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Abstract—We consider a low-complexity architecture for
scalar estimation using unreliable observations. A signal is
observed using a number of binary comparisons for which the
threshold levels can vary randomly. We analyze the statistics of
this system and find a Cramér-Rao lower bound on the squared
error performance of the estimator. By incorporating redundant
observations and applying statistical estimation techniques, we
form an estimate with error that is much smaller than the
uncertainty in the threshold levels. We propose a two-stage
architecture that achieves near-optimal mean square estimation
error with low complexity. The performance of the architecture
is evaluated using a simulated prototype.

Keywords—Distributed estimation, parameter estimation, quan-
tization, sensor networks.

I. INTRODUCTION

We consider the problem of estimating a scalar parameter
using a set of uncertain one-bit observations. Consider a system
that consists of a number of binary sensors, each of which
compares the same input signal to a different threshold level.
If the threshold levels are known, then the estimation problem
reduces to scalar quantization and the accuracy of the estimate
depends on the spacing between levels. Suppose, however, that
due to size, power, cost, or other constraints, the sensors are
unreliable; in particular, suppose that the threshold levels vary
randomly about their nominal values, as shown in Figure 1.
This problem framework has a number of applications in
distributed estimation, sensing, and quantization.

The problem of estimating a parameter based on binary
observations with uncertain thresholds is similar to distributed
estimation under bandwidth constraints. In that scenario, each
sensor in a network makes an observation and quantizes it
before transmitting it to a fusion center. This problem has
recently been studied in the context of decentralized fusion
[1] and wireless sensor networks [2], [3]. In these works, the
quantizer is generally considered to be deterministic while the
observations are corrupted by noise. In our construction of the
problem, the quantization process itself is noisy.

One important application of this work is in low-power
quantization. In many applications, such as communication
receivers, high-resolution analog-to-digital converters have be-
come a significant bottleneck [4]. The size and power of
these quantizers can be reduced by using smaller comparator
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circuits. However, at small sizes and low voltages, comparators
exhibit random offsets in their reference levels due to process
variation [5]. There have been some proposals in the circuits
literature to use these low-power, unreliable comparators for
quantization by incorporating digital logic into the architecture.
If the offsets do not vary with time, then the switching levels
can be measured [6], calibrated with trim currents [7], or reas-
signed [8]. These calibration methods are designed to suppress
the uncertainty in switching levels. However, using statistical
methods, that randomness could be exploited to improve
performance. In [9], a quantizer is designed with redundant
comparators and the outputs are corrected with fault-tolerant
logic. In [10], all comparators are designed with a single
nominal reference level and exhibit large offsets; the outputs
are summed to produce an estimate. These last architectures
achieve reasonable performance with simple digital correction
schemes that require no calibration; our work considers the
possibility of using such uncertain comparators in a more
general context of signal estimation, whether such comparators
are part of a single noisy quantizer or are distributed across
many low-power sensors. As such, our work builds on their
approach and seeks fundamental limits on performance.

In this work, we analyze an estimation architecture with
arbitrary numbers of nominal levels and redundant unreliable
observations. Rather than relying on expensive calibration pro-
cedures to reduce the impact of threshold variations, we exploit
the uncertainty in switching levels to produce an estimate with
mean square error that is much smaller than the level variance.
In this paper, we first apply estimation theory to find a lower
bound on the achievable mean square error performance of an
estimator using unreliable binary observations. Next, we show
that a simple linear estimator can achieve performance close
to this bound. We propose an efficient two-stage estimation
architecture that consists of a low resolution detector followed
by a linear estimator. Finally, we show simulated performance
results for an implementation of the architecture.

II. SYSTEM MODEL AND ANALYSIS

A. Definitions

The proposed architecture, shown in Figure 2, consists of r
comparators at each of n nominal reference levels v1, . . . , vn.
Denote the true level of the jth comparator with nominal
level vi by the random variable Vi,j . The offsets are assumed
to be independent and identically distributed with a known
cumulative distribution function (CDF) FV (x). Thus, each true
level has CDF Pr {Vi,j ≤ x} = FV (x− vi). The input to be
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Fig. 1. If comparator levels are spaced closely together, the distributions of
their offsets can overlap and cause errors.
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Fig. 2. A quantization system with unreliable comparators which exhibit
random offsets in their switching levels.

estimated is a scalar signal X ∈ X where X = [xmin, xmax]
is a finite interval of the real line. The observations are binary
comparisons Yi,j = 1{X≥Vi,j}. For a given X = x, Yi,j has a
Bernoulli probability mass function (pmf):

pYi,j |X (1 | x) = Pr {x ≥ Vi,j} (1)

= FV (x− vi) (2)

For brevity, let Fi (x) = FV (x− vi) and let F̄i (x) =
1 − FV (x− vi). When FV is differentiable at x, denote the
probability density function (pdf) by fi (x) =

∂
∂xFV (x− vi).

In our analysis, we will consider two specific offset distri-
butions. The logistic distribution, which induces a convenient
pmf on the observations, is defined by the CDF

L (z) =
exp {(z − μ) /β}

1 + exp {(z − μ) /β} (3)

where μ is the mean and β > 0 is a scale parameter. The
logistic distribution has variance σ2 = β2π2/3. The normal
distribution, which is often used to model offsets in comparator
circuits [11] and other physical devices, has the CDF

Φ (z) =

∫ z

−∞

1√
2πσ2

exp

{
− (u− μ)

2

2σ2

}
du (4)

where μ is the mean and σ2 is the variance.

B. Sufficient Statistics

Because the offsets are independent and identically dis-
tributed, the rn observations can be reduced to the n sums

Ti =
∑r

j=1 Yi,j for i = 1, . . . , n. For a given x, each Ti has
a binomial pmf

pTi|X (ti | x) =
(
r

ti

)
Fi (x)

ti F̄i (x)
r−ti (5)

with mean rFi (x) and variance rFi (x) F̄i (x). On the subset
of X where Fi (x) ∈ (0, 1) and Fi is differentiable, i.e., where
fi (x) > 0, (5) forms an exponential family of distributions
[12]. The conditional pmf of Ti can be expressed in exponen-
tial form as

pTi|X (ti | x) = hi (ti) exp {tiηi (x)−Ai (x)} (6)

where

ηi (x) = ln
Fi (x)

F̄i (x)
(7)

is the natural parameter for x, Ai (x) = −r ln F̄i (x), and
hi (ti) =

(
r
ti

)
. The conditional distribution of the full vector of

observations is the product of the individual observation pmfs
and has the exponential form

pT|X (t | x) = h (t) exp

{
n∑

i=1

tiηi (x)−
n∑

i=1

Ai (x)

}
(8)

where h (t) =
∏n

i=1 hi (ti). If the sum is restricted to only
those observations for which fi (x) > 0, i = 1, . . . , k, k ≤ n,
then (8) forms a curved exponential family. Because the space
of natural parameters has a higher dimension than that of the
true parameter, the sufficient statistic T may not be minimal;
that is, there may exist a lower-dimensional statistic that is
also sufficient [13].

If the offsets have a logistic distribution so that Fi (x) =
L (x− vi), then

ηi (x) = (x− vi) /β (9)

and (8) can be written

pT|X (t | x) = h (t)
n∏

i=1

(
e−

tivi
β

)
ex

∑n
i=1

ti
β −

∑n
i=1 Ai(x)

(10)
which has the form of a one-dimensional exponential family.
By the completeness theorem for exponential families [12], the
sum

S (T) =

N∑
i=1

Ti/β (11)

is a complete sufficient statistic for the family of (10). Thus, it
can be used to form a simple estimator that achieves equality
in the Cramér-Rao lower bound, described in the next section.

C. Cramér-Rao Lower Bound

We can quantify the information an observation provides
about X by its contribution to the Fisher information for X.
Let Ex [A] and Varx (A) denote the expectation and variance,
respectively, of a random variable A given X = x, let I (x)
denote the Fisher information of T for X = x and let Ii (x)
denote the Fisher information contributed by Ti for X = x.



−6σ −4σ −2σ 0 2σ 4σ 6σ

0

0.2

0.4

0.6

x− vi

I i
(x

)/
r

Fig. 3. Fisher information Ii (x) provided by a single statistic Ti with
normally distributed offsets. The information is maximized when x = vi.

If Fi (x) is differentiable at x and fi (x) > 0, then the Fisher
information is given by

Ii (x) = Ex

[(
∂

∂x
ln pTi|X (Ti | x)

)2
]

(12)

= (η′i (x))
2
Varx (Ti) (13)

= r
fi (x)

2

Fi (x) F̄i (x)
(14)

where

η′i (x) =
fi (x)

Fi (x) F̄i (x)
(15)

is the derivative of the natural parameter. Figure 3 shows the
Fisher information of a single statistic Ti as a function of x for
normally distributed offsets with mean zero and variance σ2.
The comparators provide the most information about signals
near their nominal level and little information about signals
far from their level. Because the observations are independent,
the overall Fisher information is the sum of the contributions
from each observation that has support and a density at x:

I (x) =
∑

i:fi(x)>0

r
fi (x)

2

Fi (x) F̄i (x)
(16)

To assess the Fisher information more concretely, suppose that
the nominal levels are uniformly spaced distance Δv apart on
[xmin, xmax] and that all fi have support at x. If x is far from
xmin and xmax and n grows large so that Δv � σ, the sum
in (16) can be approximated by an improper integral:

I (x) ≈ r

Δv

∫ ∞

−∞

fV (x− v)
2

FV (x− v) (1− FV (x− v))
dv (17)

If the offsets have a logistic distribution with mean 0 and
variance σ2, then I (x) ≈ r

βΔv = π√
3

r
σΔv = 1.814 r

σΔv . If the

offsets are normally distributed with mean 0 and variance σ2,
then I (x) ≈ 1.806 r

σΔv . Note that, except near the boundaries
of X , the Fisher information is not a function of x.

Using the Fisher information, we can bound the achievable
performance of an estimator based on these observations. An
estimator X̂(T) is called unbiased if Ex[X̂(T)] = x. The
Cramér-Rao lower bound [12] (CRLB) on the variance of an
unbiased estimator X̂ is

Varx

(
X̂ (T)

)
≥ I (x)

−1
(18)

Thus, the smallest achievable variance of an unbiased estimator
with uniform levels and normally distributed offsets is

Varx

(
X̂ (T)

)
≥ 0.554

σΔv

r
(19)

An unbiased estimator that achieves the CRLB is said to be
efficient. In the next section, we derive a simple estimator for
which the variance closely approaches the CRLB.

III. LOCALIZED LINEAR ESTIMATOR

A. Linear Estimation of the Input Signal

Because the distribution of T is parametrized by the
generally nonlinear function η (x), a minimum variance un-
biased estimator may be computationally complex. We seek
a low complexity suboptimal estimator X̂ (T) for X that is
approximately unbiased and has variance close to the CRLB.
We first consider level offsets with the logistic distribution,
which imposes a scalar complete sufficient statistic. If the
nominal levels are uniformly spaced across [xmin, xmax], x
is far from the boundaries of the level range, and the levels
are closely spaced so that the sum can be approximated by an
integral, then S (T) has mean

Ex [S (T)] =

n∑
i=1

r

β
FV (x− vi) (20)

≈ r

βΔv

∫ xmax

xmin

L (x− v) dv (21)

≈ r

βΔv
(x− xmin) (22)

An unbiased estimator is therefore

X̂ (T) = xmin +
βΔv

r
S (T) (23)

= xmin + I (x)
−1

S (T) (24)

Because Varx (S) = I (x), this estimator achieves the CRLB
with equality. Furthermore, when the approximation in (22)
holds, it can be shown from (10) that (24) is the maximum
likelihood estimator for logistic offsets.

For other offset distributions, ηi (x) is nonlinear and there
is no scalar sufficient statistic. However, a linear estimator of
the form X̂ (T) = aᵀT+ b similar to (24) may perform well.
Suppose that x is restricted to an interval centered around a
known point x0. Then we can locally approximate ηi (x) by
η′i (x0) (x− vi), which has a form similar to (9) and imposes
a one-dimensional distribution in the form of (10) on T. We
also approximate Fi (x) by Fi (x0) + fi (x0) (x− x0). Let
Sx0 (T) =

∑n
i=1 η

′
i (x0)Ti. This statistic has mean

Ex [Sx0
(T)] =

n∑
i=1

η′i (x0) rFi (x) (25)

≈
n∑

i=1

η′i (x0) r (Fi (x0) + fi (x0) (x− x0)) (26)

=

n∑
i=1

η′i (x0) rFi (x0)

+

n∑
i=1

rfi (x0)
2
(x− x0)

Fi (x0) F̄ (x0)
(27)

= Ex0
[Sx0

(T)] + I (x0) (x− x0) (28)



Based on this relationship between Sx0
and x, we propose the

following linear estimator for X:

X̂ (T, x0) = x0 +

n∑
i=1

η′i (x0)

I (x0)
(Ti − rFi (x0)) (29)

If x0 = x, then X̂ (T, x0) is unbiased and achieves the CRLB
for unbiased estimators based on T with equality. Otherwise,
the estimator has higher variance and may be biased. We
characterize its performance in Section III-C.

B. Localized Estimator

The proposed estimator (29) is a function of the full
vector T. However, only a subset of the statistics contribute
significantly to the estimate. For normally distributed offsets,
as shown by Figure 3, more than 99% of the Fisher information
is contributed by comparators with nominal levels within 3σ
of x. By considering only a subset of the observations, we can
compute a low-complexity suboptimal estimate that performs
nearly as well as (29). We start with a low-resolution estimate
X0 of X , to be discussed in Section III-D. We retain the n∗
statistics in T whose nominal levels are closest to X0 and
discard the rest. Denote this subset by T∗. For the remainder
of this section let Tk denote a statistic in T∗ for k = 1, . . . , n∗
and let vk, Fk, F̄k, fk, ηk, and Ik denote the corresponding
variables. The Fisher information for this subset of statistics
is I∗ (x) =

∑n∗

k=1 Ik (x). The localized linear estimator is

X̂ (T∗, X0) = X0 +

n∗∑
k=1

η′k (X0)

I∗ (X0)
(Tk − rFk (X0)) (30)

This estimator would be especially simple to implement if X0

were drawn from a finite subset of X . In particular, suppose
that X0 is selected from the set of midpoints between nominal
levels and that n∗ is even. That is, X0 = 1

2

(
vn∗/2 + vn∗/2+1

)
.

Because I∗(X0) is approximately constant for X0 far from
the boundaries of the level range and η′k(X0) is a symmetric
function of X0−vk, the coefficients of (30) are symmetric and
do not depend on X0. Thus, except near the boundaries of the
level range, the linear estimator has a single set of symmetric
coefficients for all X0.

C. Performance Analysis

The performance of the localized estimator depends on
the accuracy of X0. We will now characterize the bias and
efficiency of X̂ in terms of X0. Assume that fk has support
around X0 and x for all k = 1, . . . , n∗. If the offsets have a
logistic distribution, the estimator will be unbiased regardless
of the choice of X0. More generally, if the offset distribution
has an even pdf and the levels are symmetric about X0, then it
can be shown that the Taylor series about X0 of the conditional
mean includes only even derivatives of fk:

Ex

[
X̂ | X0

]

= X0 +

n∗∑
k=1

η′k (X0)

I∗ (X0)
(rFk (x)− rFk (X0)) (31)

= x+ r

n∗∑
k=1

η′k (X0)

I∗ (X0)

∞∑
m=1

(x−X0)
2m+1

(2m+ 1)!
f
(2m)
k (X0) (32)
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Fig. 5. Mean square error of the linear estimator (36) as a function of the
initial estimate X0 for normally distributed

(
0, σ2

)
offsets and Δv = 0.1σ,

relative to the CRLB.

The sum includes only odd powers of (x−X0). There-
fore, if X0 is itself an unbiased estimate of X with
E[(X0 −X)

2m+1
] = 0 for all m, then Ex[X̂ (T∗, X0)] = x

so X̂ is also unbiased. If the offsets are normally distributed,
then the integral approximation to the sum over k in (32) gives
the conditional mean

Ex

[
X̂ | X0

]
= x+ 3.696× 10−2 (x−X0)

3

σ2

− 4.157× 10−4 (x−X0)
5

σ4
+ · · · (33)

The mean for uniformly spaced levels with normally dis-
tributed offsets is shown in Figure 4.



X
Observations

(Fig. 2)

Subset
Select

a1

a2

an∗

b

X̂

Detector X0

T

...

T∗

...

Linear Estimator

Fig. 6. The two stage estimation architecture includes a low-resolution
detector and a linear estimator.

The conditional variance of the estimate is

Varx

(
X̂ | X0

)
=

n∗∑
k=1

(η′k (X0))
2

I∗ (X0)
2 rFk (x) F̄k (x) (34)

=

n∗∑
k=1

Ik (X0)

I∗ (X0)
2

Fk (x) F̄k (x)

Fk (X0) F̄k (X0)
(35)

The variance approaches the CRLB as X0 → x.

Combining the variance and bias, the overall mean square
error (MSE) of X̂ is

MSEx

(
X̂ | X0

)
= Varx

(
X̂ | X0

)
+
(
Ex

[
X̂ − x | X0

])2

(36)
The conditional variance, squared bias, and overall MSE for
normally distributed offsets are shown in Figure 5. For the
estimator shown in the figure, if X0 is accurate within σ, the
variance of X̂ will be within 1 dB of the CRLB.

D. Low Resolution Detection

To ensure that the performance of X̂ is close to the
CRLB, the error of X0 must be small compared to the offset
deviation but can be much larger than the desired error of X̂ .
This motivates the two-stage estimation architecture shown in
Figure 6: a low complexity, low resolution detector chooses
the initial estimate X0, which is used to select the subset of
observations T∗ that is used in the linear estimator. We wish
to find a detector with the lowest possible complexity that
achieves acceptable performance. Because the detector need
not have high resolution, there are many possible solutions.
The complexity of the detector will depend upon its particular
implementation in hardware; here, we consider one example
of a detector that is conceptually and analytically simple.

Let Q (Y) =
∑n

i=1 Yi,1 be the sum of one comparator
output from each level. The decision rule simply selects the
subset of T indexed by Q. The corresponding low resolution
estimate resembles that from (24):

X0 (Q (Y)) =
1

2
(vQ + vQ+1) (37)

= xmin +ΔvQ (Y) (38)
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For x far from the boundaries of the level range, the variance
of the low resolution estimate is approximately

Varx (X0) = Δv2
n∑

i=1

Fi (x) F̄i (x) (39)

≈ Δv

∫ ∞

−∞
FV (x− v) (1− FV (x− v)) dv (40)

For normally distributed offsets, the variance is 0.564σΔv. If
the nominal levels are placed with spacing Δv � σ, then the
variance of X0 is small compared to σ2 and the local estimator
performance is close to the CRLB.

IV. SCALAR ESTIMATION PERFORMANCE

A. Prototype Architecture

We will demonstrate the performance of the proposed
estimation architecture using a simulated example. We wish
to measure a voltage signal between 0 V and 1 V using
a number of comparator circuits. The n nominal reference



voltages are spaced Δv = (1V) /(n − 1) apart from 0 V
to 1 V. The comparators are subject to process variations that
cause normally distributed offsets with mean 0 and deviation
σ = 50mV. The low resolution detector is that described in
Section III-D. The localized estimator acts on outputs from
nominal levels within a range parameter ±δ of the initial
estimate. If the levels are spaced more than 2δ apart, then the
two levels closest to X0 are included. If the initial estimate is
less than δ or greater than 1V − δ, fewer levels are included
and the weights are normalized accordingly.

A uniform quantizer with nonrandom switching levels
would achieve mean square error 1V2/12(n−1)2. From (16),
the CRLBs of the estimator for large n at the center and edges
of the signal range are I (0.5 V)

−1
= 0.027V2/(n− 1)r and

I (0V)
−1

= I (1V)
−1

= 0.055V2/(n−1)r. The mean CRLB
is 0.0295V2/(n− 1)r.

B. Simulations

The estimator performance was assessed using Monte
Carlo simulations. The number of nominal levels was varied
from n = 4 to 250, the number of comparators per level was
varied from r = 3 to 31, and the range parameter was varied
from δ = 25mV to 150mV. For each configuration, 2000
input signals were drawn randomly from a uniform distribution
on [0V, 1V] and 2000 sets of switching levels were drawn
from the normal distribution with σ = 50mV. For comparison,
each signal was also estimated with a maximum likelihood
(ML) estimator X̂ML(t) = argmaxx pT|X(t | x) using the
full vector of observations. The results, shown in Figure 7,
represent the average MSE performance over all estimators.

C. Performance and Design

The simulation results confirm that the two-stage estimator
performs nearly as well as the ML estimator and close to the
CRLB as long as the spacing between nominal levels is small
compared to the offset deviation. For r = 15 and n = 21,
the levels are spaced σ apart and the average MSE is about
3% above the CRLB. At n = 100, it is about 1% higher. If
the levels are closely spaced compared to σ, then the average
MSE is inversely proportional to both n and r. The system
designer can therefore improve performance by adding more
redundant observations at each level without changing the low
resolution detector or the size of the local estimator.

The size of the local estimator is a tradeoff between
complexity and performance. If the range is too narrow, more
observations will be required to achieve the desired level of
performance and the estimator will be more sensitive to error
in X0. On the other hand, there is little benefit to including
observations for which the levels have negligible probability
density near X0. Figure 7 shows that performance is quite poor
when δ ≤ σ but good for δ > σ.

This architecture is best suited to systems where the offset
deviation is small compared to the input range but large com-
pared to the desired error. Then the linear estimator performs
nearly as well as a more complex ML estimator. The choice
of design parameters depends on the estimate of the offset
deviation σ. If the assumed value of σ is too high, the levels
may be spaced too far apart. If it is too low, the coefficients will
be too large. Thus, it is best to use a conservative estimate of σ

to choose the level spacing and a generous estimate to set the
coefficients. If the true value of σ is smaller than the assumed
value, the estimator variance will be worse than the achievable
performance but better than the designed performance.

V. CONCLUSIONS

The analytical results in Section III and the simulation
results in Section IV suggest that the proposed architecture
achieves performance close to that of an optimal estimator in
terms of mean square error. The signal to noise ratio of the es-
timate is directly proportional to total number of observations
and is inversely proportional to the spacing between levels and
to the square root of the offset variance. The estimator can
achieve accuracy much finer than the spacing between levels
or the deviation in level offsets by leveraging independent
redundant observations. Thus, as long as the offsets remain
independent, there is no fundamental limit on performance.

The two-stage structure has a simple implementation re-
quiring a sum unit, a subset selector, and a weighted sum. It
requires no calibration or measurement. To design the esti-
mator, the system designer does not need to know the precise
statistics of the input signal, only a rough estimate of the offset
variance. By leveraging the uncertainty in the observations,
the estimation architecture achieves strong performance and
robustness with low complexity.
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