
A Reduced Latency List Decoding Algorithm for
Polar Codes

Jun Lin, Chenrong Xiong and Zhiyuan Yan
Department of Electrical and Computer Engineering, Lehigh University, PA, USA

Email: {jul311,chx310,yan}@lehigh.edu

Abstract—The cyclic redundancy check (CRC) aided successive
cancelation list (SCL) decoding algorithm has better error perfor-
mance than the successive cancelation (SC) decoding algorithm
for short or moderate polar codes. However, the CRC aided SCL
(CA-SCL) decoding algorithm still suffer from long decoding
latency. In this paper, a reduced latency list decoding (RLLD)
algorithm for polar codes is proposed. For the proposed RLLD
algorithm, all rate-0 nodes and part of rate-1 nodes are decoded
instantly without traversing the corresponding subtree. A list
maximum-likelihood decoding (LMLD) algorithm is proposed to
decode the maximum likelihood (ML) nodes and the remaining
rate-1 nodes. Moreover, a simplified LMLD (SLMLD) algorithm
is also proposed to reduce the computational complexity of
the LMLD algorithm. Suppose a partial parallel list decoder
architecture with list size L = 4 is used, for an (8192, 4096) polar
code, the proposed RLLD algorithm can reduce the number of
decoding clock cycles and decoding latency by 6.97 and 6.77
times, respectively.

I. INTRODUCTION

Polar codes [1] are a significant breakthrough in coding
theory, since it is proved that polar codes can achieve the
channel capacity of binary-input symmetric memoryless chan-
nels in [1] and any discrete or continuous channel in [2].
Polar codes can be efficiently decoded by the low-complexity
successive cancelation (SC) decoding algorithm [1] with com-
plexity of O(N logN), where N is the block length.

Lots of efforts [3], [4] have already been devoted to improve
the error-correction performance of polar codes with short
or moderate lengths. An successive cancelation list (SCL)
decoding algorithm was recently proposed in [3], performs
better than the SC decoding algorithm and performs almost
the same as a maximum-likelihood (ML) decoder [3]. In [4],
the cyclic redundancy check (CRC) is used to pick the output
codeword from L candidates, where L is the list size. The
CRC-aided SCL decoding algorithm performs much better
than the SCL decoding algorithm at the expense of negligible
loss in code rate. For example, it was shown in [4] that
the CRC-aided SCL decoding algorithm outperforms the SC
decoding algorithm by more than 1 dB when the bit error rate
(BER) is on the order of 10−5 for a polar code of length 2048.

Many research efforts [5]–[9] have been devoted to the
reduction of the decoding latency of the SC decoding algo-
rithm. The simplified successive cancelation (SSC) and the
ML-SSC decoding algorithms were proposed in [5] and [7],
respectively. Both SSC and ML-SSC decoding algorithms can
reduce the decoding latency of a SC decoder significantly.

However, the reduced latency list decoding algorithm has been
rarely discussed in open literature.

In this paper, the algorithms that reduce the latency of list
polar decoders are investigated. The main contributions are
shown as follows.

1) A reduced latency list decoding (RLLD) algorithm over
LLR domain for polar codes is proposed. The proposed
RLLD algorithm deals with rate-0 nodes and part of rate-
1 nodes in the same way as the SSC decoding algorithm.

2) A list ML decoding (LMLD) algorithm is proposed to
decode the ML and remaining rate-1 nodes. For the
list size L ≤ 8, a hardware friendly simplified LMLD
(SLMLD) algorithm is also proposed.

3) For list size L = 4, an efficient hardware architecture for
the proposed SLMLD algorithm is presented. Under a
TSMC 90nm technology, at the cost of 1.07 million stan-
dard NAND gates, the proposed architecture can achieve
a frequency of 400MHz with 4 stage of pipelines.

4) For a partial parallel decoder architecture with L = 4,
it is shown that the RLLD with the SLMLD algorithms
can reduce the decoding cycles and latency by 6.97 and
6.77 times, respectively.

II. PRELIMINARIES

A. Polar codes encoding

The generation matrix of a polar code is an N × N
matrix G = BNF

⊗n, where N = 2n, BN is the bit
reversal permutation matrix, and F =

[
1
1
0
1

]
. Here ⊗n denotes

the nth Kronecker power and F⊗n = F ⊗ F⊗(n−1). Let
uN−10 = (u0, u1, · · · , uN−1) denote the data bit sequence and
xN−10 = (x0, x1, · · · , xN−1) the corresponding encoded bit
sequence, then xN−10 = uN−10 G. The indices of the encoding
bit sequence uN−10 are divided into two sets: the information
bits set A contains K indices and the frozen bits set Ac

contains N − K indices. uA are the information bits whose
indices all come from A. uAc are the frozen bits whose indices
from Ac. The encoding graph of a polar code with N = 8 is
shown in Fig. 1.

B. SSC and ML-SSC Decoding Algorithms

A polar code of length N = 2n can also be represented
by a full binary tree of depth n [5], where each node of
the tree is associated with a constituent code. The binary tree
representation of an (8, 3) polar code is shown in Fig. 2, where
the black and white leaf nodes correspond to information

ar
X

iv
:1

40
5.

48
19

v2
 [

cs
.I

T
]

 1
3

O
ct

 2
01

4

u0

u1

u2

u3

u4

u5

u6

u7

s10

s11

s12

s13

x0

x1

x2

x3

x4

x5

x6

x7

s14

s15

s16

s17

s20

s21

s22

s23

s24

s25

s26

s27

s00

s01

s02

s03

s04

s05

s06

s07

Fig. 1. Polar encoder with N = 8

s00 s01 s02 s03

s10,s14 s11,s15

s04 s05 s06 s07

s12,s16 s13,s17

s20,s22,s24,s26 s21,s23,s25,s27

layer
index

2

1

0

v

v

l
v l

v r
v

r
v

v

pv x0,x1,...,x7

3

Fig. 2. Binary tree representation of a (8, 3) polar code

and frozen bits, respectively. In order to show the connection
between the tree representation and the direct encoding graph
in Fig. 1, the constituent code associated with each tree node is
also shown in Fig. 2. There are three types of nodes in a binary
tree representation of a polar code: rate-0 , rate-1 and arbitrary
rate nodes. The leaf nodes of a rate-0 and rate-1 nodes are
associated with only frozen and information bits, respectively.
The leaf nodes of an arbitrary rate node are associated with
both information and frozen bits. For example, the rate-0, rate-
1 and arbitrary rate nodes in Fig. 2 are represented by circles
in white, black and gray, respectively.

The SC decoding algorithm can also be mapped on a binary
tree, where each node acts as a decoder for its constituent
code. As shown in Fig. 2, the decoder at node v receives a soft
information vector αv and returns its correspondent constituent
code βv . The SC decoding algorithm is initialized by feeding
the root node with the channel LLRs, (L0, L1, · · · , LN−1),
where Li = log(Pr(yi|xi = 0)/Pr(yi|xi = 1)). When an
internal node v is activated, it calculates the soft information
vector αl

v sending to its left child, where

αl
v[i] = f(αv[2i], αv[2i+ 1]) for 0 ≤ i < 2n−t, (1)

f(a, b) = 2 tanh−1(tanh(a/2) tanh(b/2)), and t is the layer
index of the child node. f(a, b) can be approximated as:

f(a, b) = sign(a) · sign(b)min(|a|, |b|). (2)

Node v then waits until it receives the constituent code βl
v .

The soft information vector

αr
v[i] = αv[2i](1−2βl

v[i])+αv[2i+1] for 0 ≤ i < 2n−t. (3)

Once the right child returns its constituent code βr
v , node v

computes its constituent code βv as:

(βv[2i], βv[2i+ 1]) = (βl
v[i]⊕ βr

v [i], β
r
v [i]), (4)

where 0 ≤ i < 2n−t and ⊕ is modulo-2 addition. When a
leaf node v is activated, its constituent code βv is set to 0 if
leaf node v is associated with a frozen bit. Otherwise, βv is
calculated from αv with the threshold detection:

βv =

{
0 αv ≥ 0
1 αv < 0

(5)

From the root node, all nodes in a tree are activated in a
recursive way for the SC decoding. Once βv for the last leaf
node is generated, the codeword xn−10 can be obtained by
combining and propagating βv up to the root node.

The SSC decoding algorithm in [5] simplifies the decoding
of rate-0 and rate-1 nodes. Once a rate-0 node is activated,
it immediately returns its constituent code which is an all
zero vector. Once a rate-1 node is activated, its constituent
code is directly calculated from the received soft information
vector with the threshold detection rule shown in Eq. (5). The
ML-SSC decoding algorithm [7] simplifies the SSC decoding
algorithm further by performing the exhaustive-search ML
decoding on some resource constrained arbitrary rate nodes,
which are called ML nodes in [7]. For an ML node with layer
index t, the associated constituent code is estimated according
to:

βv = argmax
x∈C

2n−t−1∑
i=0

(1− 2x[i])αv[i], (6)

where C is the set of possible constituent codes for the ML
node. The binary tree representations of the example (8, 3)
polar code under SSC and ML-SSC decoding algorithms are
shown in Fig. 3 (a) and (b), respectively. It is observed that the
SSC decoding algorithm can reduce the number of nodes to
be activated. This number is further reduced by applying the
ML-SSC decoding algorithm which introduces ML nodes. It is
obvious that all the child nodes of a rate-0 and rate-1 node are
still rate-0 and rate-1 nodes, respectively. During the reduction
of the binary tree, a rate-0 or rate-1 node is kept only if their
parent nodes are not a rate-0 or rate-1 node, respectively. For
an arbitrary rate node v, let nv and dv denote the number of
leaf nodes and the number of leaf nodes that correspond to
information bits, respectively. In [7], an arbitrary rate node is
labeled as an ML node only if its nv and dv do not exceed
predefined values.

(a) SSC (b) ML-SSC

ML node

Fig. 3. Binary tree representations of a (8, 3) polar code under SSC and
ML-SSC decoding algorithms

C. LLR Based List Decoding Algorithms

In the first several works [3], [10], [11] on list decoding of
polar codes, the list decoding algorithm is performed either
on probability or logarithmic likelihood (LL) domain. In [12],
an LLR based list decoding algorithm is proposed to reduce
the message memory requirement and the computational com-
plexity of LL based list decoding algorithm. The LLR based
list decoding algorithm employs a novel path metric PM(i)

l ,
which is computed as:

PM(i)
l =

i∑
k=0

mi|L(k)
n [l]|, (7)

where mi = 1 only if ûk[l] = δ(L
(k)
n [l]) and δ(x) =

1
2 (1 − sign(x)) [12]. Otherwise mi = 0. Here L

(k)
n [l] ,

W (k)
n (y,ûk−1

0 [l]|0)
W

(k)
n (y,ûk−1

0 [l]|1)
and y is the received channel soft information

vector.

III. THE PROPOSED RLLD ALGORITHM

Though existing list decoding algorithms for polar codes can
improve the performance of SC decoders significantly. They
still suffer from long decoding latency. During the decoding
of each information bit, the current decoding paths need to be
doubled and at most L most reliable decoding paths are kept,
where L is the list size. The extra cycles spent on path pruning
increase the number of the overall decoding cycles [10]. In this
paper, a reduced latency list decoding (RLLD) algorithm for
polar codes is proposed. Let Wv and Iv denote the number
of leaf nodes and leaf nodes associated with information bits
of a node v in a binary tree, respectively. Let WT be a
predefined threshold value. The general architecture of the
proposed RLLD algorithm is shown as follows:

1) For a binary tree representation of a polar code, label all
the rate-0, rate-1 and ML nodes. For a node v in the tree,
let Wv and Iv denote the numbers of leaf nodes and leaf
nodes associated with information bits, respectively. For
rate-1 nodes, Iv = Wv . Moreover, two type of nodes
are defined: T0 and T1. T0 nodes include rate-1 nodes
with Iv > WT and all rate-0 nodes. T1 nodes include
rate-1 nodes with Iv ≤ WT and all ML nodes. For all
ML nodes, Wv ≤ WML and Iv ≤ 8, where WML is
also a predefined threshold value.

2) For each decoding path, perform the SC decoding al-
gorithm on the corresponding pruned binary tree, if a
T0 node is activated, the corresponding constituent code
is decoded immediately and sent to its parent node.
Besides, it is unnecessary to compute the LLR vector
sent to a rate-0 node, since the constituent code of a
rate-0 node is always a zero vector.

3) If a T1 node is activated, compute 2Iv path metrics
for each current decoding path, where each path metric
corresponds to the reliability of a possible decoding
path. Find at most L most reliable decoding paths and
continue their corresponding SC decoding. Since only
rate-1 nodes with Iv < WT are involved in the list

decoding, the choice of WT should be decided by the
numerical simulation.

4) Once all T0 and T1 nodes have been activated and all
the SC decoding procedures on each decoding path are
finished, perform cyclic redundancy check (CRC) on the
information bits of each candidate codeword. The output
codeword is the one that passes the CRC.

In terms of software or hardware implementation, the pro-
posed RLLD algorithm can be performed over L LLR matrices
and L bit matrices. For l = 0, 1, · · · , L−1 and t = 1, 2, · · · , n,
let Pl,t be a probability message array of 2n−t elements:
Pl,t[j] stores an LLR message for j = 0, 1, · · · , 2n−t − 1.
The received channel LLRs are stored in P0,0 which has
N = 2n elements. Cl,t has a similar structure as Pl,t: Cl,t[j]
stores two binary partial sums Cl,t[j][0] and Cl,t[j][1] for
j = 0, 1, · · · , 2n−t−1. Let rl = (rl[n−1], rl[n−2], · · · , rl[0])
be the message updating reference index array for decoding
path l. For decoding path l, rl[0] ≡ 0, while all other elements
are initialized with 0. When a T0 or T1 node v is activated,
the computation of the soft information vector sent to node v
for decoding path l is shown in Algorithm 1, where tv is the
layer index of node α and Pl,tv is the LLR vector sent to node
v. The g function is shown in Eq. (3). If node v is a rate-0
node, as mentioned before, it is unnecessary to compute the
received LLR vector. Under this circumstance, tv is decreased
by 1. When a decoding path l needs to be copied to decoding
path l′, the lazy copy approach in [10] is applied. Instead
of copying LLR matrices, rl[Is − 1], · · · , rl[1] are copied to
rl′ [Is−1], · · · , rl′ [1], respectively, while rl′ [n], · · · , rl′ [Is] are
set to l′.

For decoding path l, during the computation of Pl,tv , LLR
arrays, Pl,Is , · · · , Pl,tv , need to be updated in serial, where
Is is a pre-computed layer index. For the tree representation
of a polar code, suppose all leaf nodes from left to right are
indexed from 0 to N − 1. Let the indices of the leftmost and
rightmost leaf nodes of the subtree of node v be IDX0 and
IDX1, respectively. Is is computed based on IDX0 as shown in
Algorithm 2, where the function dec2bin computes the binary
representation of its input and Bn−1 and B0 are the most and
least significant bits, respectively.

Once the constituent code Clv sent from node v for decoding
path l is computed, Clv is stored in Cl,tv [k][0] for k =
0, 1, · · · , 2n−tv if node v is the left child of its parent node.
Otherwise Clv is stored in Cl,tv [k][1] for k = 0, 1, · · · , 2n−tv . If
the contents of decoding path l need to be copied to decoding
path l′, the partial sums in decoding path l are copied to
the corresponding locations in decoding path l′. If node v
is the right child of its parent node, then the partial sum
computation for path l is performed as shown in Algorithm 3.
The input Ie is a layer index and can be obtained by applying
Algorithm 2 with IDX0 and Is being replaced with IDX1 and
Ie, respectively.

A. LMLD Algorithms

When a T1 node is activated, the current decoding paths
will expand, and at most L most reliable decoding paths are

Algorithm 1: llrComp(l, α)
input : Is, tv
output: Pl,tv

1 for t = Is to tv do
2 for k = 0 to 2n−t do
3 if t == Is then
4 bs = Cl,t[k][0]
5 Pl,t[k] =

g(Prl[t−1],t−1[2k], Prl[t−1],t−1[2k + 1], bs)

6 else
7 Pl,t[k] =

f(Prl[t−1],t−1[2k], Prl[t−1],t−1[2k + 1])

Algorithm 2:
input : IDX0

output: Is
1 if IDX0 == 0 then Is = 0 else
2 Is = n
3 (Bn, Bn−1, · · · , B0) = dec2bin(IDX0)
4 for j = 0 to n− 1 do
5 if Bj == 0 then Is = Is − 1 else break

kept. In this paper, a list ML decoding (LMLD) algorithm is
proposed to find at most L most reliable decoding paths. For
a T1 node v, there are 2Iv candidate output constituent codes
since the number of information bits associated with the leaf
nodes of a node v is Iv . Therefore, for each decoding path
l, the proposed LMLD algorithm computes 2Iv extended path
metrics PMj

l for j = 0, 1, · · · , 2Iv−1 based on the current path
metric PMl. Finding the L most reliable surviving decoding
paths is equivalent to find the L most reliable constituent codes
among all candidates. Here, several conclusions are made on
path metrics and extended path metrics:

• For each decoding path l, the path metric PMl is ini-
tialized with 0. The extended path metrics are computed

Algorithm 3: pSumComp(l, α)
input : Ie, tv

1 for t = tv to Ie do
2 for k = 0 to 2n−t−1 do
3 if t == Ie then
4 Cl,t[2k][0] = Cl,t−1[k][0]⊕ Cl,t−1[k][1]
5 Cl,t[2k + 1][0] = Cl,t−1[k][1]

6 else
7 Cl,t[2k][1] = Cl,t−1[k][0]⊕ Cl,t−1[k][1]
8 Cl,t[2k + 1][1] = Cl,t−1[k][1]

only when a T1 node is activated.
• For each decoding path l, each extended path metric PMj

l

corresponds to the reliability measure of the associated
candidate constituent code Cjv,l sent from node v.

• The extended path metric PMj
l is computed as shown in

Eq. (8), where NMj
l is called node metric and NMj

l =∑2n−tv−1
k=0 mk|αv,l[k]|. αv,l is the LLR vector received by

the node v. mk = 1 only if Cjv,l[k] = δ(αv,l[k]), where
δ(x) = 1

2 (1 − sign(x)). Otherwise, mk = 0. As shown
in Eq. (8), for k = 0, 1, · · · , 2Iv − 1, if Cjv,l[k] does not
equal to the threshold detection based on αv,l[k], then
PMj

l is punished by adding the absolute value of αv,l[k].
As a result, the smaller a extended path metric is, the
more reliable a corresponding constituent code is.

PMj
l = PMl + NMj

l (8)

Based on the previous conclusions, the proposed LMLD
algorithm finds the L most reliable constituent codes by sorting
out the L minimum metrics among 2IvL metrics. Let set
S = {(l, j)r|r = 0, 1, · · · , L − 1}, where (l, j)r is the index
of a candidate constituent code. Thus, the proposed LMLD
algorithm is shown in Eq. (9),

S = argmin−L l∈[0,L−1]
j∈[0,2Iv−1]

PMj
l , (9)

where argmin−L finds the associated indices of the L min-
imum metrics among all input metrics. The current L path
metrics are updated with the L minimum extended path
metrics.

As shown in Eq. (9), the computational complexity of the
proposed LMLD algorithm is exponential to Iv which is the
number of leaf nodes associated with information bits for node
v. As a result, the maximum value of Iv should be limited for
practical implementation of the proposed LMLD algorithm. In
this paper, the maximum value of Iv is set to 8. The maximum
number of leaf nodes of a ML node is set to WML = 16. In
case of WT is greater than 8, the corresponding rate-1 node is
split to several rate-1 nodes with Wv = 8. The other generated
nodes due to the split are viewed as arbitrary rate nodes. Take
a rate-1 node with Wv = 32 as an example, the split is shown
in Fig. 4, where 4 rate-1 nodes with Wv = 8 are generated
while the other generated nodes are deemed as arbitrary rate
nodes. Besides, Wv for a rate-1 node can only be a power of
2.

Wv = 32

Wv = 8 Wv = 8 Wv = 8 Wv = 8

Fig. 4. The tree split of a rate-1 node with Wv = 32

B. SLMLD Algorithms

The computational complexity of the proposed LMLD al-
gorithm is still high when Iv is close to 8. In this paper, for
L =≤ 8, a simplified list ML decoding (SLMLD) algorithm
suitable for parallel hardware implementation is proposed to
reduce the computational complexity of the proposed LMLD
algorithm in further. Here, L is assumed to be a power of 2.
The proposed SLMLD algorithm shown in Eq. (9) is divided
into two major steps:

1) For each current decoding path l, find its most reliable L
constituent codes based on node metrics. Since only the
L most reliable constituent codes are needed at last and
at most L constituent codes are from the same decoding
path l, it is enough to find the L most reliable constituent
codes for a decoding path l.

2) Compute the extended path metrics based on survived
node metrics from previous step, and find the final L
most reliable constituent codes based on these L × L
extended metrics.

Depending on the value of Iv , the first step can be simplified
further. If 2Iv ≤ L, nothing needs to be done. If 2Iv = 2L,
the minimum L extended path metrics and their corresponding
l and j indices are computed with a bitonic sequence [13]
based sorter (BBS) [11], where the BBS first transforms the
inputs into a bitonic sequence and then generates L minimum
metrics among all inputs. When 2Iv > 2L, the minimum L
node metrics are computed as follows:
• The 2Iv node metrics are divided into L groups as

follows:

NM0
l , · · · ,NMq−1

l︸ ︷︷ ︸
group 1

, · · · ,NM(L−1)q
l , · · · ,NMLq−1

l︸ ︷︷ ︸
group L

,

where q = 2Iv

L . The minimum two metrics of each group
are then computed.

• Among the resulting 2L extended path metrics, the min-
imum L extended path metrics and their corresponding l
and j indices are computed with a BBS.

When list size L = 2, for any Iv values, the first step is
just finding the minimum two extended path metrics and their
corresponding index pairs (l, j)’s.

The second step of the proposed SLMLD algorithm employs
the 2L-L BBS sorter with 2L inputs and L outputs repeatedly
to generate L final extended path metrics and their associated
path indices. Take L = 4 as an example, there are 4L extended
path metrics: PMj0

l0
, PMj1

l1
, · · · , PMj4L−1

l4L−1
, then PMj0

l0
, · · · ,

PMj2L−1

l2L−1
and PMj2L

l2L
, · · · , PMj4L−1

l4L−1
are applied to two 2L-

L BBSs, respectively. Thus, total 2L metrics are selected out.
Then the 2L-L BBS is employed again to generate the final L
minimum extended path metrics: PMj′0

l′0
, PMj′1

l′1
, · · · , PM

j′L−1

l′L−1
.

C. Simulation Results

For an (8192, 4096) polar code, the frame error rate (FER)
performance of the proposed RLLD algorithm are shown in
Fig. 5, under the AWGN channel with BPSK modulation.

As shown in Fig. 5, CSi denotes the CRC aided SC list
decoding algorithm [3] with list size L = i over LLR domain,
and RS(i, ω) denotes the proposed RLLD algorithm with the
SLMLD algorithm when list size L = i and WT = ω. For both
CSi and RS(i, ω) algorithms, 32 information bits are replaced
with a 32-bit CRC checksum.

For simplicity, the FER performances of the proposed
RLLD algorithm with LMLD (RL) algorithm are not shown
in this paper, since the FER performances of the RL algorithm
are the same as that of the CS algorithm with the same list
size.

1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4
1 0 - 6

1 0 - 5

1 0 - 4

1 0 - 3

1 0 - 2

1 0 - 1

FE
R

S N R

 C S 2
 R S (2 , 8)
 C S 4
 R S (4 , 8)
 C S 8
 R S (8 , 8)
 R S (4 , 3 2)
 R S (8 , 3 2)

Fig. 5. FER performance simulation for an (8192, 4096) polar code

Based on the simulation results, the following conclusions
are made:
• The performance of the proposed RS algorithm is affected

by the list size L. For the (8192, 4096) polar code,
the FER performances of RS(2, 8) is close that of
CS2. However, RS(4, 8) and RS(8, 8) show performance
degradation when the FER is blow 10−4.

• In order to achieve good error correction performance,
for the proposed RS algorithm, the threshold value WT

should be large enough. A larger WT will transfer more
rate-1 nodes to T1 nodes, which in turn increases the
chance that a correct codeword shows in the final lists.
For the (8192, 4096) polar codes, RS(4, 8) and RS(8, 8)
perform worse than RS(4, 32) and RS(8, 32), respectively,
when the SNR is large.

• The side effect of increasing WT is that both the decoding
complexity and latency will increase since more T1 nodes
are generated. Based on simulation results shown in
Fig. 5, a dynamic WT can be adopt for the proposed RS
algorithm in order to achieve the most latency reduction
at different SNR regions while maintaining the error
correction performance.

D. Hardware implementation of the proposed SLMLD

In this paper, an efficient hardware implementation of the
proposed SLMLD algorithm is shown in Fig. 6, where the

corresponding list size L = 4, and the architectures for other
L values can be inferred. As shown in Fig. 6, the node metric
generation (NMG) unit finds L minimum node metrics and
their corresponding constitution codes for each decoding path.
For the decoding path l, the extended path metrics PMj

l ’s are
obtained by adding the node metrics with the path metric PMl,
which is stored in registers and initialized with 0. BBS8−4
in Fig. 6 denotes the BBS with 8 metrics to be sorted. Two
stages of BBS8−4 find the 4 minimum extended path metrics
and their corresponding constituent codes and list indices.

PM0
NMG1

NMG2

NMG3

NMG0
BBS8-4

BBS8-4

BBS8-4
PM1

PM2

PM3

Fig. 6. The proposed architecture for SLMLD

The hardware architecture of the NMG unit is shown in
Fig. 7. Since the maximum value of Iv is 8 for any T1 node,
there are at most 28 = 256 candidate constituent codes for
a T1 node v. Each Enc unit in Fig. 7 is responsible for
generating a candidate constituent code based on the encoding
of polar codes. For j = 0, 1, · · · , 2Iv − 1, the LLR selection
unit, LSj , and the summation unit, SUMj , work together
to compute the node metric NMj

l shown in Eq. (8). Based
on the input LLR vector αv,l, LSj outputs an LLR vector
which has the same amount of elements as that of αv,l. For
k = 0, 1, · · · , 2n−tv − 1, the k-th output LLR is 0 only
if mk = 0. Otherwise, the output LLR is |αv,l[k]|. The
SUMj unit just adds up all its input LLRs sent from LSj

and outputs the corresponding node metric. The minimum two
LLRs computation (MC) unit in Fig. 7 finds out the first and
the second minimum LLRs and their corresponding constituent
codes among all its inputs. When L = 4, as shown in Fig. 7,
the computed node metrics are divided into 4 groups and fed to
4 MC units, respectively. The BBS8−4 unit generates 4 finally
survived node metrics and their corresponding constituent
codes.

Enc0

Enc255

Enc1

LS0

LS1

LS255 SUM255

SUM0

SUM1

MC0

MC1

MC2

MC3

BBS8-4...

ɑlv

Fig. 7. Hardware architecture of the proposed NMG unit

In this paper, the proposed architecture for the SLMLD
algorithm is synthesized under a TSMC 90nm CMOS technol-
ogy. With 4 stages of pipeline registers, it achieves a frequency
of 400MHz and consumes 1.07 million standard NAND gates.

For our implementation, when a T1 node is activated, it will
take 4 clock cycles to find the surviving constituent codes and
decoding paths. The area of the architecture of the SLMLD
algorithm is almost the same as an LLR based list decoder
with L = 4.

E. Comparisons of decoding clock cycles and latency

Since the detailed decoding cycles of list decoders are
related with a detailed hardware architecture, in this paper,
the decoding latency comparison is performed based on the
assumption that the partial parallel list architecture [10] is
employed and there are P = 128 processing units for each
decoding path. Let NR denote the clock cycles used to decode
a codeword for decoders with the proposed RS algorithm.
Then NR = NL+NP , where NL and NP are cycles used on
the LLR computation and path pruning, respectively. Besides,
NP = NaNs, where Na is the times that a T1 node is activated
and Ns is the number pipelines inserted in the implementation
of the SLMLD algorithm. Let NC denote the clock cycles used
to decode a codeword for decoders with the CS algorithm.
Then NC = 2N + N

P log2(
N
4P) + NR [10], where N and R

are the code block length and rate, respectively.
For the aforementioned (8192, 4096) polar code used in

our simulations in Section III-C, NL = 1207, Na = 441 and
Ns = 4 when WT = 32 and L = 4. Thus, NR = 1207 +
441 × 4 = 2971. Meanwhile, the cycles NC = 2 × 8192 +
8192
128 × log2(

8192
512) + 4096 = 20736. With the proposed RS

decoding algorithm, the clock cycles used for decoding one
codeword is reduced by about 6.97 times.

Under the UMC 90nm CMOS technology, the (8192, 4096)
list polar decoder can achieve a frequency of 412MHz [12]
when list size L = 4. Since the list decoder with the proposed
RS decoding algorithm need only to change the path pruning
part, the proposed list decoder can only achieve a frequency of
400MHz under 90nm technology. Thus, the decoding latency
is reduced by about 6.77 times due to the proposed RS
decoding algorithm when L = 4.

IV. CONCLUSION

In this paper, a reduced latency decoding algorithm for
polar codes is proposed. The hardware implementation of the
SLMLD is also discussed. The future work includes studying
the performances of the proposed RLLD algorithm when FER
is below 10−10. Besides, more efficient implementations of
the proposed SLMLD algorithm when list size is large will be
investigated.

REFERENCES

[1] E. Arıkan, “Channel polariztion: a method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,”
IEEE Trans. Info. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[2] E. Sasoglu, E. Teltar and E. Arıkan, “Polariztion for arbitrary discrete
memoryless channels,” in Proc. IEEE Int. Symp. on Information Theory,
2009, pp. 144–148.

[3] I. Tal and A. Vardy, “List decoding of polar codes,” in Proc. IEEE Int.
Symp. on Information Theory, Jul. 2011, pp. 1–5.

[4] I. Tal and A. Vardy, “List decoding of polar codes,” in http://arxiv.org/
abs/1206.0050.

http://arxiv.org/abs/1206.0050
http://arxiv.org/abs/1206.0050

[5] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive-
cancellation decoder for polar codes,” IEEE Commun. Lett., vol. 15, no.
12, pp. 1378–1380, Dec. 2011.

[6] C. Zhang and K. K. Parhi, “Low-latency sequential and overlapped
architectures for successive cancellation polar decoder,” IEEE Trans.
Signal Processing, vol. 61, no. 10, pp. 2429–2441, Mar. 2013.

[7] G. Sarkis and W. J. Gross, “Increasing the Throughput of Polar
Decoders,” IEEE Commun. Lett., vol. 17, no. 9, pp. 725–728, Apr 2013.

[8] B. Yuan and K. K. Parhi, “Low-latency successive-cancellation polar
decoder architectures using 2-bit decoding,” IEEE Trans. on Circuits
Syst. I, Reg. Papers, to appear.

[9] C. Zhang and K. K. Parhi, “Latency analysis and architecture design
of simplified sc polar decoders,” IEEE Trans. on Circuits Syst. II, Exp.
Briefs, vol. 61, no. 2, pp. 115–119, Feb. 2014.

[10] A. Balatsoukas-Stimming, A. J. Raymond, W. J. Gross and A. Burg,
“Tree search architecture for list SC decoding of polar codes,” in http:
//arxiv.org/abs/1303.7127.

[11] J. Lin and Z. Yan, “Efficient list decoder architecture for polar codes,”
in Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS), Jun. 2014,
to appear.

[12] A. Balatsoukas-Stimming, M. B. Parizi and A. Burg, “LLR-Based
Successive Cancellation List Decoding of Polar Codes,” in http:
//arxiv.org/pdf/1401.3753v1.pdf .

[13] K. E. Batcher, “Sorting networks and their applications,” in Proc. ACM
spring joint computer conference, Apr. 1968, pp. 307–314.

http://arxiv.org/abs/1303.7127
http://arxiv.org/abs/1303.7127
http://arxiv.org/pdf/1401.3753v1.pdf
http://arxiv.org/pdf/1401.3753v1.pdf

	I Introduction
	II Preliminaries
	II-A Polar codes encoding
	II-B SSC and ML-SSC Decoding Algorithms
	II-C LLR Based List Decoding Algorithms

	III The Proposed RLLD Algorithm
	III-A LMLD Algorithms
	III-B SLMLD Algorithms
	III-C Simulation Results
	III-D Hardware implementation of the proposed SLMLD
	III-E Comparisons of decoding clock cycles and latency

	IV Conclusion
	References

