Software Polar Decoder on an Embedded Processor

Bertrand Le Gal, Camille Leroux and Christophe Jego

IMS Laboratory, Institut Polytechnique de Bordeaux, Talence, France.

Abstract—This paper presents the software implementation of
a Polar Codes decoder on an embedded processor. An efficient
use of computation and memory resource is made in order to
devise a fast polar decoder on an embedded ARM processor.
Memory footprint reduction and algorithmic simplifications are
applied in order to increase the throughput of the decoder. The
NEON instruction set of ARM processors is used to exploit the
parallelism of the algorithm. The resulting decoder description
is implemented on a Cortex A9 ARM processor. The throughput
of the resulting decoder is reported and discussed for several
parameters : the code rate, the code length and the multithreading
mode. To the best of our knowledge, this is the first reported
implementation of a polar decoder on an embedded processor
core. The proposed software decoder reaches >100Mbps for a
codelength of 16K. Moreover, it compares favorably with state of
the art LDPC decoders implemented on embedded processors.

I. INTRODUCTION

Polar codes [1] keep on gaining attention among both
information theorists and circuit and system designers. The
practical interest of these codes depends on the possibility
to implement efficient decoders. To this end, several works
focused on algorithmic improvements [2]-[5] and efficient
dedicated architectures [6]-[11]. Recently, another implemen-
tation approach was investigated in [12] [13] where software
polar decoders were proposed on x86 processor targets. In [12],
the Single Instruction Multiple Data (SIMD) programming
model was used in order to execute some of the computations
of a modified-SC decoding algorithm in parallel. In [13],
several frames are processed in parallel which enables to reach
several Gbps on an x86 single core. However, x86 targets are
power/energy hungry processors and may not be suitable for
embedded channel decoding such as software defined radio.
Today’s embedded processors also include parallel processing
facilities such as SIMD instruction sets, multi-core architec-
ture and high performance pipeline. One of the challenges
when using these high performance embedded platforms is
the definition of the programming model and the ability to
efficiently parallelize the executed algorithm. In this paper, we
take advantage of the parallelism available in ARM processors
(SIMD, multi-core) in order to efficiently execute the Succes-
sive Cancellation (SC) decoding algorithm of polar codes. The
proposed approach was originally mapped on x86 targets [13].
In this work, we investigate the performance of SC decoder
software implementation in an embedded system context.
The remainder of the paper is organized as follows. Section
II presents polar codes and the SC decoding algorithm. In
section III, all the optimization techniques that contribute in
the speedup of the decoder are detailed. Then, the experimental
setup is introduced in section IV. Experimental results are
presented in section V. A comparison with previous works
is provided in section VI. Eventually, conclusion is drawn in
section VIL

U.S. Government work not protected by U.S. copyright

Fig. 1.

Recursive tree representation of a N = 8 SC decoder.

II. PoLAR CODES
A. Definition and encoding

Polar codes are linear block codes of size N = 2", n
being a positive integer. In [1], Arikan defined their construc-
tion based on the n!" Kronecker power of a kernel matrix

10
Tl
k®" by a N-bit vector U that includes K information bits
and N — K frozen bits that are set to a known value. The
location of the frozen bits depends on both the type of channel
that is considered and the noise power on the channel. The
interested reader should refer to [1] for more details about the
construction of polar codes.

. The encoding process consists in multiplying

B. Successive Cancellation decoding

After being sent over the transmission channel, the noisy
version of the codeword X is received in the form of a log
likelihood ratio (LLR) vector Y. The decoder successively
estimates each bit u; based on the vector Y and the previously
estimated bits (Gg;—1)". In order to estimate each bit w;, the
decoder computes the following LLR value:

)\0 o log PI'(Y, ﬁo;i,1|ui = 0)

= — . 1
v PI‘(Y, u01i71|u,; = 1) ()

The estimated bit 4, is calculated based on the following rule:

: 0
Ai{o if AY >0,)

1 otherwise.

Due to its sequential nature, the SC decoding algorithm has
strong data dependencies that limit the amount of parallelism
that can be exploited within the algorithm. As suggested in
[5], the SC decoding algorithm can be represented in the form
of a tree that is recursively traversed in the following order:
root node, left child node, right child node. The SC decoding
algorithm is described as a recursively traversed tree (Figure
1). The root node N3 receives the channel information Y and
successively exchange data with the left and right child nodes
N3. The leaf nodes Ny are called by nodes A and generate
the estimation ;. Assuming that a non-leaf/non-root node \;
receives Aq.qtg_1, with J = 27, it executes Algorithm 1.

Algorithm 1 Node N; update function

Require: X . |
1: Calculates .J/2 concurrent f functions:
M7= f(N;)\f J),a<i< g,

2: Recursively calls “the left child node M 1 to get the
partial sums:

gt =N;(N

aat+4—1 " a: a+§)’
3: Calculates J /2 concurrent g functlons
XNt =g(\N_ J,AJ 4), a+i<i<a+l,
4: Recursively calls the rlght chlld node N;_; to get the
par%lal sums: .
AJ* — J
a+7 a+J—-1 N ()\a+l :a+J— 1)
5: Comblnes partlal sums of step 2 and 4:
d=5"1as J, a<i<gy

1 1
6: return Sa.a+J 1

f and g functions are defined as:

f(/\m/\b) = sgn(/\ /\b) mln(|/\ | |/\b|) (3)
g(Aa,Ab,ﬁ) = ()17 u)\ + Ay

III. SPEEDING UP THE SOFTWARE POLAR DECODER

This section describes the different optimization techniques
that were applied to the SC decoding algorithm in order to
implement it on an embedded processor. These optimizations
were originally applied to an x86 processor [13]. In this work,
we transpose these optimizations to an ARM processor in order
to investigate the performance of a software SC decoder on an
embedded processor target.

A. Tree cut

In [5], it was shown that some of the computations in SC
decoding are not necessary. Let us consider a node N that
corresponds to the decoding of a subcode of size J = 27.
Assuming that the considered subcode has a code rate 0, the
node Nj returns 8], ;_; = 0 regardless of)\a .atJ_1 because

i atrg—1 = 0. For example, in Figure 1, if the left child node
of N3 corresponds to a rate-0 code, i.e. 1g.3 = 0, one can
directly deduce that §2.; = 0 regardless of A3 5. It significantly
reduces the number of computation in SC decoding algorithm.
A similar statement can be made if the considered subcode has
a code rate 1. In such a case, §; = sign()\;) and @; = §;x®7,
with a < i < J. However, for rate-1 subcodes, the saved
LLR computations are counterbalanced by extra hard-decision
computation: 4; = §;x®7. Tt limits the efficiency of rate-1

Algorithm 2 Node N code rate checking function
1: if (R(W;) == 0) then

2: IAL(),:(J.JrJfl =0

3

‘§fz:a+J71 =0
4: else
5: Call Algorithm 1
6: end if

7: return).,

code simplification as confirmed by our experimentations. For
this reason, the proposed software polar decoder includes this
computation reduction only for rate-0 subcodes. Each node in
the tree is characterized by its code rate. The code rate can
either be R = 0 or R # 0. This information (one bit per
node) is stored for each node in a static vector because this
is constant for a given polar code. When a node N is called,
it retrieves its associated code rate (R = 0 or R # 0) and
depending on the value, it performs the associated processing.
This simplification means that some nodes are never accessed
and can simply be cut from the recursive tree representation.

B. N3 node unrolling

Let us consider an SC decoder for N > 8, the processing
of nodes located in the lower part of the tree (0 < j < 3)
includes a lot of recursive function calls. In general, in the
tree representation of the decoder, there are 2"=J nodes of
type N;. Optimizing the execution of these lower level nodes
clearly benefits to the overall decoding time. In order to speed
up this part of the decoding, the recursive description of node
N3 was completely manually unrolled?. It allows the compiler
to 1) avoid multiple recursive function calls ii) statically reorder
instructions and iii) memorize frequently accessed intermediate
results into registers that are faster to access than a memory.
Moreover, the most frequently called functions (e.g. f, g, etc...)
are directly written in assembly in order to optimize their
execution on the SIMD (NEON) arithmetic and logic units
of the ARM processor.

C. Memory sharing

Accessing data stored in the memory is time consuming
especially if cache misses occur. As shown in our experimental
results, this is especially critical for embedded processors
where the amount of cache memory is usually limited. In order
to reduce the probability of cache misses, an effort was made
to reduce the memory footprint of the decoder. During the
decoding of one frame Y, the SC decoding algorithm needs
to access (read/write) to:

e N(log N) LLRs: AJ% 71,

e N channel values: Yo.n_1 = Al.n_1>
e N(log N —2) partial sums: §5% ",
e N decoded bits tg.y—1 = §0:N_1.

Assuming that each data is stored in the form of a 32-bit integer
or floating point number, the memory footprint of the decoder

2From our experimentations, unrolling nodes of degree j > 3 does not
significantly improve the speed.

V8 I I e e e e | e A A A
%Y1Y2Y3Y21Y5Y6Y7)‘(2) /\% /\%)‘g)‘é Al)\8
MO A2 M A AN

ALOAE A

Ap A A

A

A2

A

AP

Fig. 2. Optimized Y; and)\{ memory mapping for N = 8.

ua =8Nlog N (Bytes). (€))]

As shown in [6], it is possible to assign only N — 1 memory
locations for LLRs and N — 1 for partial sums. In such a
memory architecture, each memory location stores different
data that are not alive during the same period time of the
decoding process. More specifically, the following memory
mapping can be applied:

Y, - M;
(4) (©)]
AN = Lo
O o s,

The footprint of this memory mapping is
up = 16N —8 (Bytes). (6)

It reduces the memory footprint by a factor O(log N). An
example of the memory mapping is depicted in Figure 2 for
N = 8. In [6], the reduced memory ensures a lower area of
the implemented architecture. In a software description, this
memory footprint reduction tends to reduce the cache misses
even for large N.

D. Data packing

1) Bits packing: In the previously presented memory map-
ping, for each memory location S and U;, a single bit is stored
as an integer. It is suboptimal in the sense that a binary value
is stored in a 32 bit-wide location. In order to compress the
memory footprint of the software decoder, packets of 32 bits
are stored in a single memory location. It reduces the size of
the memory dedicated to 57 and U; by a factor 32. Moreover,
32 memory accesses are replaced by a single memory access
and some masking operations. These masking operations are
necessary to retrieve the 32 individual bits stored at the same
memory location.

2) LLRs packing: In a basic description of the decoder,
the LLRs are represented in 32-bit floating-point format. BER
simulations show that 8-bit fixed-point format is sufficient to
obtain similar decoding performance as shown in [12]. One
can actually notice a slight performance degradation for large
code lengths. To illustrate this observation, BER performance
curves are provided in section I'V. Data packing is also applied
to LLR storage in order to further reduce the memory footprint.

If the software decoder can processes F' frames in parallel (as
it will be discussed in the next subsection), then the memory
footprint of the decoder with memory sharing and data packing
includes F' x N bytes for channel values, F' x N bytes for

LLR values, £ §N bytes for partial sums and £ §N bytes for
decoded bits. The total memory footprint is then:
I9x Fx N
po =~ (Bytes) @)

For a codelength of N = 32768, the memory sharing
combined with data packing reduces the memory footprint by
a factor ‘j—? ~ 60. Table I gives the memory footprint of the
software polar decoder for different code lengths and different
parallelism level values F'.

E. From x86 processor to ARM processor

In [12], the SIMD facilities of Intel processors are exploited
to speedup a software polar decoder. A modified version of
SC decoding is used [14]. In this modified version, subcodes
are classified into different categories (repetition codes, single
parity-check (SPC) codes and repetition-SPC codes). Instead of
applying SC decoding on these particular subcodes, some more
parallelizable algorithms are applied. This approach enables a
better computation vectorization of the whole processing.

In [13], instead of using the intra frame parallelism, the
inter frame parallelism is exploited. Thus, several independent
frames are decoded in parallel. The main advantage of this
approach is that the processor SIMD unit is always fed with
data which garantees a better utilization rate and enables multi-
Gbps decoding.

In this work, the same principle is applied to an ARM
processor with NEON instruction set. Processing F' frames
in parallel requires to interleave the different frames in such
a way that F' contiguous data can be accessed from a single
load instruction. This data alignement reduces the amount of
memory adress computations. Before the decoding process, Y;
values has to be reordered (interleaved). Then, the decoding
process is executed on F' frames in parallel. Finally, after the
decoding process, U; values are reordered back (deinterleaved).
An illustration of the whole decoding procedure is detailed in
Figure 3.

IV. EXPERIMENTAL SETUP

The targeted device is a Quad-Core Cortex-A9 ARM
processor. Each core has 32KB of L1 data cache and 32KB
of L1 instruction cache. A 1MB unified L2 cache memory
is shared between processor cores. The working frequency
is 1.4 GHz when a single processor core is used, 1.3 GHz
otherwise. The ARM processor is included in a NVIDIA
Tegra 3 development kit. In addition to the ARM Quadcore
processor, the Tegra3 SoC includes a 2GB DDR3 RAM, a
GPU and some application specific accelerators.

The optimized software SC decoder was described in standard
C language. The LLR values are represented in fixed-point
format (8 bits) in such a way that FF = 128/8 = 16 frames
can be processed in parallel with the NEON instruction
set. NEON instruction-set is used according to C built-in
instructions available in the GCC toolchain. The source
code was compiled with GCC compiler (version 4.6)

TABLE 1.

MEMORY FOOTPRINT (p1r) OF THE DECODER IN KBYTES (ROUNDED TO THE UPPER VALUE).

‘ N ‘ 28 ‘ 29 ‘ 210 ‘ 211 ‘ 212 ‘ 213 ‘ 214 ‘ 215 ‘ 216 ‘ 217 ‘ 218 ‘ 219 ‘ 220 ‘
[ARM(F=1 [23 5 [9 [17] 3 [68 13 | 272 | 544 [1088 [2176 | 4352 |
[ARM-NEON (F=16) | 10 | 19 | 38 | 76 | 152 | 304 | 608 | 1216 | 2432 | 4864 | 9728 | 19456 | 38912 |
Frame 1 Frame 2 Frame F B T . L . L . L]
OEEE REEN] El " 120 e~ D(N)R=1/4 H
L = D(N)R=1/2 |
E—E 100 —— D(N) R=9/10 ||
Interleaved M T T RRLERIELL R RN LN Y 2, ~® Dingo(N) R=1/4 ||
voanes WL PR AL LT S £ “w Dingo(N) R=1/2 ||
58 < -4~ Dingo(N) R=19/10 ||
SIMD decoding process 8 & = |
&8 £ 60 .
EEEREEEREEEREEE R RN 2]
Mvataes CLTTICTTTICTTTICTTTACTIT T 8 £ 40 .
= %% i
g 20
LREN REDN FREL EREE ERERN L®
Frame 1 Frame 2 Frame F O
8 10 12 14 16 18 20
Fig. 3. SIMD decoding procedure
n = log N

and the following compilation options were applied: —03
-mfpu=neon -funroll-loops -march=native
—fprefetch-loop—-arrays —-fopenmp.

The throughput measurement procedure is as follow. A large
set of random information vectors (U) is generated, then each
vector is encoded (X) and mapped to BPSK. Gaussian noise
is added (Y) in order to emulate an AWGN channel. A high
precision counter provided by the Boost Chrono library is
used to measure the whole decoding process execution time.
This process is repeated during a period of 60 seconds. The
measure of the decoding time is averaged over the whole set
of decoded frames. The time required to decode F' frames
includes i) the writing of the F' frames into the decoder
memory, ii) the decoding of F' frames with the SIMD decoder,
iti) the writing of the F' estimated codewords and iv) the
interelaving/deinterleaving functions.

V. EXPERIMENTAL RESULTS

In this section, the impact of the following parameters on
the throughput of the proposed software decoder is reported:
the codelength N, the code rate R and the number of cores
M.

A. Impact of the code length N

Error correction performance of Polar Codes improves with
the code length N. It is then necessary to evaluate the impact
of the codelength value on the throughput. As shown in Figure
3, the whole decoding process includes the decoding function
and the interleaving/deinterleaving functions. The latency of
the decoder is the time required to interleave, decode and
deinterleave F' frames. The processing of one frame includes
O(Nlog(N)) computations, memory accesses and control
statements. Since F' frames are processed in parallel, the
latency is invariant with F: L(N) = O(N log(N)). Within

Fig. 4. Measured coded and information throughputs on a single core of the
ARM processor with the NEON instruction set.

L(N) seconds, F.N bits are decoded and the resulting coded

throughput is:
F.N
~0 () |

L(N) ~

This equation is valid if no cache miss occurs and the processor
frequency is constant. Figure 4 shows the coded throughput D
for different values of IV and R. For a fixed code rate R, the
throughput decreases with log(V). One should notice that from
n = 14 to n = 15, the throughput drops. This can be explained
by the increasing footprint of the decoder which becomes
larger than the cache and causes more cache misses during
the decoding process. It means that cache misses may occur
for the codes having a large code lengths. Data that cannot be
stored in the cache memories are stored in the system memory
outside of the ARM chip. Such external memory accesses are
very costfull in terms of clock cycles. It explains the change
in trends observed in Figure 4. This interesting fact shows
that the memory architecture is one of the limiting factor of
embedded processors for polar code decoding. Reducing the
memory footprint of the decoder is then a key challenge in
order to devise efficient software implementations of channel
decoders in general.

F
log N

D(N) = ®)

B. Impact of the code rate R

As explained in section III-A, when a rate-O subcode is
reached in the tree representation, all computations related with
leaf nodes can be avoided. It enables a reduction in the total
number of computation to be performed during the decoding
of one frame. As the code rate decreases, the number and the
size of rate-0 subcodes tends to increase. It means that the total

—e— D(N): 1 core
b 71”4/A\\ —e— D(N): 2 cores [{3
250 A —e— D(N): 4 cores
-4- a: 2 cores
200 A -4 a:dcores || 25
= .
< =
5 3
£ 2
80 wn
=2
=]
=
H

n=Ilog N

Fig. 5. Coded throughput for different M values.

number of computation is lower for low rate codes. Figure 4
shows the coded throughputs for 3 different code rates: R =
{1/4,1/2,9/10}. As expected the highest coded throughput is
reached by the lowest rate polar code (R = 1/4). The coded
throughput represents the data rate at the input of the decoder.
Another relevant parameter is the information throughput that
correspond to the information data rate at the output of the
decoder:

Dz‘nfo(N) = RD(N))

The information throughput is also reported in Figure 4. One
should notice that the trend is reversed in the sense that the
highest information throughput is reached when processing
codes with higher code rates R. It means that the computation
reduction induced by lower rate codes is counter balanced by
the reduction in code rate.

C. Impact of the multithreading mode

Modern embedded CPUs include multiple processing
cores. The performance of computation intensive algorithms
running on a multi-core processor depends on the number
of available cores. It is also highly impacted by the memory
architecture of the processor. General purpose CPU includes a
large amount of memory on 3 levels. For embedded processor,
the amount of memory and the number of levels of cache
memory are usually lower. It generates more cache misses
and limits the speedup brought by multicore processing. In the
targeted ARM processor, each of the 4 cores has a dedicated
32KB L1 cache and the 4 cores share a IMB L2 cache.
OpenMP directives [15] are included in the description of the
SC decoder to enable multicore execution. One thread is used
per available core. Assuming M cores are available, the M
threads are first created, then each core processes F' = 16
frames in parallel. Finally threads are synchronized before a
new set of F' frames is launched. The maximal theoritical
speedup e, = M could be reached if i) the software
decoder fits into the dedicated L1 cache ii) the synchronization

time is negligible compared to the decoding time and iii)
the execution of unrelated tasks (Operating System routine
for example) does not interfer with the execution of the
program. Obviously these conditions are never met and the
obtained speedup is usually lower than M. Figure 5 shows
the measured throughput D(N, M) of the SC decoder for
M = {1,2,4} cores and a code rate R = 1/2. The speedups
a = D(N,M)/D(N,1) are also reported. A maximum
speedup of ~3 is reached for 256 < N < 2048 and
M = 4. The maximum speedup decreases with N for the
three aforementioned reasons. Despite the decreasing speedup,
these experiments show that an SC decoder implemented on a
multicore embedded processor can reach throughputs superior
to 100Mbps for 256 < N < 16384.

VI. COMPARISON WITH SIMILAR WORKS

To the best of our knowledge, this is the first implemen-
tation of a software polar decoder on an embedded proces-
sor. In this section, the proposed software implementation is
compared with LDPC decoders implemented on embedded
processors.

A. LDPC decoder on an ARM processor

In [16], the NEON instruction set of an ARM processor
is used to decode LDPC codes. The SoC used in this work
is a Samsung Exynos 4412. It includes a quad-core Cortex-
A9 ARM processor which has characteristics close to the
processor used in this work. Indeed, each core has a 32KB
L1 data cache and a 32KB L1 instruction cache. Moreover,
the four cores share a 1MB unified L2 cache. The maximum
working frequency is 1.6 GHz (1.15 times higher than our
targeted processor). A Min-sum LDPC decoder is used with
20 iterations of flooding scheduling. The targeted code is
the long frame (64K code) of the DVB-S2 standard with
rate 1/2. The decoding performance of such a decoder is
shown in Figure 6. The decoding performance of various rate-
1/2 polar codes under SC decoding is also reported. These
curves were generated with the proposed software decoder
with 8-bit precision fixed-point representation. n = 14 polar
code outperforms the decoder implemented in [16]. In terms
of throughput the DVB-S2 software decoder has a coded
throughput of 3.2 Mbps on 4 cores while our SC decoder
run at 48 Mbps on a single core and 100 Mbps on 4 cores.
In [16], the throughput is not reported for a larger number
of iterations. In order to achieve the performance of the
N = 64K LDPC code with 50 decoding iterations, the polar
decoder requires a larger codelength: n = 20 as shown in
Figure 6. This polar decoder has a throughput of 16 Mbps
on a single core and 33 Mbps on 4 cores. This comparison
suggests that polar codes are competitive candidates in terms of
error correction performance and throughput when targetting
embedded processors.

B. LDPC decoder on a Cell processor

In [17], various LDPC decoders are implemented on a Cell
processor for the Wimax standard. This Cell System-on-Chip is
composed one PowerPC processor and Syngergistic Processor
elements (SPE). This massively parallel system uses a SIMD-
based programing model where instructions are parsed and fed
into the SPEs from the PowerPC. LDPC decoder implemented

—4— PCn =13

109
—@— PCn =14
—@— PCn =15
10~ 1 —4— PCn =20

— & - LDPC 16K 20 iter
— @ - LDPC 64K 20 iter
— B - LDPC 64K 50 iter

FER

10— 4

1075

10—6

Eb/Nq (dB)

Fig. 6. Decoding performance comparison of DVB-S2 LDPC codes and
R=1/2 Polar Codes

on the CELL processor uses six SPEs to process 96 (6 x 16)
codewords in parallel, achieving throughput up to 72-80 Mbps,
for ten decoding iterations. The working frequency of the
system is 3.2 GHz for the 45nm CELL processor. It consumes
20 W and it has a die size of 115mm?.

In Figure 7, we show that PC(2048,1024) and
PC(8192,4096) are sufficient to achieve the same performance
as LDPC(576,288) and LDPC(1248,624) respectively’. In
terms of coded throughput these LDPC decoders reach 32.6
Mbps on a Cell processor while our PC decoders run at 63
Mbps and 55 Mbps on a single core of an ARM processor.
They reach 196 Mbps and 134 Mbps when using the 4 cores.
One should further notice that the ARM processor used in
this work does not belong to the last generation of ARM
processors. The more recent Cortex A15 should improve the
presented performance even further. Moreover, the Cell/BE
processor has a much higher processing power compared to
ARM processor.

VII. CONCLUSION

In this paper, we present the first software implementation
of a polar code decoder on an embedded processor. The cache
memory available in embedded processors is lower than x86
processors which limits the maximum reachable throughput.
Despite this lack of memory, it is shown that the parallel
processing facilites included in modern embedded processors
can be used to efficiently implement software polar decoders.
Moreover, the proposed software implementations compare
favorably with existing software implementation of LDPC
decoder on similar targets. The proposed implementation run
upto 10 times faster with equivalent decoding performance.

REFERENCES

[1] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,”
Information Theory, IEEE Transactions on, vol. 55, no. 7, pp. 3051-
3073, 2009.

3Wordlengths used are: 6 bits for channel information and 8 bits for internal
decoder computations.

i i i

- @- LDPC(576 288) 25 iter
- ®- LDPC (1248 624) 25 iter
— PCn =11

PCn =13

10°

107!
e

1072

1073

FER

S Huem O 1 A

107% E
107° E e
r Te.
1076 = >
E i i i i i
1 1.5 2 2.5 3 3.5
Ey/No (dB)

Fig. 7. Decoding performance comparison of Wimax LDPC codes and R=1/2
Polar Codes.

[2] N. Hussami, S. Korada, and R. Urbanke, ‘“Performance of polar codes
for channel and source coding,” in Information Theory, 2009. ISIT 2009.
IEEE International Symposium on, 2009, pp. 1488-1492.

[3] I Tal and A. Vardy, “List decoding of polar codes,” in Proc. ISIT, 2011.

[4] K. Niu and K. Chen, “Crc-aided decoding of polar codes,” Communi-
cations Letters, IEEE, vol. 16, no. 10, pp. 1668-1671, 2012.

[5] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive-
cancellation decoder for polar codes,” IEEE Communications Letters,
Dec. 2011.

[6] C. Leroux, I. Tal, A. Vardy, and W. Gross, “Hardware architectures
for successive cancellation decoding of polar codes,” in 2011 IEEE
ICASSP, May 2011.

[71 C. Leroux, A. J. Raymond, G. Sarkis, I. Tal, A. Vardy, and W. J.
Gross, “Hardware implementation of successive-cancellation decoders
for polar codes,” Journ. of Sig. Proc. Syst., Dec. 2012.

[8] C. Leroux, A. Raymond, G. Sarkis, and W. Gross, “A semi-parallel
successive-cancellation decoder for polar codes,” Signal Processing,
IEEE Transactions on, 2012.

[91 A. Mishra, A. J. Raymond, L. G. Amaru, G. Sarkis, C. Leroux,
P. Meinerzhagen, A. Burg, and W. Gross, “A successive cancellation
decoder ASIC for a 1024-bit polar code in 180nm CMOS,” in Asian
Solid-State Circuits Conference, Nov. 2012.

[10] C. Zhang and K. Parhi, “Low-latency sequential and overlapped archi-
tectures for successive cancellation polar decoder,” IEEE Transactions
on Signal Processing, 2013.

[11] A. Pamuk, “An FPGA implementation architecture for decoding of
polar codes,” in Wireless Communication Systems (ISWCS), 2011 Sth
International Symposium on, Nov. 2011.

[12] P. Giard, G. Sarkis, C. Thibeault, and W. Gross, “A fast software polar
decoder,” arXiv:1306.6311, Jun. 2013.

[13] B. L. Gal, C. Leroux, and C. Jego, “Multi-gb/s software decoding of
polar codes,” submitted to IEEE Transactions on Signal Processing.

[14] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast polar
decoders: Algorithm and implementation,” IEEE Journal on Selected
Areas in Communications, 2014.

[15] B. Chapman, G. Jost, and R. Van Der Pas, Using OpenMP: Portable
Shared Memory Parallel Programming. The MIT Press, 2008.

[16] S. Gronroos and J. Bjorkqvist, “Performance evaluation of ldpc decod-
ing on a general purpose mobile cpu,” in Global Conference on Signal
and Information Processing (GlobalSIP), 2013 IEEE, Dec 2013.

[17] G. Falcao, V. Silva, J. Marinho, and L. Sousa, “Ldpc decoders for the
wimax (ieee 802.16¢) based on multicore architectures,” in WIMAX New
Developments. Upena D Dalal and Y P Kosta (Ed.), 2009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

