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Abstract—This paper proposes a new decoding algorithm and
its decoder architecture to completely remove the parallel Chien
search in double error correcting (DEC) BCH decoders. The
proposed algorithm called search-less decoding utilizes a
quadratic formula to efficiently compute the roots of an error-
location polynomial in the finite field. Since the parallel Chien
search block dominates the overall complexity of a conventional
DEC BCH decoder, the proposed algorithm is effective in
mitigating the hardware complexity. Furthermore, a search-less
(44, 32, 2) BCH decoder architecture is proposed for fault-
tolerant embedded systems. Compared to the conventional
decoder associated with 16-parallel Chien search, the proposed
decoder decreases the hardware complexity by 51% without
sacrificing the decoding throughput.

Keywords—BCH decoders; Chien search; double error
correcting; fault-tolerant systems; low complexity

[. INTRODUCTION

Fault-tolerant systems work normally in the presence of a
certain level of faults. Especially for computer systems
included in life-critical applications such as vehicles and
medical equipment, fault tolerance is very important [1].
Among various fault-tolerant methods, information redundancy
is one of the most important ways to protect the system against
errors. Particularly, error-correcting codes, which add parity
bits to the data to detect and correct the errors, are widely
employed to realize fault-tolerant systems [1]. For embedded
systems, the Hamming code that can correct one-bit error has
been widely used due to its simplicity. As the feature size and
supply voltage are decreased in advanced semiconductor
technologies, however, stronger codes are now required to
protect the systems from radiation-induced soft errors [2][3].
For the systems consisting of embedded processors and
random access memories (RAM), the double-error correcting
(DEC) BCH code is in the limelight as an alternative to the
Hamming code [2][4].

The BCH code, which is one of the most widely used
algebraic codes, can correct multiple errors [5]. Especially, the
DEC BCH code has been employed in multi-level cell (MLC)
NOR flash memories [6-8] as well as fault-tolerant systems
[2][4], because it can be decoded much faster than ¢-bit-
correcting codes where ¢ is greater than two. To decode a #-bit-
correcting BCH code, the iterative Berlekamp-Massey (BM)
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algorithm is wusually applied to obtain an error-location
polynomial by solving the key equation. In the decoding of the
DEC BCH code, on the other hand, the number of unknowns is
reduced to two, and thus the error-location polynomial can be
derived using the syndrome values [9].

While most of the previous works have mainly focused on
reducing the decoding latency, it is also crucial to reduce the
hardware complexity of the corresponding decoder. For
example, an automotive microcontroller unit (MCU) should be
fault-tolerant and implementable with a low complexity
because tens of automotive MCUs are included in a car these
days. In the decoding of a DEC BCH code, the key equation
solver (KES) can be simplified, but the complexity of Chien
search that finds the roots of the error-location polynomial
becomes significant, since an extremely parallel structure is
required to minimize the decoding latency [6-8]. As the block
exhaustively searches all the code bits for two faulty locations,
its complexity is proportional to the code length when realized
with fully parallel architecture.

To remove the parallel Chien search and relax the hardware
complexity, this paper proposes a search-less decoding
algorithm for DEC BCH codes. The proposed algorithm
completely removes the exhaustive search process by solving
the error-location polynomial algebraically. Furthermore, a
low-complexity architecture for search-less DEC BCH
decoding is proposed for fault-tolerant systems. The proposed
decoder shows the effectiveness of the proposed search-less
algorithm.

The rest of the paper is organized as follows. The
conventional DEC BCH decoding algorithm and the proposed
search-less decoding algorithm are described in Sections II and
II1, respectively. Section IV presents the DEC BCH decoder
architecture based on the proposed algorithm and its
implementation results. Conclusion remarks are made in
Section V.

II. CONVENTIONAL DEC BCH DECODING ALGORITHM

The t-error-correcting binary BCH code is conventionally
decoded by passing through three major steps. Let the received
codeword be represented in a polynomial form as follows,
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Fig. 1. A block diagram of conventional DEC BCH decoding.

r(X)=ry+nX++n_ X" (1)

First, the syndrome values of the codeword, S = (S, S, ...,
S,,), are computed by

. . 2
=ry+na +-4r, "V

where o' is an element of GF(2") and n representing the code
length is 2"-1.

The overall structure of a conventional DEC BCH decoder
is shown in Fig. 1. Since ¢ is two in case of the DEC code, the
syndrome computation is not complicated. Moreover, it is
sufficient to compute only odd-indexed syndromes because
even-indexed syndromes can be derived by squaring the odd-
indexed syndromes.

Second, an error-location polynomiale(X)=1+0,X +---

+0,X" is determined by solving the key equation [9]. With
assuming v = ¢ errors and setting Sy to 1, the key equation is

j=13,..,2t-1

t
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The key equation for the DEC BCH code can be solved
directly instead of using the conventional BM algorithm [9].
For the codeword with two errors at most, (3) is simply solved
as

o =35,
S, 4)

Therefore, the error-location polynomial is

G(X):1+SIX+(SI2 +%JX2. (5)
1

To remove the complex division in (5), both sides are
multiplied by S; [6-8], which results in a more efficient error-
location polynomial,

o (X) =S +S X +(S7+8;) x7. (6)

The KES block in Fig. 1 computes (6).

Lastly, the error locations, x; and x,, are determined by
finding the roots of 6'(X). Conventionally, the Chien search is
utilized to check whether 6'(a') = 0 for 0 < i < n. If there is
any error in the codeword and o' is a root of &' (X), then the
exponent of the reciprocal o " is the error location. In other
words, the received digit 7, is faulty. As depicted in Fig. 1,
the errors in the binary BCH code can be corrected by simply
flipping the erroneous bits.

The fully parallel Chien search block evaluates n elements
simultaneously, while the serial one checks each element at a
time by adopting Horner’s rule. Hence, the parallel factor of
the block should be determined between the fully parallel and
the serial architecture with considering the latency requirement.
Since the DEC BCH decoder is required to be very fast in
general, the Chien search block has to be realized with a highly
parallel structure. Therefore, the search block dominates the
overall complexity [6][7]. In [4], on the other hand, the KES
and the Chien search blocks are replaced with a lookup table
(LUT) that contains all the possible pairs of syndromes and
their corresponding error patterns. Though the LUT approach
is straightforward, the table size is inhibitive in most cases. To
avoid the exhaustive searching, a new DEC BCH decoding
algorithm is proposed in this paper.

III. PROPOSED SEARCH-LESS DEC BCH DECODING ALGORITHM

The proposed DEC BCH decoding algorithm is called
search-less, since it algebraically solves the error-location
polynomial based on the quadratic formula in GF(2™) [10].
First of all, the number of errors should be derived from two
syndrome values, S, and Ss. Since « and o’ of GF(2") are the
roots of any error-free codeword polynomial, the syndrome
values can be rewritten as

S =r(a)=e(a)=a’ +a”
Sy =r(a’)=efa’)=(a" ] +(a")

where e denotes the error pattern, and j, and j,
(0< j, < j, <n) represent the error locations. If S; is zero, S;
also becomes zero according to the definition (7) so that the
received codeword is error free. If S; is not zero and S;° is
equal to S, it is regarded as a single-error case. In this case,
the error-location polynomial (5) is reduced to

(7

o(X)=1+Sx, ®)

so that we can find the error location with ease. Otherwise, a
case of double errors is detected and the quadratic formula is
evaluated to find error locations.

The error-location polynomial (5) can be reformulated as

o +ro=u, )
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Fig. 2. Overall procedure of the proposed search-less DEC BCH
decoding algorithm.

where

87+,

S’ +S,
S2 '

s?

(10)

Note that (9) is exactly equivalent to (5) because both S; and
S;+S; are not zero in the double-error case. Therefore, there
must be two solutions for x and accordingly for w. One
solution is computed by

o, :y92+(;¢+,u2)922 +~-~+(#+#2+"'+#2mfz)92m4, (11)

where 0 is any element of GF(2") whose trace Tr(6) is one,
and the other solution is

w, =w,+1,

(12)
as (o1t Hot1) = oo, = 4.

Finally, the two roots of (5), x; and x,, can be generated
from @, and w, based on (10). For the sake of completeness,
the definition of the trace and a few lemmas needed to prove
(9)-(11) are described in Appendix.

The overall flow of the proposed decoding algorithm is
depicted in Fig. 2. When two bits are faulty, u, 0, and w, are
computed in sequel and then the error locations x; and x, are
obtained by using them. The faulty bits are easily corrected by
flipping them as in the conventional algorithm. Although
calculating (11) seems to be complicated, it can be
implemented with a few logic gates as # is a predetermined
constant. In the next section, we will describe how to
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Fig. 3.

(a) An example of conventional 5-stage pipeline and (b) its
variant considering the DEC BCH code.

implement the proposed algorithm for fault-tolerant systems
and its efficiency over the conventional DEC BCH decoder
that employs the Chien search.

IV. ARCHITECTURE FOR SEARCH-LESS DEC BCH DECODING

A. Decoder Specification

A typical embedded system consists of at least one
microprocessor and a memory, usually static RAM (SRAM).
By expanding the width of the memory, each data word can be
DEC BCH encoded before being stored. In the case, two bit-
errors in a word can always be corrected by decoding the
memory output. However, since accessing the memory is
relatively slow compared to the processing speed of a
conventional pipelined microprocessor, the DEC BCH
decoding should be processed in additional pipeline stages so
as not to deteriorate the system performance. This is visualized
with a 5-stage pipeline in Fig. 3. Two pipeline-stages are added
in Fig. 3(b) because the instruction fetch as well as the data
access are relevant to memory accesses. The decoding latency
of a DEC BCH decoder should be less than the clock period of
the target microprocessor to keep the number of additional
pipeline stages minimal.

To specify the DEC BCH code and the requirement of
decoding latency, three state-of-the-art MCU products for
automotive powertrain control are considered, which are listed
in Table I. As all the high-end products are based on 32-bit
architecture, the message length should be 32 bits wide.
Additional parameters such as code length (r) and Galois field
extension (m) are derived from the message length. The final
specification of the DEC BCH code is summarized in Table II.
Notice that 19 bits are shortened from the 63-bit codeword. In
addition, since the clock speed of the recent product
approaches 300 MHz, the decoding latency is specified to be

TABLE L. SPECIFICATIONS OF COMMERCIAL AUTOMOTIVE MCUS
Corporation MCU Core Maximum
P Clock Speed
Infineon AURIX TC299TX 32-bit
Technologies (in development) TriCore 300 MHz
Freescale Qorivva 32-bit
Semiconductor MPC5674F PowerPC 264 MHz
€200z7
32-bit
STMicroelectronics SPC564A70L7 PowerPC 150 MHz
¢200z4




TABLE IL SPECIFICATION OF THE DEC BCH CODE"
Parameter Value
Galois field extension (m) 6°
Shortened code length (1) 44 bits®
Message length 32 bits
Parity length 12 bits

* The DEC BCH code is generated by g(X)=1+X*+X* X+ X*+X1%+.X'2,
b GF(29) is generated by p(X)=1+X+X°.

© Original code length is 63(=2"-1) bits.

less than 3.33 ns.

B. Decoder Architecture

The proposed search-less decoding algorithm enables a
fault-tolerant embedded system to be built with a much lower
hardware complexity than the conventional Chien-search-
based one.

The overall block diagram of the proposed decoder is
shown in Fig. 4. The syndrome generator is designed with a
fully parallel structure [3]. On the other hand, the quadratic
formula solver (QFS) that generates the error pattern based on
S and S;, which is a core component of the proposed decoder,
consists of four components: x4 calculator, @ calculator, root
calculator, and error-pattern generator. Note that the figure is
depicted with focusing on the double-error case, since those
blocks dealing with the single-error case are insignificant in
terms of the latency and complexity.

The detailed structure of the u calculator that computes u
as defined in (10) is shown in Fig. 5(a). The division operation
in GF(2") is complicated, while cubing a syndrome value and
adding two syndromes are relatively simple. For the division,
a LUT is utilized to convert the 6-bit vector representation of a
field element into its 6-bit index value. In Fig. 5, the table is
denoted as log() LUT, because the conversion is equivalent to
taking the discrete logarithmic operation. After acquiring the
indices of the numerator and the denominator, the division in
GF(2% is achieved by subtracting them. If the subtraction
result is negative, it is normalized by adding n, which is
equivalent to multiplying 1(=0") to the quotient. The
normalized result representing the index of 4, which is notated
as log(u), is used for the calculation of roots. Meanwhile,
another table denoted as exp() LUT is employed to convert the
final index to the corresponding vector representation.
Moreover, since the size of GF(2°) is relatively small, a LUT
is realized with only 384 bits and the lookup latency is
negligible.

Following the u calculator, the w calculator generates w,
and w, according to (11) and (12), respectively. As stated in
the previous section, the computation can be realized with a
very small hardware. If 6 in (11) is o, for example, (11) is
reduced to

wl:Iua62+lu2a24+/u4a44+[u8a+/u16a34. (13)

r Syndrome |s,, S, Quadratic Formula
Generator Solver
wi Root X1
> u calculator Error
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S.
=3, w, Root x2_|generator
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Fig. 4. The architecture of the proposed search-less DEC BCH decoding.
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Fig. 5. Structures of (a) the x calculator and (b) the root calculator.

Since every element in GF(2°) can be represented with a linear

combination of 6 basis elements, i.e., 1, a, o, ..., a, let 1 be
,u:a0+a,a+--~+a5a5, (14)
where ao, @, ..., as are binary coefficients. By applying (14)

to (13),

oy = aga* + aa*’ +a,a + a0 a0 (15)

As a result, the transformation from u to w, can be expressed
as

(16)

2] :[aoa1a2a3a4a5]-

S O = O O =

1
1
1
ol
1
0

S O O O = =
O O = = = O
S O o o o =

1
1
1
0
1
0

Note that the @ calculator is a direct implementation of (16)
and (12) so that it can be realized with a few XOR and AND
gates.

Given a w value, the root calculator generates a root of the
error-location polynomial. To compute the root, (10) is
reformulated as



TABLE III. COMPARISON OF DEC BCH DECODER

IMPLEMENTATIONS?
(44,32,2) BCH decoders | 000N | 0 ant | decoer efiiency’
Conventional 32-parallel® 1.42 ns 13,414 0.60
Proposed search-less 2.94 ns 3,829 1.00
Conventional 16-parallel 2.96 ns 7,734 0.50
Conventional 8-parallel 6.00 ns 4,500 0.42
Conventional 4-parallel 11.2 ns 3,292 0.31
Conventional 2-parallel 23.0ns 2,519 0.20
Conventional serial 46.4 ns 2,347 0.10

d Synthesized in a 65nm CMOS process.
© Conventional architecture with a 32-parallel Chien search block.
£ Multi-cycle decoding except the conventional 32-p. and proposed search-less decoders.

& (Decoding latency)™! / equivalent gate count.

S2
x=— =l (17)
Sl +S3 ,US1

When there are double errors in the codeword, S; is not zero
and 513 is not equal to S;, which validates the reformulation.
Note that u is reused to reduce the computing delay as well as
the hardware complexity. The detailed structure of the root
calculator is depicted in Fig. 5(b), where an additional log()
LUT is employed to obtain the index of S}, and the negative
index is normalized as in the u calculator shown in Fig. 5(a).
The index of S| can be utilized in the single-error case, too. If
the summed index obtained by adding two indices is out of the
range, the excessive result is normalized by subtracting #,
which is the same as dividing the result by 1(=a").

The error pattern generator is the last major component of
the QFS. The error pattern is a 32-bit vector which has at most
two ones at the error locations. Some applications may require
that faulty parity bits be corrected, but the proposed decoder is
designed to correct only the message bits. Since the root
calculator provides the index values of faulty bits, it is
straightforward to generate the error pattern.

C. Implementation Results

A number of conventional (44, 32, 2) BCH decoders that
are all based on the Chien search are implemented by varying
the parallel factors so as to compare them with the proposed
search-less decoder. All the designs have the same syndrome
generator and are synthesized in a 65nm CMOS process. The
results are summarized in Table III. Note that only the fully
parallel (32-parallel) Chien-search-based decoder and the
proposed decoder are possible options for the automotive MCU
applications shown in Table I, as the other conventional
structures take multiple cycles and thus demand deeper
pipelines. For instance, the decoding of a codeword takes 2
cycles in the 16-parallel Chien-search-based decoder and 4
cycles in the 8-parallel one, and so on. The decoding latency
shown in Table III represents the overall time to decode a
codeword containing a 32-bit message. The equivalent gate

14000 -

-# Conventional decoder
% Proposed decoder

32-parallel

12000 |-

10000 [~

Equivalent Gate Count
2 1]
8 8
T T

4000 = 4-parallel

2-parallel Serial

2000 -

Decoding Latency (ns)

Fig. 6. Implementation results of the proposed search-less decoder and
the conventional decoder.

count is also presented in the table. In short, the proposed
search-less decoder reduces the hardware complexity of the
fully parallel conventional decoder by almost 71%, while
satisfying the 3.33 ns latency requirement imposed by recent
automotive MCUs.

In addition, it is important to note that the proposed
architecture can be pipelined without increasing the overall
decoding latency much. Therefore, the proposed work can be
employed in many other applications with various timing
requirements. To generally compare the decoders regardless of
the target application, the design efficiency of each decoder,
which is defined as the decoding performance per gate, is
calculated and normalized by that of the proposed one. In short,
the proposed search-less decoder is almost twice as efficient as
the conventional decoders. To visualize the implementation
results, the equivalent gate count and the decoding latency are
drawn in Fig. 6. The result of the proposed architecture is
marked with a star, and those of conventional decoders are
indicated with squares. In particular, the decoding latency of
the 16-parallel Chien-search-based decoder is almost the same
as that of the proposed decoder, but the proposed decoder
reduces the hardware complexity by almost half thanks to the
search-less architecture.

V. CONCLUSION

This paper has presented a new DEC BCH decoding
algorithm and its hardware architecture for low-complexity
fault-tolerant systems. The proposed algorithm is called search-
less because error locations are found by solving a quadratic
polynomial equation rather than directly searching for the roots
of the error-location polynomial by enumerating all the
possible elements. Since the conventional DEC BCH decoder
suffers from the high complexity caused by the parallel Chien
search, the proposed algorithm is a promising way to reduce
the hardware complexity of a DEC BCH decoder. Moreover,
the search-less decoder was implemented for error-resilient
digital systems. Compared to the conventional decoder with
16-parallel Chien search, the proposed decoder reduces the
hardware complexity by half without degrading the decoding
performance.



APPENDIX
PROOF OF (9)-(11)

Let K be a Galois field GF(¢™) and its subfield F be GF(qg).
If a is an element of K, its trace relative to F'is defined as

m—-1

(18)

Tr(a)=a+a’+--+a’

Some important properties of the trace are given here without
proofs [10]. Forall o, f €K,

1) Tr(a+B)=Tr(a)+Tr(B)
2) Tr(aq)=Tr(06)

3) The trace function maps K onto F

The properties are essential to prove (9)-(11). The equations to
be proved are generalized and rewritten as Theorem 1, which
will be proved by using Lemma 1 and Lemma 2 described in
[10].

Theorem 1: Assume that a, f are elements of K. If a is
defined as

a=p-p%, (19)

and such f exists, it can be obtained by
p=abt’+(a+a’)o” +~-~+(a+a‘7 totad" )eq”’" .(20)

Lemma I: Assume that a and @ are elements of K. If f is
defined as

B =ab’ +(cx+a‘1)6"2 +---+(a+a‘1 +---+az"m*2)6"m*I ,(21)
then

p-p' =a(1r(0)-0)-0(Tr(a)-a). @2

Proof of Lemma 1: By the definition of 3,

B4 =a’0? +(aq +a? )0‘73 +m+(aq +a? tovad )qu.
(23)

Subtracting (23) from (21), therefore, we have

B-p1 :a(ﬁ" +07 407 )—(a" +af +orad” )9"m.
(24)

By using the definition of the trace and the fact that 07" =0,
(24) can be rewritten as (22). i

Lemma 2: Assume that o and f are elements of K. If a is
defined as

a=p-p%, (25)

the trace of a is always zero.

Proof of Lemma 2: By the first and the second properties
of the trace, the trace of « is

). (26)

O

Due to the third property of the trace, it is certain that there
is an element of K, 6, whose trace is one. By applying this fact
and Lemma 2 to Lemma 1, Theorem 1 is proved.
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