set of the T ′s encoder node registers based on the regPhase signals, as

shown in the parity output circuitry in Figure 3.4. For a given rate-1/2 PN-LDPC-CC

code with ρ = 16, the encoder outputs 16 information bits, u(t), and 16 parity bits, v(t),

per clock cycle.

The group of phase signals, regPhase, is shown in Figure 3.2 and 3.5, which control

the “info” and “parity” updates, are created with one-hot encoding logic, where only one

register is being set upon the reset of the encoder, as depicted in Figure 3.3.

As shown in Figure 3.5, the register bank inside each encoder node is implemented as

a circular buffer, where it is constrained so that it becomes the next register bank in the

next phase, and the input data accepted by the constrained register bank is unique to each

phase.

The output parity vector, v(t), is multiplexed out from one of the T ′s register banks

with width of ρ based based on the phase specified by the regPhase signals, as shown in

20

Figure 3.2: A high-level block diagram of the implemented PN-LDPC-CC encoder. An example

of a single encoder node is shown in Figure 3.5. The one-hot encoding of the phase signal is

shown in Figure 3.3. Figure 3.4 depicts the parity output circuitry.

Figure 3.3: One-hot encoding of the phase signal for the Ts = 192, ρ = 16, rate-1/2 (3,6)

PN-LDPC-CC, group period T ′s = 12. [1]

21

Figure 3.4.

Figure 3.4: Parity output circuitry for the Ts = 192, ρ = 16, rate-1/2 (3,6) PN-LDPC-CC,

group period T ′s = 12. [1]

The presented encoder node shown in Figure 3.5 includes two optimizations by Bran-

don [1], which are outlined in Section 3.2.1 and 3.2.2.

3.2.1 Gate-Swapping

The technique named “gate-swapping” is applied to the design of the encoder node. It

conditionally swaps the 3-input XOR with a simpler 2-input XOR and a 2-input OR gate

when the phase-gated data (“info”) and register (“parity”) updates inside an encoder node

do not occur in the same phase [1]. In Figure 3.5, an encoder node that meets the require-

ment for “gate-swapping” is depicted. The “gate-swapped” area shown in Figure 3.5 is

where the swapping takes place. It can be seen that the regPhase signals, which control

the “info” updates in this depicted encoder node are regPhase[5], regPhase[8], and reg-

Phase[10]. The signals that control the “parity” update are regPhase[1] and regPhase[9].

22

Figure 3.5: A single encoder node from the implemented architecture in this thesis for the

Ts = 192, ρ = 16, rate-1/2 (3,6) PN-LDPC-CC. [1]

23

In this case, the phase signals controlling the “info” and the “parity” updates in this en-

coder node are different; so this allows these phase-gated data and register updates to be

combined with a 2-input OR gate, and the result of that is then fed into a 2-input XOR

gate. However, in the cases, where the “info” and “parity” updates are controlled by the

same phase signals, the 3-input XOR cannot be replaced by a 2-input OR gate and a 2-

input XOR. The number of occurrence of simultaneous “info” and “parity” updates varies

among all PN-LDPC-CCs. A consistent small reduction in power and area is observed

by Brandon among the implemented encoders based on various PN-LDPC-CCs with the

application of this technique in [1].

3.2.2 Clock-gating

Latch-based clock-gating [45] is applied to the encoder node design. As depicted at the

bottom portion of Figure 3.5, the regPhase phase signals associated with for that particular

encoder node are ORed together and the result is latched. The clock is ANDed with the

output of the latch to form a new clock signal that controls the encoder-node registers.

Brandon noted in [1] that the phase signals have switching rates of 1/2·T ′s per clock cycle

and the clock switches once per cycle, so gating the clock with the phase signals can lead

to a reduction in dynamic power. A significant reduction in power consumption for all

PN-LDPC-CCs using the resulting architecture is observed [1].

3.3 PN-LDPC-CC Decoder

The decoder implemented in our design is formed by cascading identical decoder processors

in series. A single decoder processor consists of 2ρ variable-node (vnode) units, ρ check-

24

node (cnode) units and multiple memories for storage purpose. Figure 3.6 depicts a high-

level architecture of a single decoder processor for a rate-1/2 (3, 6) PN-LDPC-CC.

The operation of a decoder processor can be described as follows: as shown in Fig-

ure 3.6, the processor takes in channel LLRs or the information and parity LLRs from a

previous decoder processor and stores them in the respective info and parity registers. The

information/parity input databus has a initial bit-width of 4ρq, where 4 represents the

degree of the variable node, ρ is the node parallelization factor and q is the bit-width of

the LLRs. With the application of TMS, the LLR bit-width of storage elements is reduced

by 1 bit by dropping the LSB, with the exception of the channel samples, as denoted in

Figure 3.6. LLRs from the info and parity registers are read and routed to the appropriate

check-node units in each phase. The processed LLRs from the check-node operations are

then written back to the same registers that they were read from, with the exception of

one of the parity LLRs, which is routed directly to a variable-node unit. Simultaneously,

the variable-node units obtain the processed LLRs from the info and parity registers. The

output LLRs from the variable-node units become the outputs of the decoder processor,

which are fed into the subsequent decoder processor for another decoding iteration, or they

become the input of the hard-decision slicer to form a stream of decoded info bits. The

info and parity registers used for storage all have a common clock-gated structure, which

is shown in Figure 3.7.

The depicted architecture includes a series of optimizations suggested in [1], which

are summarized in the following subsections with their effects on the performance of the

PN-LDPC0CC design.

25

Figure 3.6: A single decoder processor. [1]

Figure 3.7: An example of a clock-gated register [1]

26

3.3.1 Truncated Min-Sum Check Sum Operation

Brandon [1] has employed a technique named truncated min-sum check sum operation

(TMS) for the design of the check node unit. The TMS technique conditionally subtracts

a constant value from the check-node LLR magnitudes when the least-significant-bit (LSB)

of the LLR is set. This subtracted constant is equal to the maximum value that the LSB can

represent. The application of TMS has demonstrated an decrease in energy-per-decoded-

bit and area [1].

3.3.2 Removal of Reset Circuitry in Check-Node

Due to the nature of LDPC-CC decoder being deterministic in that the order of operations

only depends on the code and not the data, the values in uninitialized registers are unim-

portant. With this knowledge, the maximum LLR magnitude can be multiplexed into

the check-node instead of allowing the LLR values from uninitialized memory locations

into the check-node. This is achieved by keeping each input into the check-node at the

maximum magnitude until a predetermined phase is reached. The LLR values from the

memory are used as inputs to the check-nodes once this predetermined phase is reached.

Using this method allows the reset circuitry/memory initialization to be eliminated from

the design. Although the effect of the removal of the reset circuitry is minimal on the

energy-per-decoded-bit based on simulation results, it does further reduce area [1].

3.3.3 Removal of Saturation Bit

The removal of the saturation bit in the sign-magnitude representation of LLRs is achieved

by approximating the function of the saturation bit using the maximum LLR magnitude.

27

This modification has been shown to have an advantage of reducing power consumption

and area [1]. However, the removal of saturation bits also results in a small loss in BER

performance [1].

3.3.4 Clock-gated Registers

The technique of clock-gating is applied on the info and parity registers. An example of

how a register is clock-gated with the phase signal is depicted in Figure 3.7. This technique

does not only further reduce area, but it also reduces the energy-per-decoded-bit [1].

3.4 System Design

The design, LP4, is written in Verilog HDL, compiled using Altera Quartus II Version 11.0

for the FPGA implementation on DE4, which is an Altera development and education

board that features a Stratix IV 4SGX230 FPGA. An encoder and decoder based on a rate-

1/2 (3,6) PN-LDPC-CC with Ts = 192, ρ = 16 [26] are implemented using a verified version

of the sample HDL code provided by Brandon [1] for the resulting encoder and decoder

architectures described in Section 3.2 and 3.3 along with an additive white Gaussian noise

(AWGN) channel model based on binary phase-shift keying (BSPK) modulation, a random

pattern generator, a first-in first-out (FIFO) buffer, and a simple error counter on the

DE4. The overall operation is controlled by a counter-based unit that enables/starts the

operation of different modules based on their known latency.

In this design, ρ test bits are generated by the random number generator, which is

implemented as a conventional linear feedback shift register (LFSR) with configurable

seed value. A copy of the ρ test bits is fed into the encoder module and the FIFO buffer.

28

For every ρ info bits entering the encoder, it generates ρ code bits. The noise output from

the AWGN generator of the channel module is scaled according to the desired Eb/N0 value

and added to the info and code bits generated by the encoder. The sum of the signal and

noise is then scaled by a linear function and quantized to 4-bit LLRs, where each LLR

consists of one sign bit and three fractional magnitude bits. The quantized LLRs are then

fed into the decoder module. The decoded data is then compared with the original data

from the FIFO that was previously fed to the encoder. The error counter keeps track of

the number of information bits and detected errors until a pre-defined target number of

errors is reached. The overall signal flow is shown in Figure 3.8.

A total of 11 configurations of the design containing different numbers of decoder pro-

cessors have been implemented at a fixed clock frequency of 75 MHz using the default

compilation options on Quartus II to maintain consistency of the experiment. To avoid

the need to re-compile each configuration for every combination of the parameters such as

the predefined Eb/N0 and target number of detected errors, a JTAG interface [46] system

allows for the flexibility of modifying registers after a design is compiled and downloaded

onto the FPGA. The BER data gathering process is simplified with this JTAG interface

since the values in the registers that store the total error counts and the elapsed clock cycle

counts can be read for every combinations of Eb/N0 and target number of detected errors.

29

E
n

c
o

d
e

r

D
e

c
o

d
e

r

in
fo

c
o

d
e

in
fo

L
L

R
[3

:0
]

c
o

d
e
L

L
R

[3
:0

]

in
fo

L
L

R
In

0
[3

:0
]

in
fo

L
L

R
In

1
[3

:0
]

in
fo

L
L

R
In

2
[3

:0
]

in
fo

L
L

R
In

4
[3

:0
]

c
o

d
e

L
L

R
In

0
[3

:0
]

c
o

d
e
L

L
R

In
1
[3

:0
]

c
o

d
e
L

L
R

In
2
[3

:0
]

c
o

d
e
L

L
R

In
3
[3

:0
]

in
fo

L
L

R
O

u
t0

[3
:0

]

c
o

d
e
L

L
R

O
u

t0
[3

:0
]

in
fo

L
L

R
O

u
t3

[3
:0

]

in
fo

L
L

R
O

u
t2

[3
:0

]

in
fo

L
L

R
O

u
t1

[3
:0

]

c
o

d
e
L

L
R

O
u

t1
[3

:0
]

c
o

d
e
L

L
R

O
u

t2
[3

:0
]

c
o

d
e
L

L
R

O
u

t3
[3

:0
]

1
6

A
W

G
N

C
h

a
n

n
e

l
M

o
d

e
l

A
W

G
N

 N
o

is
e

G
e
n

e
ra

to
r

Q
u

a
n

ti
ze

r

d
e
c
_
in

fo
b

it

1
6

1
6

1
6

D
e

c
o

d
e

r

S
li

c
e

r

1
6

1
6

1
6

1
6

1
6

1
6

1
6

F
IF

O

1
6

1
6

1
6

E
rr

o
r

C
o

u
n

te
r

te
s
t_

b
it

s

1
6

te
s
t_

b
it

s
P

R
N

G

c
o

re
0

c
o

re
(N

-1
)

c
o

re
1

..
.

6
4

n
E

rr

F
ig
u
re

3
.8
:

L
P

4
bl

oc
k

d
ia

gr
a
m

.
C

o
u

n
te

r-
ba

se
d

co
n

tr
o
l

lo
gi

cs
a
re

n
o
t

sh
o
w

n
.

30

Figure 3.9: Interaction between LP4 core on the FPGA and computer Tcl terminal

A simplified version of the interaction between the FPGA and the computer Tool Com-

mand Language (Tcl) terminal is shown in Figure 3.9. Programmable registers storing

parameters such as Eb/N0 ratio, target number of errors (target nErr), clipping threshold,

and a soft reset (ext rst) are mapped to pre-defined memory locations to allow read/write

access from the JTAG memory-mapped (JTAG-MM) interface. On the other hand, regis-

ters that get updated by the LP4 core and its counter-based control unit such as actual

number of errors (nErr), number of clock cycles required to detect the target number

of errors (nClkCycle), and a flag that indicates the completion of data gathering pro-

cess (fin flag), are mapped to neighbouring memory locations to allow access in a single

memory-read operation by the JTAG-MM interface. Doing so ensures that the nClkCycle

value corresponds exactly to the nErr value, which are then used to calculate BER off-chip

using Equation 3.2.

BER =
nErr

nClkCycle× ρ
(3.2)

The fin flag register is constantly being monitored by the Tcl terminal, where the values

31

innErr and nClkCycle are read and recorded to a text file when actual nErr is equal to the

predefined target nErr. Details and example code for configuration of this JTAG interface

are included in Appendix A.

Detailed power measurements have been conducted using the FPGA implementation

presented above with the measurement steps described in Chapter 4. The BER perfor-

mance and power measurement results obtained from the implementation are then pre-

sented and further discussed in Chapter 5.

32

Chapter 4

Power Measurement

This chapter, first discusses the available methods for determining the power consumption

of the LDPC-CC decoder in Section 4.1. Section 4.2 describes the chosen power measure-

ment method. The limitations of the chosen method are then presented in Section 4.3

along with the estimated lower and upper bounds of the DC/DC efficiency presented in

Section 4.3.1. Furthermore, Section 4.3.2 described an additional experiment to analyze

the efficiency of the DC/DC converter circuitry and presented the relevant results.

4.1 Available Power Measurement Methods

In this section, we describe several power measurement methods available for the charac-

terization of the decoder power on an FPGA board. In order to characterize the power

consumption of the LDPC-CC decoder, it is necessary to capture the total power consump-

tion of the Stratix IV FPGA on Altera DE4.

The first power measurement method makes use of PowerPlay, which is an power ana-

33

lyzer tool provided in The Altera Quartus II Development Software [47]. PowerPlay gives

a detailed breakdown of the total power consumed by all the modules in the design us-

ing captured signal activities from full post-fit netlist timing simulation. The estimation

from PowerPlay power analyzer has an uncertainty of ±15% from actual power consump-

tion when used with accurate design information [48]. From the PowerPlay report, the

estimated power consumption of the LDPC-CC decoder can be extracted. Although the

signal activities from the full post-fit netlist timing simulation (gate-level simulation) on

ModelSim can be used by PowerPlay to give the most accurate power estimation, its long

simulation time [47], and the difficulty of incorporating SNR info in the simulation, are

two of the main disadvantages of this method [49]. As the size of the design grows, its

gate-level simulation time also increases; the requirement for computer resources such as

processing power and memory also increases. For the LDPC-CC decoder design with 10

processor cores, signal activity data cannot be generated because ModelSim is unable to

start the gate-level simulation due to a memory error. Therefore, PowerPlay Analyzer can

only be used to provide an accurate power estimation for our design of LDPC-CC decoder

with less than 10 cores.

The manufacturer of the Altera DE4 FPGA board, Terasic, also provides a power

measurement tool that makes use of a Nios II processor to facilitate the use of the onboard

power measurement circuitry, which consists of two multi-channel differential 24-bit Linear

Technology LT2418 delta-sigma analog-to-digital converters (ADC) with sense resistors to

measure the small voltage drop across the resistors. This method is capable of reporting

the total power consumed by the FPGA chip in real-time. However, in our experiments, a

consistent discrepancy of over 90% is observed between the average decoder power based

on PowerPlay results from configurations without the Nios II measurement unit and that

from the Nios II method, as shown in Table 4.1. One of the possible causes for the observed

34

Table 4.1: Comparison of average decoder power results from various methods for various num-

bers of decoder cores for the Ts = 192, ρ = 16 rate-1/2 (3, 6) PN-LDPC-CC code with 4-bit LLRs

at Eb/N0 = 2 dB running at a clock frequency of 75 MHz on Altera DE4. Values from columns

labeled “PowerPlay”, “PBoard,raw”, “PBoard,mapped” are based on configurations without the Nios

II power measurement unit. Three sets of measurements are taken at different time instants for

each calculation of PBoard value.

nCore PowerPlay Estimation [W] PBoard,raw
1[W] PBoard,mapped

2[W] Nios II Results3[W]

1 0.174 0.668 0.393 0.000755

2 0.509 1.09 0.618 0.001264

3 0.956 1.666 0.896 0.001097

4 1.419 2.187 1.118 0.001788

5 1.849 2.693 1.307 0.002074

1 PBoard,raw: PDec = PTotal Board,raw − PTotal Boardw/oDec,raw

2 PBoard,mapped: PDec = PTotal Board,mapped − PTotal Boardw/oDec,mapped

3 Nios II Results: PDec = PTotal Chip − PTotal Chipw/oDec

discrepancy is that PowerPlay estimations are only performed on configurations without

the Nios II unit due to the inability to perform gate-level simulation with the inclusion of

the Nios II unit. Therefore, an alternate method is employed to provide more reasonable

power measurements in order to determine the power consumed by the decoder core in our

design, as well as to provide an alternate method for comparison with the Nios II results.

The next power-estimation method involves taking the board power measurements for

the design with various numbers of decoder cores, and the board power measurement for

the configuration with no decoder core is also recorded as the base case. By subtracting the

base case, the decoder power is obtained. Power measurements using this method are also

35

obtained for our comparison, as shown in Table 4.1. It can be seen that the average decoder

power values from this method agree with the PowerPlay estimations with a difference of

around 50% for configurations with 4 or 5 cores, which is slightly closer to the ±15%

difference reported in [48]. The difference is likely caused by the fact the decoder power

values from the column “PBoard,raw are based on raw power measurements, which do not

take into account the effect of DC/DC converter efficiency. However, the differences for

the configurations with 1 to 3 cores are much greater, which are likely to be a result

of measurement errors in our method, in addition to the influence from the efficiency of

the DC/DC converter circuitry. An additional experiment has been done to model the

DC/DC efficiency, which is described in details later in Section 4.3.2. By mapping the

board measurement data to the results obtained from the method in Section 4.3.2, the

influence from the DC/DC efficiency is reduced, the difference between the mapped data

and the PowerPlay estimation results is further reduced. The results reported in Table 4.1

focus on using the PowerPlay estimations as a reference for comparison, which may not

be a fair comparison for results obtained from the Nios II method. Therefore, the board

measurement method along with the mapping step described in Section 4.3.2 are also used

to obtain power measurements from the configurations containing the Nios II measurement

unit, which are then summarized in Table 4.2. The “raw” and Nios II data are also plotted

in Figure 4.1, where they are then fitted linearly. The “raw” and “mapped” values reported

in Table 4.2 are largely different from the ones reported in Table Table 4.2, which were

measured from the configurations without Nios II unit. This suggests that the Nios II

unit may not have been correctly incorporated into our design. Additionally, while it is

suggested that our design may not have been configured properly to work with along with

Nios II unit, it is interesting to note that the Nios II reported values are roughly an order

of magnitude smaller than the “mapped” values in a consistent manner. This also suggests

36

Table 4.2: Comparison of decoder power results from various methods for various numbers

of decoder cores for the Ts = 192, ρ = 16 rate-1/2 (3, 6) PN-LDPC-CC code with 4-bit LLRs

at Eb/N0 = 2 dB running at a clock frequency of 75 MHz on Altera DE4. All measurements

are performed on the configurations with the Nios II unit.

Number of Cores PBoard,raw
1[W] PBoard,mapped

2[W] Nios II Results3[W]

1 0.0106 0.00713 0.000755

2 0.0154 0.0103 0.00126

3 0.0201 0.0135 0.00110

4 0.0236 0.0158 0.00179

5 0.0378 0.0253 0.00207

1 PBoard,raw: PDec = PTotal Board,raw − PTotal Boardw/oDec,raw

2 PBoard,mapped: PDec = PTotal Board,mapped − PTotal Boardw/oDec,mapped

3 Nios II Results: PDec = PTotal Chip − PTotal Chipw/oDec

that there may be one or more factors incorrectly specified in the calculation steps used

by the Nios II unit.

Since we are unable to configure the Nios II unit to give values that are closer to that

of the PowerPlay results at this point, we end up using the board measurement method

together with the mapping step described in Section 4.3.2 for the rest of our experiments.

A detailed description of this method is provided in the following sections.

4.2 Board Power Measurement Method

In order to determine the power consumption of the decoder module, we have chosen to

measure the total power consumed by the entire FPGA board. The power measurement of

37

1 2 3 4 5
0.005

0.01

0.015

0.02

0.025

0.03

Number of Process CoresD
e

c
o

d
e

r
P

o
w

e
r

b
a

s
e

d
 o

n
 "

m
a

p
p

e
d

"
p

o
w

e
r

m
e

a
s
u

re
m

e
n

ts
 [

W
]

y = 0.0042*x + 0.0018

data

fitted line

norm of residuals = 0.00401

(a) “mapped”

1 2 3 4 5
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

−3

Number of Process Cores

D
e

c
o

d
e

r
P

o
w

e
r

b
a

s
e

d
 o

n
 N

io
s
 I

I
p

o
w

e
r

m
e

a
s
u

re
m

e
n

ts
 [

W
]

y = 0.00032*x + 0.00045

data

fitted line

norm of residuals = 0.000362

(b) “Nios II

Figure 4.1: Decoder power obtained on configurations of 1 to 5 cores with Nios II unit in-

corporated using board power measurement method with mapping step and Nios II measurement

unit

Figure 4.2: Power Measurement Set-up

38

DE4 is made possible by inserting a custom unit that consists of a pair of 8-pin Molex power

connectors and necessary wire connections between the Molex receptacle of the AC/DC

power supply and the matching Molex header on the FPGA board. The custom unit allows

two 0.01-Ω (1% tolerance) current sense resistors to be put in series with the 12-V power

rail, where the voltage drops measured across these resistors can then be used to calculate

the total current drawn by Altera DE4 board, and an additional digital multimeter is

used to measure the input voltage, VV CC12 CON for the FPGA board. Detailed circuit

connections are shown in Figure 4.2. The total power consumed by the FPGA board is

calculated using Equation (4.1). Three sets of current and voltage readings are captured

at different time instants to calculate the total power, and the average of that is considered

as the board power consumption for that case.

PFPGABoard = (IRps1 + IRps2)× VV CC12 CON (4.1)

The 12-V supply powers several components and DC-DC converters, which in turn

power several more components. All power consumption on the FPGA board is kept con-

stant, except for varying the number of decoder cores. Therefore, the measured power of the

“0Core” configuration that contains all the modules except the decoder, PBoard,Eb/N0,0Core,

for every different Eb/N0 value can be used as the base case for that particular Eb/N0, which

is then subtracted from the corresponding total measured board power, PBoard,Eb/N0,nCore,

to calculate the decoder power, PDec,Eb/N0,nCore, as shown in Equation (4.2). Since the clock

frequency for all our experiment is fixed at 75 MHz, the resulting coded throughput of all

configurations is 2.4 Gbit/s, using Equation (3.1). The energy-per-coded-bit is calculated

using Equation (4.3).

39

PDec,Eb/N0,nCore = PBoard,Eb/N0,nCore − PBoard,Eb/N0,0Core (4.2)

Energy − per − coded− bitEb/N0,nCore =
PDec,Eb/N0,nCore

Coded Throughput
(4.3)

4.3 DC/DC Converter Efficiency

4.3.1 Estimation Based on Data Sheet

The power measurement setup described in Section 4.2 has assumed an efficiency of 100%

for the DC/DC converter on Altera DE4. Based on the detailed schematic of DE4 [50] given

by their manufacturer, Terasic, a 3-phase buck converter with three LTM4601 regulators

is used to convert the ideal 12-V supply voltage down to a 0.9-V supply voltage for the

FPGA core. This 3-phase buck converter topology is capable of providing a maximum load

current of 36 A at an output voltage of 0.9 V. Under ideal condition, the output current

for each phase, LTM4601, is the total output current divided by 3, the number of phases

in this particular setup.

To obtain a rough estimate for upper and lower bounds of the efficiency of the LTM4601,

the currents drawn by the FPGA core in both cases need to be calculated. Among all the

board power measurements data obtained for the LP4 designs at 110 configurations with 0

to 10 cores at SNR of 1 to 10 dB, the maximum measured board power is 14.97 W, and the

minimum measured power is 9.69 W. Both measurements contain the total power consumed

by all the onboard components powered by the 12-V supply. In order to isolate the power

consumed by the FPGA core, the total power for the base case, where the FPGA core

40

only contains the programming for the control logic of the onboard PLL, is also measured.

This is to ensure that all the other components on the DE4 board are operating under the

same conditions as the cases where the other other power measurements of the design are

taken. The FPGA core power can then be obtained by subtracting the power measured

in the base case from the maximum and minimum measured power. The calculated values

for the maximum and minimum FPGA core power here are considered to be the inputs of

the DC/DC converter circuitry. To calculate the maximum and minimum currents drawn

by the FPGA core, which are on the output side of the DC/DC converter, the efficiency

of converter must be again assumed to be 100%, in which case the output power of the

DC/DC converter is equal to the calculated input power described above.

Using the assumption above, the maximum and minimum currents drawn by the FPGA

core can then be obtained by dividing the respective calculated power by the ideal FPGA

core supply voltage, 0.9 V. Using the calculated current values for both cases, an estimate

for their respective efficiency can be obtained from Figure 4.3, which shows the efficiency

curve from the LTM4601 data sheet [2]. However, since the efficiency curve for 0.9-V output

voltage is not provided in Figure 4.3, the efficiency for the 0.9-V output is estimated by

subtracting 40% of the difference between the efficiencies for that of 0.6-V and 1.2-V from

the efficiency value for 1.2-V output voltage. The 40% difference is chosen based on the

overall decreasing trend in Figure 4.3. The measured power consumptions and respective

estimated efficiency are summarized in Table 4.3. Since the load currents are calculated by

assuming the efficiency is 100% and the output voltage is fixed at 0.9 V, the actual load

currents in the two cases are expected to be lower than the calculated values, which means

the reported efficiencies in the Table 4.3 are also over-eastimated.

Using the estimation method above, it can be concluded that the efficiency of the

DC/DC converter circuitry is below 50% for the case with the minimum measured board

41

power, and is upper-bounded by 73% for the case with maximum measured board power.

However, this only gives us a range for the DC/DC efficiency from data sheet, which does

not provide the DC/DC efficiency for each different value of the output current. In order to

provide a more accurate way to account for the effect of the DC/DC efficiency on our power

measurement data, we decided to perform an additional experiment, which is described in

Section 4.3.2.

Figure 4.3: Efficiency versus Load Current with 12-V Input for LTM4601 Regulator. (Taken

from the LTM4601 data sheet [2])

4.3.2 Estimation Based on Experimental Results

From the maximum and minimum calculated FPGA core power values shown in Table 4.3,

the equivalent resistance values can be calculated by assuming the DC/DC efficiency to be

42

Table 4.3: Summary of measured board power result, deduced output current and efficiency for

each LTM4601 under various conditions. The FPGA core power is calculated by subtracting the

measured power for the base case with having only PLL control logic on the FPGA core from the

measured board power for the cases with the full design on the FPGA core.

Base Case (with only

PLL control logic)

PMax Measured PMin Measured

Total Board Power 9.142 W 14.971 W 9.667 W

FPGA Core Power - 5.829 W 0.525 W

Estimated Current Drawn

by FPGA Core

- 6.477 A 0.583 A

Output Current of Each

LTM4601

- 2.159 A 0.194 A

Estimated Efficiency - 73% <50%

100% and the output voltage to be constant at 0.9 V. The calculated values are shown in

Table 4.4. Using the calculated resistance values, a range of resistence values are selected

between 0.1 Ω and 1.6 Ω for our DC/DC efficiency experiment.

Table 4.4: Calculated equivalent resistance for the FPGA core power listed in Table 4.3 with the

assumption that VV CC0P9 remains constant at 0.9 V

Maximum Minimum

Calculated FPGA Core Power, P [W] 5.829 0.525

Calculated Resistance [Ω] 0.139 1.543

In our experiment, the FPGA chip is programmed with a configuration containing the

minimum amount of logic so the total input power to the DC/DC converter circuitry is

kept at a minimum to allow wider range of dissipated power of the varying resistance to

43

Figure 4.4: Schematic for DC/DC efficiency experiment

be observed. A wire is soldered to the VV CC0P9 node to allow a varying resistance to be

put in parallel with the FPGA chip, and the current going through the varying resistance

is measured with an ammeter put in series with the varying resistance. The experiment

set-up is depicted in Figure 4.4. In our experiments, while we are aware that VV CC12CON

is connected to other DC/DC converters that power other components on the board, no

variation in these other loads was detected. It is also assumed that the dissipated power on

the varying resistance is equivalent to the difference between the power consumed by the

logic of the design programmed on the FPGA and the power consumed by the FPGA with

minimum configuration, in which case, the latter is assumed to remain constant. Based on

this consumption, the power consumed by the varying resistance is plotted in Figure 4.5

against the input power, which is simultaneously measured on the input end of the DC/DC

converter circuitry as the resistance is varied from 0.1 Ω to 1.6 Ω. The data plotted in

44

Figure 4.5 is then curve-fitted to Equation (4.4), with a maximum percent error of 3.14%.

While a quadratic fitting is not physically meaningful here, it does provide an analytic

approximation so long as it is not used for extrapolation.

9 10 11 12 13 14 15 16
−0.5

0

0.5

1

1.5

2

2.5

Input Power to the DC/DC converter circuitry [W]

D
is

s
ip

a
te

d
 P

o
w

e
r

o
f
th

e
 V

a
ry

in
g
 R

e
s
is

ta
n
c
e
 [
W

]

y = − 0.051*x
2
 + 1.6*x − 11

data 1

 quadratic

Figure 4.5: Input and output power measured for the DC/DC converter circuitry on the Altera

DE4 using the setup denoted in Figure 4.4

y = −0.051× x2 + 1.6× x− 11 (4.4)

The measurements from this experiment has indirectly depicted the efficiency of the

DC/DC converter circuitry. By mapping the existing set of 110 power measurement values

described in Section 3.4 using Equation (4.4), the resulting values have then taken into

account the efficiency of the DC/DC converter circuitry. An example of the mapped values

45

of decoder power with different number of cores are shown in Table 4.5 to be compared

with the PowerPlay estimated results shown in Table 4.1. By taking the efficiency of the

DC/DC converter circuitry into account, the percentage difference calculated with respect

to the PowerPlay estimation for the “4Core” and “5Core”’ configurations are reduced from

around 40% as mentioned in Section 4.1 to 22%.

Table 4.5: Comparison of mapped power measurement values with estimated values from Pow-

erPlay of decoder power of different number of processor cores for the Ts = 192, ρ = 16 rate-1/2

(3, 6) PN-LDPC-CC code with 4-bit LLRs at Eb/N0 = 2 dB running at a clock frequency of 75

MHz on Altera DE4

nCore Mapped Power Mea-

surements [W]

PowerPlay Estimation

[W]

% Difference (w.r.t.

PowerPlay Values)

3 0.965 0.956 0.85%

4 1.212 1.420 -14.61%

5 1.449 1.849 -21.66%

The input voltage VV CC0P9 is also measured again at the the minimum and maximum

parallel resistances used in the experiment above, and it turns out that the voltage does not

remain constant when the resistance is varied from 0.1 Ω to 1.6 Ω, as shown in Table 4.6.

This is most likely due to the finite output resistance of the AC power adapter, which is

the external power supply and the DC/DC converter circuitry in this case. While this

observation is indeed different from our earlier assumption made on the value of VV CC0P9

for the calculation of the equivalent resistance, it does not seem to have affected our results

plotted in Figure 4.5.

46

Table 4.6: Measured input voltage for FPGA chip at various parallel resistances

Resistance [Ω] Start-up (Non-configured) Configured

0.1 0.6386 V 0.641 V

1.6 0.879 V 0.8786 V

4.4 Chapter Summary

In this chapter, we have discussed the available power measurement methods with the

chosen FPGA board and explained why the chosen method has been employed. A further

experiment has been developed and performed to model the efficiency of the DC/DC

converter circuitry, and its results are applied on the existing set of power measurement

values. Further discussion on the resulting values are presented in Chapter 5.

47

Chapter 5

Measurement Results and Discussion

The performance of our LDPC-CC decoder is evaluated based on its power consumption,

energy-per-coded-bit, BER performance, area, throughput, and clipping threshold, cth,

which is a threshold value chosen to clip the received channel values during quantization

so that the received values are uniformly quantized into sign-magnitude representation in

the range [-cth, cth]. BER performance depends on several factors: the LDPC code that

the decoder is based on, the number of iterations (each implemented as a physical decoder

processor core in the case of LDPC-CC), the bit-precision of LLRs, as well as Eb/N0, which

is the normalized signal-to-noise ratio (SNR) per bit applied in the channel.

5.1 BER Performance

As previously mentioned in Section 3.4, our design is based on the Ts = 192, ρ = 16 rate-

1/2 (3, 6) PN-LDPC-CC code, where each decoder core has a constant bit-width of 4 for

the LLRs. A constant clipping threshold, cth, of 1.33 is used in the quantization operation

48

for all configurations. The resulting FPGA implementations with 1 to 10 decoder cores

all run at a constant clock frequency of 75 MHz and a constant coded throughput of 2.4

GHz, where 75MHz is a common maximum frequency achieved by different configurations

of the implementation. The BER performance of the FPGA implementation is plotted in

Figure 5.1, based on the measurement results from the DE4 board. It can be seen that

the improvement in BER performance gained from additional cores gradually decreases.

At an Eb/N0 of 6 dB, the “6Core” configuration is able to achieve an BER of 10−10. If the

number of cores is increased to 9 or 10, the same BER performance can be achieved at a

lower Eb/N0 of 5 dB. Table 5.1 summarizes the maximum reported clock frequencies on

Quartus II and the corresponding calculated coded throughputs for configurations with 1

to 10 decoder cores. Configurations with 1 to 3 cores have slightly higher maximum clock

frequency, while configurations with 4 or more cores all have maximum clock frequency

around 80 MHz.

5.2 Power Measurement Results

The decoder power consumption and energy-per-coded-bit for each configuration is plotted

against Eb/N0 in Figure 5.2 and against the number of decoder cores in Figure 5.3. For

both figures, the top plot, labeled “Raw”, is based on the raw measurements obtained using

the method described in Section 4.2, while the bottom plot, labeled “Mapped”, is based on

the mapped data, which has taken into account the effect of the efficiency of the DC/DC

converter circuitry using the method stated in Section 4.3.2. The difference between the

two plots in Figure 5.2 and 5.3 is caused by the efficiency of the DC/DC converter circuitry,

where the raw data has assumed an efficiency of 100%, while the processed values in the

bottom plot are mapped to the experimental values determined in Section 4.3.2, which

49

1 2 3 4 5 6 7 8 9 10
10

−15

10
−10

10
−5

10
0

E
b
/N

o
 [dB]

B
E

R

0core 1core 2core 3core 4core

5core 6core 7core 8core 9core

10core

Figure 5.1: BER for various numbers of decoder cores for the Ts = 192, ρ = 16 rate-1/2 (3,

6) PN-LDPC-CC code with 4-bit LLRs at various Eb/N0 obtained from measurements on DE4

based a target number of errors of 1000 based on a BPSK-based AWGN channel.

50

Table 5.1: Maximum achievable clock frequency and maximum coded throughput for configura-

tions with 1 to 10 decoder processor cores based on reported values for “slow 900mV 85C model”

on Quartus II using default compilation options for an assigned clock constraint of 75 MHz

nCore fmax [MHz] Max. Coded Throughput [Gbit/s]

1 85.5 2.74

2 83.1 2.66

3 83.5 2.67

4 79.6 2.55

5 79.3 2.54

6 80.2 2.57

7 79.3 2.54

8 80.3 2.57

9 79.6 2.55

10 79.6 2.55

51

model efficiency.

On both plots in Figure 5.2, the power consumed by the decoder and the energy-per-

coded-bit gradually decrease as Eb/N0 increases, as has been observed for other LDPC

decoders in the literature [49, 51]. In particular, in Figure 5.2a, the decrease in decoder

power and energy-per-coded-bit caused by the increase in Eb/N0 are more obvious for

configuration with 4 or more processor cores until Eb/N0 reaches 6 dB. While the same

trend can be observed in Figure 5.2b, the effect of Eb/N0 is less significant.

In Figure 5.3, the decoder power and energy-per-coded-bit show a close-to-linear rela-

tionship with the number of processor cores in raw data, while a gradually increasing trend

can be observed in the plot with mapped values. The later decoding stages, implemented

as physical copies of decoder cores, in the decoding chain, can be said to consume less

power than the earlier decoding stages. This implies that less work is being done in the

later stages of the decoding process, which also agrees with the trend of the BER perfor-

mance observed in Figure 5.1, where improvement in BER performance is less significant

for configurations with 6 or more cores.

To further analyze the relationship between decoder power consumption, energy-per-

coded-bit, Eb/N0, number of processor cores, the incremental decoder power and energy-

per-coded-bit values are obtained by subtracting the decoder power and energy-per-coded-

bit values for the (N−1)-core configuration from the decoder power and energy-per-coded-

bit at N -core configuration, and are then plotted against Eb/N0 in Figure 5.4 and against

number of cores in Figure 5.5. In Figure 5.4a, the incremental decoder power and energy-

per-coded-bit gradually decrease for every dB of increase in Eb/N0 with the exception

of the values for the “1Core” and “10Core” configurations. The same trend appears in

Figure 5.4b. While the magnitude of decrease due to the increase in Eb/N0 is less obvious

after considering the effect of DC/DC efficiency, the difference between the behaviour from

52

1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

E
b
/N

o
 [dB]

T
o

ta
l
D

e
c
o

d
e

r
P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n
 [

W
]

1 2 3 4 5 6 7 8 9 10
0.21

0.42

0.63

0.83

1.04

1.25

1.46

1.67

1.88

2.08

2.29

E
n

e
rg

y
−

p
e

r−
c
o

d
e

d
−

b
it
 [

n
J
]

1core 2core 3core 4core 5core

6core 7core 8core 9core 10core

(a) Raw

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

E
b
/N

o
 [dB]

T
o

ta
l
D

e
c
o

d
e

r
P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n
 [

W
]

1 2 3 4 5 6 7 8 9 10
0

0.21

0.42

0.63

0.83

E
n

e
rg

y
−

p
e

r−
c
o

d
e

d
−

b
it
 [

n
J
]

1core 2core 3core 4core 5core

6core 7core 8core 9core 10core

(b) Mapped

Figure 5.2: Average measured decoder power and energy-per-coded-bit at various Eb/N0 for

various numbers of decoder cores on DE4 with 4-bit LLRs at a 75MHz clock with coded throughput

of 2.4 Gbit/s for the Ts = 192, ρ = 16, rate-1/2 (3,6) PN-LDPC-CC code based on three sets of

measurements for each data point.

53

1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Number of Processor Cores

T
o

ta
l
D

e
c
o

d
e

r
P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n
 [

W
]

1 2 3 4 5 6 7 8 9 10
0.21

0.42

0.63

0.83

1.04

1.25

1.46

1.67

1.88

2.08

2.29

E
n

e
rg

y
−

p
e

r−
c
o

d
e

d
−

b
it
 [

n
J
]

1dB 2dB 3dB 4dB 5dB
6dB 7dB 8dB 9dB 10dB

(a) Raw

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

Number of Processor Cores

T
o

ta
l
D

e
c
o

d
e

r
P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n
 [

W
]

1 2 3 4 5 6 7 8 9 10
0

0.21

0.42

0.63

0.83

E
n

e
rg

y
−

p
e

r−
c
o

d
e

d
−

b
it
 [

n
J
]

1dB 2dB 3dB 4dB 5dB
6dB 7dB 8dB 9dB 10dB

(b) Mapped

Figure 5.3: Average measured decoder power and energy-per-coded-bit at various Eb/N0 for

various numbers of decoder cores on DE4 with 4-bit LLRs at a 75MHz clock with coded throughput

of 2.4 Gbit/s for the Ts = 192, ρ = 16, rate-1/2 (3,6) PN-LDPC-CC code based on three sets of

measurements for each data point.

54

1 2 3 4 5 6 7 8 9 10
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

E
b
/N

o
 [dB]

In
c
re

m
e

n
ta

l
D

e
c
o

d
e

r
P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n
 [

W
]

1 2 3 4 5 6 7 8 9 10

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

In
c
re

m
e

n
ta

l
E

n
e

rg
y
−

p
e

r−
c
o

d
e

d
−

b
it
 [

n
J
]

1core 2core 3core 4core 5core

6core 7core 8core 9core 10core

(a) Raw

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

E
b
/N

o
 [dB]

In
c
re

m
e

n
ta

l
D

e
c
o

d
e

r
P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n
 [

W
]

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

In
c
re

m
e

n
ta

l
E

n
e

rg
y
−

p
e

r−
c
o

d
e

d
−

b
it
 [

n
J
]

1core 2core 3core 4core 5core

6core 7core 8core 9core 10core

(b) Mapped

Figure 5.4: Incremental measured decoder power and energy-per-coded-bit for every dB of in-

crease in Eb/N0 for various numbers of decoder cores on DE4 with 4-bit LLRs at a 75MHz clock

with coded throughput of 2.4 Gbit/s for the Ts = 192, ρ = 16, rate-1/2 (3,6) PN-LDPC-CC code.

55

the “1Core” and “10Core” configurations and the rest are much easier to see in Figure 5.4b.

In both of the plots in Figure 5.5, we observe a generally decreasing trend in the incremental

decoder power and energy-per-coded-bit for each additional processor core, which again

agrees with our conclusion drawn from Figure 5.3 above.

In Figure 5.4, the inconsistent behaviour of “1Core” is a result of the measurement

errors for the “1Core” configuration as well as the “0Core” base case, which is also used in

the calculation of the incremental power and energy-per-coded-bit for the “1Core” case. In

Figure 5.4, the behaviour of the “10Core” configuration is mainly caused by the measure-

ment data for the “9Core” configuration, the inconsistent behaviour of the “9Core”’ case

can be better-observed in Figure 5.5. The cause of the “9Core” behaviour can be mainly

explained by the inherent randomness within the CAD methodologies used in Quartus II

for placement and routing. In Figure 5.4, although the overall incremental values for the

“9Core” are lower than that of the other configurations, the curve itself still maintains the

same decreasing trend as the other curves when Eb/N0 is increased.

5.3 Logic Utilization

In Figure 5.5, the full and incremental logic utilization for all configurations on the Altera

DE4 are presented. For the 9th core, the incremental power from the 8th core is significantly

lower than that of the other cores. Furthermore, it can be seen from Figure 5.6 that the

increase in incremental logic utilization at 9th core from the 8th core is significantly greater

than that of the others. The aforementioned behaviours of the “9Core” configuration seem

to suggest that a higher logic utilization can result in lower decoder power and energy-per-

coded-bit, but they could also be just the result of the inherent randomness in the CAD

algorithms used in Quartus II. We verified this by performing additional compilations of

56

1 2 3 4 5 6 7 8 9 10
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

N
th

 Processor Core

In
c
re

m
e

n
ta

l
D

e
c
o

d
e

r
P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n
 [

W
]

1 2 3 4 5 6 7 8 9 10

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

In
c
re

m
e

n
ta

l
E

n
e

rg
y
−

p
e

r−
c
o

d
e

d
−

b
it
 [

n
J
]

1dB 2dB 3dB 4dB 5dB
6dB 7dB 8dB 9dB 10dB

(a) Raw

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

N
th

 Processor Core

In
c
re

m
e

n
ta

l
D

e
c
o

d
e

r
P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n
 [

W
]

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

In
c
re

m
e

n
ta

l
E

n
e

rg
y
−

p
e

r−
c
o

d
e

d
−

b
it
 [

n
J
]

1dB 2dB 3dB 4dB 5dB
6dB 7dB 8dB 9dB 10dB

(b) Mapped

Figure 5.5: Incremental measured decoder power and energy-per-coded-bit for each additional

core at various Eb/N0 on DE4 with 4-bit LLRs at a 75MHz clock with coded throughput of 2.4

Gbit/s for the Ts = 192, ρ = 16, rate-1/2 (3,6) PN-LDPC-CC code.

57

the “8core”, “9core”, and “10core” configurations with different random number seeds

specified at the Fitter stage on Quartus II. The resulting incremental logic utilization and

the incremental decoder power values varied by 11% as shown in Figure 5.7, and 0.362

W respectively with different seeds based on the raw data, and they have not shown any

consistent trend in their relationship, which confirms that the earlier observed relationship

is most likely caused by the randomness in the synthesis tools. This experiment shows that

results (area in the form of logic utilization for the case for FPGA) are dependent on the

random seed generators used during the Fitter stage, but the variation in this experiment

does not fully explain the variation around the results from different runs of the “9Core”

design in Figure 5.7.

0 1 2 3 4 5 6 7 8 9 10
 0%

 25%

 50%

 75%

 100%

%
 L

o
g
ic

 U
ti
liz

a
ti
o

n

Number of Decoder Processor Cores

0 1 2 3 4 5 6 7 8 9 10
 0%

 5%

 10%

 15%

 20%

In
c
re

m
e

n
ta

l
%

 L
o

g
ic

 U
ti
liz

a
ti
o

n

%LU incr %LU

Figure 5.6: Logic utilization and incremental logic utilization for various configurations with

different numbers of decoder processor cores

58

Figure 5.7: Incremental logic utilization for various configurations with 8, 9, 10 decoder proces-

sor cores

5.4 Chapter Summary

We also attempted to measure the encoder power consumption. However, using our power

measurement method, the configuration without an encoder turns out to consume slightly

more power than the configuration with an encoder. We conclude that the power con-

sumption of the encoder module is minimal in comparison to the FPGA power fluctuations

caused by the randomness in the synthesis tools. We will further quantify and explore this

behaviour in future work.

To summarize, we have demonstrated the chosen LDPC-CC code is capable of achiev-

ing a BER of 10−10 with 6 or more decoder cores at Eb/N0 of 6 dB. The trend of increase in

decoder power and energy-per-coded-bit from the increase of process cores slows down for

later cores in the decoding chain, which identifies less decoding work is being performed in

those cores. For 10−10 BER performance, having an additional core on the“ 9Core” config-

59

uration would cost an additional of 0.457 W based on the raw data and the improvement

in BER performance is less than 5 × 10−11. An increase of 0.25 dB or 0.50 dB in Eb/N0

would be required for the “8Core”, “7Core” configurations to achieve the same BER per-

formance as well as saving 0.224 W, and 0.350 W respectively, compared to the “9Core”

configuration.

In Table 2.2, the result from this work with 9 decoder cores at a Eb/N0 of 4.25 dB

is summarized along with the results of other existing LDPC-BC decoders described in

Section 2.4.2. Our work achieves a higher throughput than both implementations from

[34] on a lower clock frequency. The average incremental energy-per-coded-bit for our

design for 7 to 10 decoder cores at Eb/N0 dB is approximately 0.15 nJ per additional core.

Using this approximated value, our design with 15 cores at an Eb/N0 between 4 and 5 dB

consumes around 2.61 nJ per-coded-bit, which is around half of what is consumed by the

first implementation from [34].

A further exploration on the relationship between bit-precision for each core, clipping

threshold and resulting BER performance, decoder power, energy-per-coded-bit using the

6-core configuration is included in Chapter 6.

60

Chapter 6

Power-Driven Architectural

Exploration

There are many factors that influence an LDPC decoder’s performance, which can be eval-

uated by its area (in the form of logic utilization for FPGA), BER performance, and power

consumption as well as energy-per-bit. Clipping thresholds and bit width of LLRs are

two of the factors that have been left as constant in the reference design described in Sec-

tion 3.4. Higher bit-precision in LLR is expected to produce better BER performance, but

the improvement comes at the cost of extra hardware in the form of higher logic utilization

for FPGA, and higher power consumption. It has been also suggested that optimizing

clipping threshold, cth, can lead to improvement in BER performance [52]. Our goal is to

examine the trade-offs between power consumption, logic utilization and bit-precision, clip-

ping threshold. Instead of performing an exhaustive search on all possible combinations of

clipping threshold and bit resolution, the effect of each parameter is examined separately.

The effect of clipping thresholds on BER performance is first examined in Section 6.1.

61

Then the rate of saturation events for each core in the 6-core pipelined decoding chain is

then analyzed in Section 6.2. Based on the results from the rate of saturation events, a test

case with varying LLR width for each core in a “6Core” configuration is compared with

the constant 4-bit, 5-bit, and 6-bit implementations with same number of cores. Then

the results of the aforementioned experiment are used to analyze the effects of clipping

thresholds, bit-resolution for each decoder core on the power consumption, energy-per-

coded-bit, and BER performance of the decoder in Section 6.3.

6.1 Clipping Threshold versus BER Performance

A slightly modified version of the reference design, which is called LP4a, is developed

to further simplify the data gathering process. The channel output LLRs, and all the

intermediate output LLRs from each processor core are fed in their respective hard-decision

decoders (decoder slicer), and the outputs of those decoder slicers are compared with the

original copy of their corresponding test data bits. The numbers of detected errors for the

output from different processor cores are monitored by different counters, and stored in

different programmable registers to allow read access from the JTAG-MM interface. Using

this modified model reduces the amount of required individual compilations, and the time

required for data collection for determining BER performance. However, this version is

not suitable for power measurement application since the compiled design contains all the

additional logic to achieve separate monitoring of the numbers of errors as well as all the

decoder cores.

The architecture of LP4a is employed for a design with constant bit-width of 3, and a

design with constant bit-width of 4. The 3-bit version and the 4-bit version of the designs

are swept with a range of clipping thresholds, and the BER performances with 5 to 8 cores

62

1 1.2 1.4 1.6 1.8 2
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Clipping Threshold

B
E

R

2dB

2.5dB

3dB

3.5dB

4dB

4.5dB

5dB

5.5dB

6dB

6.5dB

7dB

7.5dB

8dB

(a) 3-bit 5Core

1 1.2 1.4 1.6 1.8 2
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Clipping Threshold

B
E

R

2dB

2.5dB

3dB

3.5dB

4dB

4.5dB

5dB

5.5dB

6dB

6.5dB

7dB

7.5dB

8dB

(b) 3-bit 6Core

1 1.2 1.4 1.6 1.8 2
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Clipping Threshold

B
E

R

2dB

2.5dB

3dB

3.5dB

4dB

4.5dB

5dB

5.5dB

6dB

6.5dB

7dB

7.5dB

8dB

(c) 3-bit 7Core

1 1.2 1.4 1.6 1.8 2
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Clipping Threshold

B
E

R

2dB

2.5dB

3dB

3.5dB

4dB

4.5dB

5dB

5.5dB

6dB

6.5dB

7dB

7.5dB

8dB

(d) 3-bit 8Core

Figure 6.1: Information BER at Eb/N0 of 2 dB to 8 dB for configurations with 5 to 8 decoder

cores on DE4 with 3-bit LLRs at a 75MHz clock with coded throughput of 2.4 Gbit/s for the

Ts = 192, ρ = 16, rate-1/2 (3,6) PN-LDPC-CC code using clipping thresholds from 1 to 2 during

quantization.

are captured and plotted in Figure 6.1 and 6.2. The purpose of this is to obtain a general

idea on the relationship between clipping threshold and BER performances. The case with

constant bit width of 3 bits is also considered here for reference purpose.

As shown in Figure 6.1, as the number of cores increases, the BER performance of

63

0.8 1 1.2 1.4 1.6 1.8 2
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Clipping Threshold

B
E

R

5Core

2dB

2.5dB

3dB

3.5dB

4dB

4.5dB

5dB

5.5dB

(a) 4-bit 5Core

0.8 1 1.2 1.4 1.6 1.8 2
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Clipping Threshold
B

E
R

6Core

2dB

2.5dB

3dB

3.5dB

4dB

4.5dB

5dB

5.5dB

(b) 4-bit 6Core

0.8 1 1.2 1.4 1.6 1.8 2
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Clipping Threshold

B
E

R

7Core

2dB

2.5dB

3dB

3.5dB

4dB

4.5dB

5dB

5.5dB

(c) 4-bit 7Core

0.8 1 1.2 1.4 1.6 1.8 2
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Clipping Threshold

B
E

R

8Core

2dB

2.5dB

3dB

3.5dB

4dB

4.5dB

5dB

5.5dB

(d) 4-bit 8Core

Figure 6.2: Information BER at Eb/N0 of 2 dB to 5.5 dB for configurations with 5 to 8 decoder

cores on DE4 with 4-bit LLRs at a 75MHz clock with coded throughput of 2.4 Gbit/s for the

Ts = 192, ρ = 16, rate-1/2 (3,6) PN-LDPC-CC code using clipping thresholds from 0.8 to 2

during quantization.

64

designs with increasing number of cores at the same Eb/N0 gradually becomes less sen-

sitive to the change in clipping threshold. It can be also seen that the optimal value of

clipping threshold in each sub-figures in Figure 6.1 decreases at the same Eb/N0 as the

number of cores increases. The increase in Eb/N0 provides a consistent improvement in

BER performance as expected throughout the change in clipping thresholds. The effect of

clipping thresholds on BER performance at higher Eb/N0 at lower number of cores is more

significant as their curves are deeper. In Figure 6.2, the same aforementioned characteris-

tics for Figure 6.2 remain applicable. The shape of BER performance curves for the 4-bit

implementation is much less sensitive to the change in clipping thresholds as the curves

are shallower than that of their 3-bit versions.

6.2 Rate of LLR Saturation

Before moving to the evaluation of the effect of bit-width on BER performance, we have

chosen to first evaluate the rate of LLR saturation in each decoder cores. Rate of saturation

is defined as the fraction of calculations that lead to a saturation event in variable nodes in

each decoder core. A saturation event is defined as the act of saturating the magnitude of

the LLRs if overflow is detected in the next two higher bit-positions during the summation

step in variable node. For example, in our 4-bit implementation where bit3 of the LLR

represents the sign, and bit2 to bit0 are used to represent the magnitude bits, two extra bits,

bit3 and bit4 are inserted between the sign bit and the magnitude bits for the summation

step inside the variable node, and the sign bit of the sum is temporarily stored in bit5.

If bit3 and bit4 become 1’s during the summation stage, then the output LLR from the

variable node becomes a concatenation of the sign bit of the sum and three magnitude bits

of 1’s to represent the maximum magnitude.

65

1 2 3 4 5 6
10

−3

10
−2

10
−1

10
0

N
th

 Processor Core

R
a

te
 o

f
S

a
tu

ra
ti
o

n

ovflbit1_5dB

ovflbit2_5dB

(a) 4b Eb/No=5 dB

1 2 3 4 5 6
10

−3

10
−2

10
−1

10
0

N
th

 Processor Core

R
a

te
 o

f
S

a
tu

ra
ti
o

n

ovflbit1_6dB

ovflbit2_6dB

(b) 4b Eb/No=6 dB

1 2 3 4 5 6
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

N
th

 Processor Core

R
a

te
 o

f
S

a
tu

ra
ti
o

n

ovflbit1_5dB

ovflbit2_5dB

(c) 5b Eb/No=5 dB

1 2 3 4 5 6
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

N
th

 Processor Core

R
a

te
 o

f
S

a
tu

ra
ti
o

n

ovflbit1_6dB

ovflbit2_6dB

(d) 5b Eb/No=6 dB

1 2 3 4 5 6
10

−8

10
−6

10
−4

10
−2

10
0

N
th

 Processor Core

R
a

te
 o

f
S

a
tu

ra
ti
o

n

ovflbit1_5dB

ovflbit2_5dB

(e) 6b Eb/No=5 dB

1 2 3 4 5 6
10

−8

10
−6

10
−4

10
−2

10
0

N
th

 Processor Core

R
a

te
 o

f
S

a
tu

ra
ti
o

n

ovflbit1_6dB

ovflbit2_6dB

(f) 6b Eb/No=6 dB

Figure 6.3: Rate of Saturation Events for “6Core” decoder with constant 4-bit, 5-bit, 6-bit LLRs

at Eb/N0 of 5, 6 dB

66

The LP4a version described in Section 6.1 is slightly modified to include the function-

ality to keep track of the rate of saturation events in each processor core. The rate of

saturation events captured for a “6Core” implementation at Eb/N0 of 5 dB and 6 dB are

included in Figure 6.3. The ovflbit1 labeled in the plots corresponds to the aforementioned

bit3, while the ovflbit2 is bit4. The intersection point of the ovflbit1 curve and the ovflbit2

curve occurs at the later core in the pipelined chain of decoder processor cores as bit width

is increased, while the increase of Eb/N0 has an effect of pushing the intersection point

back to an earlier core in the chain. Beyond the intersection point, the gap between the

rate of saturation events for two of the overflow bits becomes narrower. The intersection

point occurs around 3rd core for the 4-bit implementation, between 4th and 5th core for

5-bit implementation, and between 5th and 6th core for the 6-bit implementation. This

behaviour suggests a possibility that the BER performance may benefit from an additional

bit in the magnitude bits in the core that the intersection point occurs, and is to be verified

by the experiment described in Section 6.3.

6.3 Results and Analysis

Based on the results from the rate of saturation events presented in the previous section, a

combination of “445566” is chosen as the bit width of the output LLRs of each decoder core

in the 6-core pipelined chain based on the same order specified in the sequence, where the

first “4” is the bit width of the first decoder core in the chain, and the last “6” is that of the

last core. The extra bit in the magnitude bits is generated by saving the first neighbouring

overflow bit of the most significant bit of the magnitude bits during the summation step in

the variable node. The BER performance is obtained for the cases of constant 4-bit, 5-bit,

6-bit and “445566”, as shown in Figure 6.4, over a range of clipping thresholds based on

67

0.8 1 1.2 1.4 1.6 1.8 2
10

−11

10
−10

10
−9

10
−8

10
−7

Clipping Threshold

B
E

R

5dB

6dB

(a) 4-bit

0.8 1 1.2 1.4 1.6 1.8 2
10

−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

Clipping Threshold

B
E

R

5dB

6dB

(b) 5-bit

0.8 1 1.2 1.4 1.6 1.8 2
10

−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

Clipping Threshold

B
E

R

5dB

6dB

(c) 445566

0.8 1 1.2 1.4 1.6 1.8 2
10

−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

Clipping Threshold

B
E

R

5dB

6dB

(d) 6-bit

Figure 6.4: Information BER at Eb/N0 of 2 dB to 8 dB for configurations with 6 decoder cores

on DE4 with various bit-widths for LLRs at a 75MHz clock with coded throughput of 2.4 Gbit/s

for the Ts = 192, ρ = 16, rate-1/2 (3,6) PN-LDPC-CC code using clipping thresholds from 0.8

to 2 during quantization. The 5-dB curves are based on a target number of errors of 100, while

the 6-dB curves are based on a target number of errors of 5.

68

the same 4-bit quantized output LLRs from a BPSK-based AWGN channel. The 4-bit,

5-bit, 6-bit cases are implemented to provide references for the chosen “445566” case. The

BERs plotted for an Eb/N0 of 5 dB are based a target number of errors of 100, while the

BERs for 6 dB are based 5 errors to reduce emulation time. The low target number of

errors, 5, resulted in measurement error at the bottom of the 6-dB curves. However, while

this has affected the locating of the optimal clipping threshold, it has not affected the main

purpose of this experiment, which is to observe the effect on BER from growing the bit

width of the LLRs of consecutive cores. The clipping threshold for lowest BER at the same

Eb/N0 increases as the LLR width increases.

The decoder power measurements and energy-per-coded-bit for the configuration with

the best BER performance in each “6Core” implementation for Eb/N0 of 5 dB and 6 dB

shown in Figure 6.4 are summarized in Table 6.1 and 6.2 along with the respective clipping

threshold, cth, BER, and logic utilization.

Table 6.1: Decoder power measurements and energy-per-coded-bit, for PN-LDPC-CC decoder

with 6 cores with various bit widths taken at Eb/N0 of 5 dB at various clipping thresholds. The

target number of error of 100 is used for BER data gathering for all cases. Energy-per-coded-bit,

E/bit, is calculated using Equation (3.1). Results with subscript “raw” are based on raw power

measurement. Results with subscript “mapped” are based on the mapped power numbers using the

results in Section 4.3.2.

LLR

Width

Clipping

Threshold

Praw

[W]

Pmapped

[W]

E/bitraw

[nJ]

E/bitmapped

[nJ]

BER Logic Util.

4 const. 1 2.92 1.47 1.22 0.613 8.67× 10−9 53%

5 const. 1.4 4.00 1.80 1.67 0.749 1.07× 10−9 68%

445566 1.4 4.12 1.83 1.72 0.761 9.16×10−10 63%

6 const. 1.4 5.60 2.06 2.33 0.858 8.28×10−10 82%

69

4const 5const 445566 6const

0

0.5

1

1.5

R
a
ti
o
 n

o
rm

a
liz

e
d
 t
o
 "

4
4
5
5
6
6
"

4const 5const 445566 6const

0

1

L
O

G
1
0
(B

E
R

 r
a
ti
o
)

n
o
rm

a
liz

e
d
 t
o
 "

4
4
5
5
6
6
"

P
dec

E/bit

Logic Util.

BER

(a) Eb/N0 = 5dB

4const 5const 445566 6const

0

0.5

1

1.5

R
a
ti
o
 n

o
rm

a
liz

e
d
 t
o
 "

4
4
5
5
6
6
"

4const 5const 445566 6const

0

1

2

L
O

G
1
0
(B

E
R

 r
a
ti
o
)

n
o
rm

a
liz

e
d
 t
o
 "

4
4
5
5
6
6
"

P
dec

E/bit

Logic Util.

BER

(b) Eb/N0 = 6dB

Figure 6.5: Decoder power, energy-per-coded-bit (E/bit), Logic Utilization, BER normalized to

that of the “445566” case. The decoder power and energy-per-coded-bit values are based on the

“mapped” values from the DC/DC converter efficiency experiment.

70

Table 6.2: Decoder power measurements and energy-per-coded-bit, for PN-LDPC-CC decoder

with 6 cores with various bit widths taken at Eb/N0 of 6 dB at various clipping thresholds. The

target number of error of 5 is used for BER data gathering for all cases. Energy-per-coded-bit,

E/bit, is calculated using Equation (3.1). Results with subscript “raw” are based on raw power

measurement. Results with subscript “mapped” are based on the mapped power numbers using the

results in Section 4.3.2.

LLR

Width

Clipping

Threshold

Praw

[W]

Pmapped

[W]

E/bitraw

[nJ]

E/bitmapped

[nJ]

BER Logic Util.

4 const. 1 2.86 1.45 1.19 0.605 1.65×10−11 53%

5 const. 1.2 3.89 1.77 1.62 0.737 6.65×10−13 68%

445566 1.2 3.94 1.78 1.64 0.743 1.73×10−13 63%

6 const. 1.6 5.29 2.03 2.20 0.845 9.96×10−14 82%

The “445566” case turns out to consume similar power as the constant 5-bit implemen-

tation, but has a BER performance that is closer to that of the constant 6-bit implemen-

tation. The “445566” case also happens to have a lower logic utilization than the 5-bit

implementation. These trends are consistent from the tested Eb/N0 from 5.0 dB to 6.0

dB, but the effect of varying LLR width is more significant for 6 dB, which is the higher

Eb/N0 tested, as depicted in Figure 6.5. The results listed in Figure 6.1 and 6.2 have

demonstrated the “445566” case is more power-efficient and area-efficient than the 6-bit

implementation while having only a slightly worse BER performance. At similar costs in

logic utilization and decoder power as well as energy-per-coded bit, the “445566” case is

a better option than the constant 5-bit implementation, as it provides a better BER per-

formance. The lower logic utilization consumed by the “445566” implementation than the

5-bit implementation is most likely to be a result of the inherent randomness in the CAD

algorithms used on Quartus II.

71

0 5 10 15 20 25 30 35 40
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

P
D

e
c
 b

a
s
e

d
 o

n
 "

m
a

p
p

e
d

"
p

o
w

e
r

m
e

a
s
u

re
m

e
n

t
v
a

lu
e

s
 [

W
]

Sum of core bits

4−bit

6Core

fitted line

y = −0.0156*x+0.515*x
0.5

−0.628

(a) Eb/N0 = 5dB, R-square = 0.9789

0 5 10 15 20 25 30 35 40
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

P
D

e
c
 b

a
s
e

d
 o

n
 "

m
a

p
p

e
d

"
p

o
w

e
r

m
e

a
s
u

re
m

e
n

t
v
a

lu
e

s
 [

W
]

Sum of core bits

4−bit

6Core

fitted line

y = −0.0124*x+0.483*x
0.5

−0.570

(b) Eb/N0 = 6dB, R-square = 0.9826

Figure 6.6: Decoder power for 4-bit configurations and “6Core” configurations with 4-bit, 5-bit,

6-bit, and “445566” at Eb/N0 of 5 and 6 dB versus sum of core bits, where sum of core bits are

defined as the sum of LLR bit width used in each processor core for each configuration.

72

Furthermore, the decoder power values obtained from the four aforementioned cases

of “6Core” at two Eb/No and the decoder power values for various configurations with

constant 4-bit LLR width from Chapter 5 are plotted against the sum of core bits in

Figure 6.6. The fitted lines in both sub-figures in Figure 6.6 show a gradual increase

in decoder power as the sum of core bits increases. Since only the result from one case

of variable LLR widths are included, the measure, “sum of core bits”, conveys the same

relationship as the measure, number of cores. However, if data for more cases of variable

LLR widths are available, “sum of core bits” is a better measure than the number of cores

for analyzing the behaviour of decoder power.

The results from the “445566” experiment agrees with the hypothesis made at the

end of Section 6.2, which suggested that the increase of bit-width at the core, where we

observe intersection points of curves of overflow bits in Figure 6.3, can lead to a possible

improvement in BER performance.

73

Chapter 7

Conclusions

7.1 Summary and Contribution

In this thesis, we presented an FPGA implementation of a rate-1/2 (3,6) PN-LDPC-CC

encoder and decoder with Ts = 192 and ρ = 16 with a coded throughput of 2.4 Gbit/s on an

Altera DE4 board. The decoder achieves a BER of approximately 10−10 with 9 processor

cores, and an energy-per-coded bit of 1.683 nJ based on raw power measurements at an

Eb/N0 of 5 dB.

The set-up and model used to measure the power consumption of the decoder, and

the efficiency of DC/DC converter circuitry on the DE4 board are described in Chapter 4.

The measured power consumed by the decoder with various cores at various Eb/N0 using

a constant bit-width of 4 and clipping threshold of 1.33 is presented in Chapter 5. This

power measurement method can be used for any design implemented on the Altera DE4.

We observe that, as expected the increase of Eb/N0 is more effective at reducing the

decoder power and energy-per-coded bit for configurations with 5 or more cores before

74

Eb/N0 exceeds 5 dB. A decreasing incremental decoder power cost has also been observed

for each additional processor core. The logic utilization also holds a positive increasing

trend with the increase of the number of processor cores.

The effect of clipping threshold on the BER is analyzed in Chapter 6. The improvement

in BER performance of decoder with increasing number of cores received from the change

of clipping threshold gradually decreases at the same Eb/N0 with constant LLR bit-width

of 3 or 4. The increase of LLR bit-width from 3 to 4 also makes the decoder less sensitive

to the change in clipping threshold. Rate of saturation events of two overflow bits in each

decoder core are monitored for decoders with 4 to 8 cores at bit with LLR bit-width of

4 to 6. The results are used to select a test case with growing LLR width in the order

“445566” for a “6Core” configuration. The results from the chosen test case are compared

with constant LLR bit-width implementations with 4-bit, 5-bit, 6-bit processing quantized

4-bit AWGN channel LLRs.

While the test case is not necessarily using all the optimal parameters, it achieves a BER

performance that is closer to that of the 6-bit configuration, while consuming similar logic

utilization, power, and energy-per-coded-bit to that of the 5-bit implementation at Eb/N0

of 5, 6 dB. This observation has suggested the feasibility of using increasing LLR bit-width

of decoder cores to improve BER performance without increasing hardware and power

costs. This finding suggests an alternate way to achieve BER improvement without making

further optimizations in decoding algorithms, variable node and check node architecture

designs.

75

7.2 Future Research

The presented FPGA decoder is based on a shorter code from the 26 rate-1/2 codes pro-

posed in [26]. The test pattern generator, AWGN channel model, BER error counter and

control logic as well as the JTAG-MM interface can be adapted to examine the perfor-

mance of the other proposed PN-LDPC-CC with minor modifications. With the use of

JTAG-MM interface from Altera, the change in BER performance, power consumption

resulted from clipping threshold, Eb/N0, bit-width, target number of errors, and number

of cores can be obtained with reduced amount of required re-compilations. Additionally,

the presented design can also be adapted to an ASIC implementation with minor changes

to allow evaluation of the potential of the PN-LDPC-CC-based decoder.

The effect in BER performance of the presented “445566” case employing the idea

of growing LLR width can be further verified by setting a higher target of number of

errors to minimize measurement errors, provided more time is given. The idea of growing

LLR bit-width can also be further verified using other proposed PN-LDPC-CC in [26] to

confirm the consistency of its effect on BER performance and power consumption as well

as energy-per-coded-bit.

In our experiments, the coding throughput is kept constant since no efforts have been

made to increase the maximum achievable clock frequency of the design on the Altera DE4.

Tools such as Design Space Explorer on Quartus II [47] can also be employed to further

optimize the maximum clock frequency and logic utilization of the design.

Architectural changes other than the change of LLR width of each core in the pipelined

decoder chain can be further explored to optimize the performance of the PN-LDPC-CC

decoder on FPGAs.

Finally, the proposed power measurement method can be also used to characterize the

76

power consumption of other FPGA-based designs, including LDPC-CC and LDPC-BC

decoders.

7.3 Publication Arising out of Thesis

Si-Yun J. Li, Tyler L. Brandon, Duncan G. Elliott, and Vincent C. Gaudet, “Power Char-

acterization of a Gbit/s FPGA Convolutional LDPC Decoder,” accepted for lecture pre-

sentation of the IEEE Workshop on Signal Processing Systems (SiPS), Québec City, QC,

6 Pages, Oct. 2012

77

References

[1] T. Brandon, “Parallel-node low-density parity-check convolutional code encoder and

decoder architectures,” Ph.D. dissertation, University of Alberta, 2010.

[2] LTM4601 Datasheet, Linear Technology, Version C. Accessed Aug. 2, 2012. [Online].

Available: 〈http://cds.linear.com/docs/Datasheet/4601fc.pdf〉

[3] R. Gallager, “Low-density parity-check codes,” IRE Trans. on Information Theory,

vol. 8, no. 1, pp. 21–28, Jan. 1962.

[4] D. MacKay and R. Neal, “Near Shannon limit performance of low density parity check

codes,” Electronics Letters, vol. 32, no. 18, p. 1645, aug 1996.

[5] D. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE

Trans. on Information Theory, vol. 45, no. 2, pp. 399–431, Mar. 1999.

[6] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of provably good low-density

parity check codes,” in Proc. of IEEE Int. Symp. on Information Theory, 2000, p.

199.

78

<http://cds.linear.com/docs/Datasheet/4601fc.pdf>

[7] J. Sha, Z. Wang, M. Gao, and L. Li, “Multi-Gb/s LDPC code design and implemen-

tation,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 17, no. 2,

pp. 262–268, Feb. 2009.

[8] A. Darabiha, A. Chan Carusone, and F. Kschischang, “Multi-Gbit/sec low density

parity check decoders with reduced interconnect complexity,” in Proc. of IEEE Int.

Symp. on Circuits and Systems, vol. 5, May 2005, pp. 5194–5197.

[9] A. Darabiha, A. Chan Carusone, and F. Kschischang, “Power reduction techniques for

LDPC decoders,” IEEE Journal of Solid-State Circuits, vol. 43, no. 8, pp. 1835–1845,

Aug. 2008.

[10] L. Liu and C. Shi, “Sliced message passing: High throughput overlapped decoding

of high-rate low-density parity-check codes,” IEEE Trans. on Circuits and Systems I:

Regular Papers, vol. 55, no. 11, pp. 3697–3710, Dec. 2008.

[11] Z. Cui, Z. Wang, and Y. Liu, “High-throughput layered LDPC decoding architecture,”

IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 17, no. 4, pp. 582–

587, Apr. 2009.

[12] K. Zhang, X. Huang, and Z. Wang, “A high-throughput LDPC decoder architecture

with rate compatibility,” IEEE Trans. on Circuits and Systems I: Regular Papers,,

vol. 58, no. 4, pp. 839–847, Apr. 2011.

[13] S. Yen, S. Hung, C. Chen, H. Chang, S. Jou, and C. Lee, “A 5.79-Gb/s energy-

efficient multirate LDPC codec chip for IEEE 802.15.3c applications,” IEEE Journal

of Solid-State Circuits, vol. 47, no. 9, pp. 2246–2257, Sep. 2012.

79

[14] Z. Zhang, V. Anantharam, M. Wainwright, and B. Nikolic, “An efficient 10GBASE-T

ethernet LDPC decoder design with low error floors,” IEEE Journal of Solid-State

Circuits, vol. 45, no. 4, pp. 843–855, Apr. 2010.

[15] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting

coding and decoding: Turbo-codes. 1,” in Proc. of IEEE Int. Conf. on Communica-

tions, vol. 2, may 1993, pp. 1064–1070.

[16] C. Wong and H. Chang, “High-efficiency processing schedule for parallel turbo de-

coders using QPP interleaver,” IEEE Trans. on Circuits and Systems I: Regular Pa-

pers, vol. 58, no. 6, pp. 1412–1420, June 2011.

[17] C. Leroux, G. Le Mestre, C. Jego, P. Adde, and M. Jezequel, “A 5-Gbps FPGA

prototype of a (31,29)2 Reed-Solomon turbo decoder,” in Proc. of Int. Symp. onTurbo

Codes and Related Topics, Sep. 2008, pp. 67–72.

[18] S. Karim and I. Chakrabarti, “Design of efficient high throughput pipelined parallel

turbo decoder using QPP interleaver,” in Proc. of Int. Conf. on Multimedia, Signal

Processing and Communication Technologies (IMPACT), Dec. 2011, pp. 248–251.

[19] A. Tu, “A gigabit/second turbo decoder on field programmable gate array: Support-

ing TSAT channel coding requirement,” in Proc. of IEEE Military Communications

Conference, Oct. 2006, pp. 1–5.

[20] A. Jiménez-Feltström and K. Zigangirov, “Time-varying periodic convolutional codes

with low-density parity-check matrix,” IEEE Trans. on Information Theory, vol. 45,

no. 6, pp. 2181–2191, Sep. 1999.

80

[21] A. Pusane, K. Zigangirov, and D. Costello, “Construction of irregular LDPC convo-

lutional codes with fast encoding,” in Proc. of IEEE Int. Conf. on Communications,

vol. 3, June 2006, pp. 1160–1165.

[22] H. Koga, “Next-generation power line communications and standardization,”

Panasonic Technical Journal, vol. 56, no. 1, pp. 16–21, Apr. 2010. [Online]. Available:

〈http://panasonic.co.jp/ptj/v5601/pdf/p0104.pdf〉

[23] “Advanced technologies from ISRO,” Indian Space Research Organization (ISRO),

2010. [Online]. Available: 〈http://www.isro.gov.in/ttg/pdfuploads/TTICLDPCC.

pdf〉

[24] R. Swamy, S. Bates, and T. Brandon, “Architectures for ASIC implementations of

low-density parity-check convolutional encoders and decoders,” in Proc. of IEEE Int.

Symp. on Circuits and Systems, vol. 5, May 2005, pp. 4513–4516.

[25] T. Brandon, J. Koob, L. van den Berg, Z. Chen, A. Alimohammad, R. Swamy,

J. Klaus, S. Bates, V. Gaudet, B. Cockburn, and D. Elliott, “A compact 1.1-Gb/s en-

coder and a memory-based 600-Mb/s decoder for LDPC convolutional codes,” IEEE

Trans. on Circuits and Systems I: Regular Papers, vol. 56, no. 5, pp. 1017–1029, May

2009.

[26] Z. Chen, T. Brandon, D. Elliott, S. Bates, W. Krzymien, and B. Cockburn, “Jointly

designed architecture-aware LDPC convolutional codes and high-throughput parallel

encoders/decoders,” IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 57,

no. 4, pp. 836–849, Apr. 2010.

81

<http://panasonic.co.jp/ptj/v5601/pdf/p0104.pdf>
<http://www.isro.gov.in/ttg/pdfuploads/TTICLDPCC.pdf>
<http://www.isro.gov.in/ttg/pdfuploads/TTICLDPCC.pdf>

[27] Y. Ueng, Y. Wang, L. Kan, C. Yang, and Y. Su, “Jointly designed architecture-aware

LDPC convolutional codes and memory-based shuffled decoder architecture,” IEEE

Trans. on Signal Processing, vol. 60, no. 8, pp. 4387–4402, Aug. 2012.

[28] C. Chen, Y. Lin, H. Chang, and C. Lee, “A 2.37-Gb/s 284.8 mW rate-compatible

(491,3,6) LDPC-CC decoder,” IEEE Journal of Solid-State Circuits, vol. 47, no. 4,

pp. 817–831, Apr. 2012.

[29] A. Darabiha, A. Chan Carusone, and F. Kschischang, “A bit-serial approximate min-

sum LDPC decoder and FPGA implementation,” in Proc. of IEEE Int. Symp. on

Circuits and Systems, May 2006.

[30] S. Sharifi Tehrani, S. Mannor, and W. Gross, “An area-efficient FPGA-based archi-

tecture for fully-parallel stochastic LDPC decoding,” in Proc. of IEEE Workshop on

Signal Processing Systems, Oct. 2007, pp. 255–260.

[31] V. Chandrasetty and S. Aziz, “FPGA implementation of high performance LDPC

decoder using modified 2-bit min-sum algorithm,” in Proc. of Second Int. Conf. on

Computer Research and Development, May 2010, pp. 881–885.

[32] S. Sharifi Tehrani, S. Mannor, and W. Gross, “Fully parallel stochastic LDPC de-

coders,” IEEE Trans. on Signal Processing, vol. 56, no. 11, pp. 5692–5703, Nov. 2008.

[33] R. Zarubica, S. Wilson, and E. Hall, “Multi-Gbps FPGA-based low density parity

check (LDPC) decoder design,” in Proc. of IEEE Global Telecommunications Confer-

ence (GLOBECOM), Nov. 2007, pp. 548–552.

[34] X. Chen, J. Kang, S. Lin, and V. Akella, “Memory system optimization for FPGA-

based implementation of quasi-cyclic LDPC codes decoders,” IEEE Trans. on Circuits

and Systems I: Regular Papers, vol. 58, no. 1, pp. 98–111, Jan. 2011.

82

[35] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. on Infor-

mation Theory, vol. 27, no. 5, pp. 533–547, Sep. 1981.

[36] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product

algorithm,” IEEE Trans. on Information Theory, vol. 47, no. 2, pp. 498–519, Feb.

2001.

[37] N. Wiberg, H. Loeliger, and R. Kotter, “Codes and iterative decoding on general

graphs,” in Proc. of IEEE Int. Symp. on Information Theory, Sep. 1995, p. 468.

[38] M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative decoding of

low-density parity check codes based on belief propagation,” IEEE Trans. on Com-

munications, vol. 47, no. 5, pp. 673–680, May 1999.

[39] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X.-Y. Hu, “Reduced-

complexity decoding of LDPC codes,” IEEE Trans. on Communications, vol. 53,

no. 8, pp. 1288–1299, Aug. 2005.

[40] A. Anastasopoulos, “A comparison between the sum-product and the min-sum it-

erative detection algorithms based on density evolution,” in Proc. of IEEE Global

Telecommunications Conference (GLOBECOM), vol. 2, 2001, pp. 1021–1025.

[41] S. Hemati, A. Banihashemi, and C. Plett, “A 0.18-um CMOS analog min-sum iterative

decoder for a (32,8) Low-Density Parity-Check (LDPC) code,” IEEE Journal of Solid-

State Circuits, vol. 41, no. 11, pp. 2531–2540, Nov. 2006.

[42] C. Kong and S. Chakrabartty, “Analog iterative LDPC decoder based on margin

propagation,” IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 54, no. 12,

pp. 1140–1144, Dec. 2007.

83

[43] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” IEEE Trans.

on Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 2, pp.

203–215, Feb. 2007.

[44] S. Sharifi Tehrani, W. Gross, and S. Mannor, “Stochastic decoding of LDPC codes,”

IEEE Communications Letters, vol. 10, no. 10, pp. 716–718, Oct. 2006.

[45] T. Lang, E. Musoll, and J. Cortadella, “Individual flip-flops with gated clocks for low

power datapaths,” IEEE Trans. on Circuits and Systems II: Analog and Digital Signal

Processing, vol. 44, no. 6, pp. 507–516, June 1997.

[46] Altera Avalon Interface Specifications, Altera, Version 1.0. [Online]. Available:

〈http://www.altera.com/literature/manual/mnl avalon spec.pdf〉

[47] Altera Quartus II Handbook, Altera, Version 12.0.0. [Online]. Available: 〈http:

//www.altera.com/literature/hb/qts/quartusii handbook.pdf〉

[48] Altera, “40-nm FPGA power management and advantages,” White Paper, Altera,

Dec. 2008, version 1.2. [Online]. Available: 〈http://www.altera.com/literature/wp/

wp-01059-stratix-iv-40nm-power-management.pdf〉

[49] A. Blanksby and C. Howland, “A 690-mw 1-gb/s 1024-b, rate-1/2 low-density parity-

check code decoder,” IEEE Journal of Solid-State Circuits, vol. 37, no. 3, pp. 404–412,

Mar. 2002.

[50] Altera Stratix IV Development and Education Board (DE4) Schematic, Terasic, Ver-

sion 1.0.

[51] B. Crowley, “Predicting the switching activity of low-density parity-check decoders

through density evolution,” Master’s thesis, University of Alberta, 2009.

84

<http://www.altera.com/literature/manual/mnl_avalon_spec.pdf>
<http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf>
<http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf>
<http://www.altera.com/literature/wp/wp-01059-stratix-iv-40nm-power-management.pdf>
<http://www.altera.com/literature/wp/wp-01059-stratix-iv-40nm-power-management.pdf>

[52] J. Zhao, F. Zarkeshvari, and A. Banihashemi, “On implementation of min-sum al-

gorithm and its modifications for decoding low-density parity-check (LDPC) codes,”

IEEE Trans. on Communications, vol. 53, no. 4, pp. 549–554, Apr. 2005.

[53] A. Pusane, A. Jiménez-Feltström, A. Sridharan, M. Lentmaier, K. Zigangirov, and

D. Costello, “Implementation aspects of LDPC convolutional codes,” IEEE Trans. on

Communications, vol. 56, no. 7, pp. 1060–1069, July 2008.

[54] E. Guizzo, “Closing in on the perfect code [turbo codes],” IEEE Spectrum, vol. 41,

no. 3, pp. 36–42, Mar. 2004.

85

APPENDICES

86

Appendix A

A Lean Host-FPGA Interface Using

JTAG-MM

This application note explains how to implement low-hardware-cost communication be-

tween an Altera FPGA and a host computer using the JTAG-MM interface, giving the

host read-write accesses to registers created in the FPGA design. A soft-core microcon-

troller is not required on the FPGA, avoiding the associated hardware and power cost.

The main motivation for employing this interface is to allow parameterized experiments

and interrogate internal state, such as in the BER experiments, where parameters like

Eb/N0 and clipping threshold can be modified without re-compilations.

We make the following assumptions:

• This tutorial assumes on slight experience on using Quartus II and proper configured

installation of Quartus II and ModelSim Altera Starter Edition.

• The overall flow should apply to newer versions of SOPC Builder and System

87

Console with minor modifications, but please note that this guide is specifically

written for Quartus II 11.0 Build 157.

• Altera is in the process of replacing SOPC Builder with Qsys, while the main idea

of the flow should still apply, there is no guarantee that the steps for SOPC Builder

will work with Qsys.

A.1 Checklist

• Quartus II Version 11.0 Build 157 (I know it would work for Version 10.x as well)

• An Altera FPGA board (I used DE4)

• An existing Quartus II project with a top-level HDL file that contains all the com-

patible I/O signal descriptions for the target FPGA

• my dut.v included in Appendix B

• sw.tcl and hw.tcl included in Appendix C

A.2 Detailed steps for JTAG-MM

A.2.1 Define an SOPC system

1. Open the existing Quartus II project and from the main Quartus II window, go to

Tools > SOPC Builder

88

Figure A.1: Create a new SOPC system

Figure A.2: Clock settings for SOPC

89

2. SOPC Builder will ask you to Create New System, as shown in Figure A.1, give

it a name and pick the Target HDL, and click OK. For our simple test case, I’ll just

call it “test”, and I’ll pick Verilog as the Target HDL.

3. Since I will be connecting the SOPC system to a 50MHz clock, I’ll just leave the

Clock Settings at default, as shown Figure A.2. I believe this would need to be

modified if you plan to connect your SOPC module to a different clock.

4. Under the tab System Contents on the left of your Altera SOPC Builder win-

dow, double-click New component.. under Project to import your pre-written

my dut.v.

5. Under the tab HDL Files on the Component Editor, specify the location of

your my dut.v file and Top Level Module (if you have included more than one

HDL module). Go through all the other tabs on the Component Editor window

to make sure everything is imported properly. Click Finish when you are done and

Click Yes, Save to save my dut 1.0 and my dut hw.tcl file.

6. Under Library, expand Bridges and Adapters and then expand Memory Mapped,

double-click JTAG to Avalon Master Bridge to add that to your SOPC system.

If you plan to test your setup in simulation mode first, please check the box before

Use PLI Simulation Mode, as shown in Figure A.3. (Leave it unchecked if you

plan to test this on hardware) Click Finish to finish adding the module.

7. Under Library, double-click my dut for that to be added to your SOPC system,

and click Finish to finish adding.

8. Connect my dut 0 to the master 0 as indicated in Figure A.4.

90

Figure A.3: Configure JTAG to Avalon Master Bridge

Figure A.4: Connect components for SOPC system.

91

9. Save the system.

10. Click on the tab System Generation, check the box before Simulation. Create

project simulator files. Then click Generate at the bottom of your Altera SOPC

Builder window to generate your SOPC system.

11. Under the project folder, open a file named “test inst.v” (this should have been

generated in the previous step) and copy the content (a sample instantiation of

the SOPC module) to your top level HDL file. (“test” corresponds to the name

I have assigned to this SOPC system in Step 2.) I find that master read and

master write commands would time out on System Console if the “rst” port of the

SOPC instance is left unconnected. I am not sure if that’s because I’ve missed any

other intermediate steps.

12. Update the clock and reset signal connections based on your target FPGA. In the case

of DE4, I am connecting clk 0 to OSC 50 BANK2, reset n to CPU RESET n,

as shown in Figure A.5.

test test_inst

{

.clk_0(OSC_50_BANK2),

.reset_n(CPU_RESET_n)

}

Figure A.5: HDL code for connecting SOPC system

13. Save all the changes and click Compile Design on the Tasks sub-window.

92

A.2.2 Simulation Mode

1. Go back to the Altera SOPC Builder window, go to the tab System Generation,

click on Run Simulator to launch Modelsim (Altera Starter Edition).

2. Enter s on the Command window of Modelsim to load the design. If you’ve done

everything right so far, you should see the message shown in Figure A.6 on Modelsim.

Figure A.6: Modelsim message after loading the design

3. Now minimize the Modelsim window, go back to the Altera SOPC Builder win-

dow, go under Tools and select System Console.

4. Under Tcl Console of System Console, load sw.tcl by entering the following com-

mand (you may need to cd into the appropriate directory that contains the sw.tcl

script though):

source sw.tcl

5. Go to ModelSim window, add all signals you would like to verify to the wave

window. Type “run 100 ms” in the command window but do not press enter yet.

(I chose a rather long simulation time here on purpose; feel free to adjust this as

needed.)

6. Return to System Console, enter the following line in Tcl Console:

master_read_32 $cm 0x0 1

(The tcl command above reads one 32-bit number from the memory address 0x0, $cm

is defined in sw.tcl to point to the path of the master bridge). Go to ModelSim

93

window, now press Enter for the “run 100 ms” command. You should now see

what is shown in Figure A.7 on your System Console.

Figure A.7: Returned value on System Console after a read command

7. Then we can write to the “test” register defined in my dut.v using the following

command:

master_write_32 $cm 0x0 0xFFFFFFFF

Assuming you have added the “test” register to the ModelSim wave window, you

should now see the value in “test” being changed from 0x0 to 0xFFFFFFFF. Or you

can simply double-check using the same read command in Step 6 , and you should

see the message shown in Figure A.8:

Figure A.8: Returned value on System Console after a write command

8. Exit System Console and ModelSim after you are done. (Note: You would find it’s

impossible to exit from ModelSim without killing the related processes under Windows

Task Manager. I do not have a solution for this.)

A.2.3 Hardware Mode

1. In Altera SOPC Builder window, right-click the JTAG to Avalon Master Bridge

module in your SOPC system and choose Edit from the menu, uncheck the box for

Use PLI Simulation Mode.

94

2. Save the change for the SOPC system and click Generate the bottom of the window

to update the script files.

3. Go to the main Quartus II window, and Compile Design again.

4. Download the updated programming file to your target FPGA.

5. Launch System Console from Altera SOPC Builder window.

6. For Quartus II v11.0 Build 157, under Tcl Console of System Console, load

hw.tcl by entering the following command (you may need to cd into the appropriate

directory that contains the hw.tcl script though):

source hw.tcl

For Quartus II v11.1 Build 173, you need to use the following commands instead

of what is included in hw.tcl to connect to the FPGA:
set masters [get_service_paths master]

set cm [lindex $masters 0]

open_service master $cm

7. The master read 32 and master write 32 Tcl commands used in the Simulation

mode can be used here the same way to read from and write to the target register.

Additional available Tcl commands can be found in Analyzing and Debugging

Designs with the System Console document on Altera’s website.

95

Appendix B

Verilog Code for device-under-test

module my_dut

(

/* the I/O’s of this module needs to have the following format:

1. prefix: avs_

2. s0_ : this needs to match with the number of the dut slave

assigned on SOPC, use s0_ if you only have one MM slave

3. write, read, address, writedata, readdata: for a full list

of available Avalon-MM signals, please refer to Table: 3-1

on Avalon Interface Specifications document

*/

// clock & reset interface

input csi_clock_clk,

96

input csi_clock_reset,

// MM slave

input avs_s0_write,

input avs_s0_read,

// Width of address can be resized as needed

input [7:0] avs_s0_address,

input [31:0] avs_s0_writedata,

output reg [31:0] avs_s0_readdata

);

reg [31:0] test;

always @ (posedge csi_clock_clk or posedge csi_clock_reset) begin

if (csi_clock_reset) begin

test <= 0;

end else if (avs_s0_write) begin // if write signal is high

if (avs_s0_address == 0) begin

test <= avs_s0_writedata;

end

end else if (avs_s0_read) begin // if read signal is high

if (avs_s0_address == 0) begin

avs_s0_readdata <= test;

97

end

end

end

endmodule

98

Appendix C

Tcl Scripts

C.1 Tcl Script for Simulation Mode

#

The following needs to match with the name of the master bridge

defined on SOPC

#

set console_master_name "master_0"

#

The following needs to match with the PLI Simulation Port

defined on SOPC

#

99

set pli_master_port_number "50000"

#

Obtain service paths from Simulation mode

#

set master_service_paths [add_service pli_master $console_master_name \

$pli_master_port_number]

#

Open Service

#

open_service master $master_service_paths

#

Create a shorter variable for master path

#

set cm $master_service_paths

100

C.2 Tcl Script for Hardware Mode

#

Obtain service path for master

#

set cm [get_service_paths master]

#

Open service

#

open_service master $cm

101

	List of Tables
	List of Figures
	Nomenclature
	Introduction
	Motivation
	Thesis Organization

	Background
	LDPC Definitions
	LDPC Decoding
	LDPC-CC Definitions
	State-of-the-art LDPC Decoders
	ASIC-based LDPC Decoders
	FPGA-based LDPC Decoders

	FPGA Implementation
	PN-LPDC-CC
	PN-LDPC-CC Encoder
	Gate-Swapping
	Clock-gating

	PN-LDPC-CC Decoder
	Truncated Min-Sum Check Sum Operation
	Removal of Reset Circuitry in Check-Node
	Removal of Saturation Bit
	Clock-gated Registers

	System Design

	Power Measurement
	Available Power Measurement Methods
	Board Power Measurement Method
	DC/DC Converter Efficiency
	Estimation Based on Data Sheet
	Estimation Based on Experimental Results

	Chapter Summary

	Measurement Results and Discussion
	BER Performance
	Power Measurement Results
	Logic Utilization
	Chapter Summary

	Power-Driven Architectural Exploration
	Clipping Threshold versus BER Performance
	Rate of LLR Saturation
	Results and Analysis

	Conclusions
	Summary and Contribution
	Future Research
	Publication Arising out of Thesis

	References
	APPENDICES
	A Lean Host-FPGA Interface Using JTAG-MM
	Checklist
	Detailed steps for JTAG-MM
	Define an SOPC system
	Simulation Mode
	Hardware Mode

	Verilog Code for device-under-test
	Tcl Scripts
	Tcl Script for Simulation Mode
	Tcl Script for Hardware Mode

