Earliest-Deadline First Scheduling of Multiple
Independent Dataflow Graphs

Adnan Bouakaz'!, Thierry Gautier? and Jean-Pierre Talpin?
1University of Rennes 1/IRISA, 2 INRIA
Campus de Beaulieu, 35042 Rennes Cedex, France
Email: adnan.bouakaz, thierry.gautier, jean-pierre.talpin@inria.fr

Abstract—Static dataflow graphs are widely used in design
of concurrent real-time streaming applications on multiprocessor
systems-on-chip. The increasing complexity of these systems advo-
cates using real-time operating systems and dynamic scheduling
to manage applications and resources. Providing timing guaran-
tees (e.g. minimum throughput, deadlines) and minimizing the
required amount of resources (e.g. number of processors, buffer
capacities) are crucial aspects of these systems.

This paper addresses uniprocessor and partitioned multipro-
cessor earliest-deadline first scheduling of multiple concurrent
applications, each designed as an independent dataflow graph.
Our scheduling approach maps each actor to a periodic real-
time task and computes the appropriate buffer sizes and timing
and scheduling parameters (i.e. periods, processor allocation,
etc.). The proposed parametric schedulability analysis aims at
maximizing the overall processor utilization, and hence allows
for reducing the required number of processors.

I. INTRODUCTION AND RELATED WORK

Static dataflow graphs, such as synchronous dataflow
(SDF) graphs [1] and cyclo-static dataflow (CSDF) graphs
[2], are widely used in design and analysis of digital signal
processing and concurrent real-time streaming applications on
multiprocessor systems-on-chip (MPSoCs). A static dataflow
graph is a directed graph that consists of a set of computation
nodes (called actors) communicating through one-to-one FIFO
channels. When it fires, an actor consumes a predefined
number of tokens from its input channels and produces a
predefined number of tokens on its output channels. Dataflow
models naturally express the parallelism of applications which
make them very suitable to exploit the parallelism offered by
MPSoCs. SDF and CSDF models are restrictions of dataflow
process networks that aim at realizing systems with predictable
performance properties (e.g. throughput, channel capacities).
Furthermore, they are amenable to compile-time construction
of bounded and live static-order schedules.

Static-order scheduling consists in firing actors of the
dataflow graph in sequence, one after another. If the sequence
is periodic, then the schedule is a static-periodic schedule.
In the past decades, static-periodic scheduling of (C)SDF
graphs has been extensively addressed w.r.t. many performance
metrics (e.g. code size minimization, throughput maximization,
etc.). The main drawback of this scheduling approach is that
the application consists of a monolithic, inflexible, and difficult
to maintain code. Furthermore, there is no support for running
independent and concurrent applications on the same platform,
dynamic admission of new incoming applications, or handling
aperiodic tasks.

Nowadays real-time streaming applications on MPSoCs are
increasingly complex; and runtime systems are more needed
to handle resource sharing, task priorities, etc. In [3], authors
present a MPSoCs real-time operating system (RTOS) which
takes a parametrized cyclo-static directed acyclic (PCSDA)
graph as an input and dynamically dispatches the actors of the
graph to the cores of a MPSoCs. The operational semantics
is data-driven; i.e. an actor is activated when enough tokens
accumulate on its input channels. The dataflow management
step consists in parameterizing the graph at each millisecond,
transforming the PCSDA graph into a single rate directed
acyclic graph, and then a RTOS task is created for each actor
in this latter graph. Unfortunately, the transformation of the
PCSDA graph into a single rate graph may result in exponential
increase in the number of actors. While the main objective
of the scheduling step is load balancing and reduction of
computation latency, no timing guarantees are provided.

Real-time streaming applications may have hard timing
requirements that must be met; e.g. minimum throughput,
maximum latency, deadlines of individual tasks, etc. Therefore,
it is reasonable to exploit the existing real-time schedulability
theory [4], [5] to provide strong mathematical guarantees that
all tasks will meet their deadlines when using a given schedul-
ing policy (e.g. fixed-priority scheduling, earliest-deadline first
(EDF) scheduling, etc.). Recent works (such as [6], [7]) have
shown that (C)SDF graphs can be scheduled under the real-
time periodic task model (i.e. each actor is mapped to a
periodic real-time task) w.r.t. EDF or fixed-priority preemptive
scheduling policies. These approaches aim at computing the
timing and scheduling characteristics of each task (e.g. period,
phase, priority, processor allocation, etc.) such that all tasks
meet their deadlines and no task attempts to write to a full
channel (i.e. exclusion of overflow exceptions) or to read from
an empty one (i.e. exclusion of underflow exceptions).

Bamakhrama et al. [7] have addressed partitioned multipro-
cessor EDF scheduling of acyclic CSDF graphs with implicit
deadlines (i.e. deadlines of actors equal to their periods).
Partitioned scheduling, in contrast to global scheduling, does
not allow for a task to migrate from one processor to another.
Since this problem is equivalent to bin-packing (and hence
is NP-hard), authors consider a first-fit allocation heuristic,
and compute the minimum number of processors needed for
scheduling the graph. They show in [8] that implicit deadlines
do not give the minimum latency, and hence propose a tech-
nique to constrain deadlines (i.e. deadlines less than or equal to
periods) to achieve better latency. Recently, this approach has
been extended to consider semi-partitioned EDF scheduling of
acyclic CSDF graphs with implicit deadlines [9].

In our previous works [6], [10]-[13], we have proposed an
abstraction-refinement framework for priority-driven schedul-
ing of (cyclic) ultimately cyclo-static dataflow (UCSDF)
graphs. This schedule construction approach is briefly pre-
sented in the next section. In [13], we have addressed unipro-
cessor and partitioned multiprocessor fixed-priority scheduling
of UCSDF graphs with constrained deadlines. We have also
presented different priority assignment policies that aim at
maximizing the throughput or reducing the buffering require-
ments (i.e. the total sum of channel capacities). In [10], we
have addressed uniprocessor, partitioned, and global multipro-
cessor EDF scheduling of UCSDF graphs. We have shown
that implicit deadlines give the best throughput; and we
have proposed a deadline adjustment technique that constrains
deadlines to ensure some precedence constraints among tasks
in order to improve the buffering requirements.

All the above presented works address hard real-time
scheduling of weakly or strongly connected dataflow graphs.
In case there are multiple independent and concurrent appli-
cations (each modeled as a connected dataflow graph), these
approaches could handle this case by assuming that each graph
has a predefined processing load budget. However, this solution
may not give the best overall throughput for the whole set
of independent graphs. In this paper, we extend our previous
work to handle uniprocessor and partitioned multiprocessor
EDF scheduling of multiple independent weakly connected
UCSDF graphs. The proposed solution aims at maximizing
the throughput and hence allows to minimize the number of
processors needed for scheduling the graphs.

The following works are less related to our approach since
they are based on a different operational semantics. Hausmans
et al. [14], [15] have presented a temporal analysis for fixed-
priority scheduling of (cyclic) SDF graphs. Assuming user-
provided priorities and processor mapping, and the existence of
a source actor with a predefined period, their analysis computes
an upper bound on the worst-case response time of each
actor. Unlike the clock-triggered operational semantics in our
approach, they consider a data-driven operational semantics;
i.e. apart from the periodic source actor, all the other actors are
enabled by the arrival of data tokens on their input ports. These
approaches follow the same scheme : the response time of an
actor equals its execution time plus the maximum interference
due to actors with higher priorities. Those approaches however
differ in how to compute that interference. They may use a
period-jitter characterization of the graph [14], an enabling rate
characterization [15], a load characterization, etc.

Uniprocessor EDF schedulability analysis of acyclic com-
putation graphs with a chain topology and constrained dead-
lines was addressed in [16]. It checks whether each actor meets
its deadline or not assuming user-provided period of the source
actor and data-driven enabling for the remaining actors.

The rest of the paper is organized as follows. Section II
presents the background material on static dataflow graphs and
the abstraction-refinement scheduling framework, needed for
understanding the proposed algorithms. Section III presents
both uniprocessor and partitioned multiprocessor parametric
EDF schedulability analyses of multiple independent dataflow
graphs. Section IV evaluates the performance of the proposed
algorithms. Section V ends the paper with some conclusions.

II. BACKGROUND
A. Static dataflow graphs

A static dataflow graph is a directed graph G = (P, E)
that consists of a set of actors P = {p1,...,pn} and a
set of channels E. The worst-case execution time of actor
p; is denoted by C;. Channel e = (p;,pg,x,y) connects
the producer p; with the consumer pj. The production and
consumption rates of channel e are denoted by the two infinite
integer sequences x,¥y : Nxg — N, respectively. For instance,
actor p; writes x(j) tokens on channel e during its j" firing.
The number of initial tokens in channel e is denoted by 0(e);
while its size is denoted by d(e).

Production and consumption rates are constant in SDF
graphs, periodic in CSDF graphs, and ultimately periodic in
UCSDF graphs. An infinite integer sequence s is ultimately
periodic if 3m, jo € Nsg Vj > jo : s(j) = s(j + 7); we then
write s = wv® for two finite sequences v and v. The cumula-
tive function of an infinite sequence s : N5 o — N is an infinite
sequence ®s : N5o — N such that ®s(j) = > 7_, s(¢). For a
finite sequence v, we denote its length by |v| and the sum of
all its elements by ||v||.

Fig. 1.

Two independent UCSDF graphs.

In this paper, we are interested in preemptive EDF schedul-
ing of a set of A independent weakly connected UCSDF
graphs G; = (P;, E;) on a set of M > 1 homogeneous pro-
cessors. In case of partitioned multiprocessor scheduling (i.e.
M > 2), each actor will be allocated to one processor. Timing
requirements are expressed in two ways: (1) the minimum
throughput ©'(G;) that must be achieved by each UCSDF
graph G;, and (2) an individual constrained deadline d; of each
actor p;. For more expressive specifications, deadlines are not
just constants but monotone functions in terms of periods. We
take the simple example where Vp; : d; = a;m; + b; such that
m; is the period of actor p;, a; € Q>¢, and b; € Z. Hence, for
an implicit deadline, we have that a; = 1 and b; = 0; while
for a constant deadline, we have that a; = 0.

Example. We will illustrate all the proposed algorithms
using the following example. Figure 1 shows an applica-
tion that consists of two independent UCSDF graphs where
Py = {p1,p2,p3} and P, = {p4,ps}. Edges are annotated
by production and consumption rate sequences, while num-
bers inside nodes represent the worst-case execution times.
Hence, the vector of worst-case execution times is C' =
[20, 30, 10, 15, 10]. We suppose that the user-provided timing
requirements are ©'(G1) = 0 (i.e. unspecified), O!(Gs) =
2.8 x 10_3, and d = [%7‘(1, % — 5,3 — 2, 2*747'('4 —4, 7'('5].

B. Affine scheduling

Since each actor will be mapped to a periodic real-time
task, it is necessary to compute the appropriate channel capac-
ities and timing and scheduling characteristics of each actor
p;: a period ;, a phase 7;, and a processor allocation. These

characteristics should ensure that: overflow and underflow ex-
ceptions over communication channels are statically excluded,
timing requirements are satisfied, and the overall throughput
is maximized.

In our previous work, we have proposed an abstraction-
refinement schedule construction approach. It consists of two
steps. The first step is physical-time independent; it computes
some relations between the logical order of activations of every
two adjacent actors. Since actors are mapped to periodic tasks,
those activation relations are affine relations [17]. An affine
relation between the activation clocks of two actors p; and
pi is described by three integer parameters n,d € N5 and
@ € Z, as illustrated in Figure 2. Parameters n and d encode
the relation between the speeds of the actors (i.e. for every d
activations of p;, there are n activations of p;) while parameter
o encodes the difference between their phases.

Pi @ ® ® e
n—1
c OO0 O 00O OO OO O O
p+1 d—1
Pk ® ® *—

Fig. 2. A (n, ¢, d)-affine relation. Clock c is a fictional abstract clock.

The set of computed affine relations should satisfy two
constraints: exclusion of overflow and underflow exceptions
and consistency.

a) Overflow and underflow analysis: Excluding over-
flow and underflow exceptions implies that the number of
accumulated tokens on every channel and at each step of the
execution is greater than or equal to zero (i.e. no underflow)
and less than or equal to the buffer size (i.e. no overflow).

Let e = (pi,pr,x = wvy,y = ugvy) be a channel
between the two (n,p,d)-affine-related actors p; and p.
When the j** firing of p; and the j'** firing p; complete,
the number of accumulated tokens on channel e is given by
0(e) + ®x(j) — ®y(j’); i.e. the number of initial tokens plus
the number of all produced tokens by all firings of p; until the
4" firing minus all the consumed tokens. Obviously, indices j
and j' are related to each other according to the affine relation.
Hence,

e No overflow exception over channel e means that:

Vj:0(e) + @x(j) — dy(j’) < o(e) (M

e No underflow exception over channel e means that:
Vi 0(e) + @x(j") —@y(s) 2 0 2
We have shown in [6], [10] that parameters n and d
of affine relations can be obtained using the boundedness
criterion (Equation 3), while parameters ¢ can be obtained us-
ing integer linear programming after sound linear over/under-

approximations of Equations 1 and 2.

n_ [loal Jvel

d o] ool

3

b) Consistency: According to the overflow and under-
flow analysis, the affine relation between two adjacent actors
which excludes exceptions over channels between them can
be computed independently of the other relations. However,
the overall abstract affine schedule could be inconsistent in
case there are undirected cycles in the graph. For instance,
since parameter ¢ encodes the difference between phases, we
must ensure that the accumulated difference on a cycle is null.
Proposition 1 in [6] is a sufficient condition for consistency of
affine schedules.

Example. By applying the boundedness criterion to our
dataflow example, we obtain the following affine relations:

2, 4 6,p2,2 4,p3,6 8,p4,2
G, C2 U2 b and py O g

The second step in our abstraction-refinement approach is
called parametric schedulability analysis. This step refines the
obtained abstract affine schedule by computing the physical
timing characteristics (i.e. periods and phases). These charac-
teristics should satisfy the following constraints.

¢) Affine relations: If actors p; and py are (n,p,d)-
affine-related, then their timing characteristics must satisfy

dm; = nmy, @
re—ri= o 5
n

From Equation 4, we deduce that the period and deadline
of every actor in a weakly connected UCSDF graph can be
expressed in terms of the period of one actor in that graph.
Hence, we can put Vp; € G, : m; = o1 and d; = ;15 + b;
where o; € Qs, B; € Q>0 and b; € Z. Furthermore, since
the timing characteristics are non-negative integers, variable
T}; should be a multiple of some integer factor B;.

Example. By applying Equations 4 and 5, we have that 47, =
2o, 19 — T = %771, dy = %m, etc. Hence, we can put m =
[T1,2T1, 2Ty, Ty, To] and d = [3Ty, Ty — 5, 2Ty — 2, 5 To —

7}
4,1T>]. We also have that B; = 12 and By = 24.

d) Schedulability: The computed timing characteristics
must guarantee the timing requirements. Hence, the second
step of our approach must explore the 7 -space (i.e. all the
possible values of variables 7)), to find a point which sat-
isfies the timing requirements and optimizes the throughput.
Standard EDF schedulability tests (Section III) could be used
at each point to check whether all tasks will meet their
deadlines. However, such enumerative solution could be very
time consuming. In this paper, we present more efficient
solutions in case of multiple independent dataflow graphs.

C. EDF schedulability

This section presents the standard uniprocessor EDF
schedulability tests of a set of NV periodic real-time tasks. It
is based on the processor-demand approach as given by the
following lemma [18].

Lemma 1: A synchronous' periodic task set is schedulable
ifand only if U <1 and V¢ < L : h(t) < t.

! An asynchronous task set is schedulable if its corresponding synchronous
task set is schedulable.

N
U=> % is the processor utilization factor of the task set.

i=1
L is called the feasibility bound. It is equal to the length of
the synchronous busy period, which can be computed by the
following recurrence.

N
L°=) "¢
=1

The processor demand function h(t) calculates the max-
imum processor demand of all jobs which have their arrival
times and deadlines in a contiguous interval of length ¢. So,
h(t) is given by

N m
) EIC

s
i=1 v

t—d;
Uy

h(t) = ZNlmax{Q 14 { J}Ci)

The value of the demand function does not change from one
point ¢ to another one t' unless there is at least one absolute
deadline in the interval |¢,t']. Therefore, it is necessary to
check condition h(t) < ¢ only for the set of absolute deadlines
which are less than the feasibility bound L. This set can be
large and a technique like the Quick convergence Processor-
demand analysis (QPA) [19] is needed. Listing 1 represents
the QPA algorithm where d denotes an absolute deadline
and min{d} is the smallest absolute deadline. So, instead
of checking all deadlines in the increasing order, the QPA
algorithm starts from the last deadline and moves backward,
skipping many intermediate deadlines.

Algorithm 1: QPA algorithm
t = max{d|d < L};
while h(t) <t A h(t) > min{d} do
if h(t) <t then t = h(t);
else ¢t = max{d|d < t};
if h(t) < min{d} then the task set is schedulable;
else the task set is not schedulable;

Our parametric EDF schedulability analysis, presented in
the next section, is based on the two following observations.
Let 77 and 75 be two vectors in the T -space such that 7; < 7.
Hence, for every actor p;, its period at point 7; is smaller
than its period at point 73. Furthermore, since deadlines are
monotone functions in terms of periods, the deadline of a
given actor at point 77 is smaller than its deadline at point
T>. Therefore and according to Equations 6 and 7, we have
that

Observation 1. The feasibility bound L at point 77 is larger
than the feasibility bound at point 7.

Observation 2. For every ¢, the processor demand h(t) at point
Ty is larger than the processor demand at point 73. Hence, if
h(t) <t at point 71, then we also have that h(t) < ¢ at point

Ts.

III. PARAMETRIC EDF SCHEDULABILITY ANALYSIS

In this section, we present the parametric uniprocessor
and partitioned multiprocessor EDF schedulability analysis for
multiple independent dataflow graphs.

A. Uniprocessor scheduling

We first compute the boundaries of the explored 7 -space;
ie. we compute a lower bound vector 7' = [T},...,T}/]
and an upper bound vector 7" = [T}*,...,T};]. Hence, we
will search for the optimal solution in the interval [T, 7].
Those bounds are deduced for the following constraints: (1) the
necessary EDF schedulability test U < M (M is the number of
processors), (2) the constrained deadlines Vp; : C; < d; <,
and (3) the minimum throughput requirements.

The throughput of an actor p; is the average number of
firings of p; per unit of time and hence equals to its frequency
Tr%' The throughput of a (weakly) connected graph G is equal
to ﬁ The repetition vector r can be easily obtained from
the wefl—known balance equation [1] or equivalently from
parameters n and d of affine relations. Since Vp; : m; = «; 7T,
maximizing the throughput is equivalent to minimizing 7" and
hence to maximizing the processor utilization factor U. Thus,
from the minimum throughput requirement of the graph (i.e.
O(G) > ©Y(@G)), we can obtain an upper bound 7. In the
literature, there is no definition for the overall throughput of a
set of independent dataflow graphs. Therefore, we have chosen,
as in the first case, to maximize the processor utilization factor.

The lower bound vector 7 can be improved by performing
the parametric EDF schedulability analysis on each graph G;
assuming the minimum throughput for other graphs. The best
processor utilization factor obtained by this step is denoted by
Uy, while the corresponding vector is denoted by 7.

Example. The UCSDF example consists of two independent
graphs G; and G5 with minimum throughput requirements
O(G1)! = 0 (i.e. unspecified) and ©'(Gy) = 2.8 x 1073.
The repetition vectors are r; = [2,1,3] and ro = [1,4]. We
also have that By = 12 and By = 24. From constraint C; <
d; < m;, we deduce 7' = [36, 72]. From constraint U = %? +
% < 1, we deduce 7' = [60, 72]. From constraint ©(G;) >
O(G,)!, we obtain T“ = [oc, 336]. By assigning the minimum
throughput to graph G (i.e. 7> = 336), we found that the task
set is not schedulable neither for 77 = 60 (deadline miss at
t = 55) nor for T} = 72 (deadline miss at ¢ = 94). It is
however schedulable for 77 = 84 with Uy = 0.759. Similarly
and by assigning the minimum throughput to graph G (i.e.
T = o0), we found that the task set is not schedulable neither
for T, = 72 (deadline miss at ¢ = 18) nor for T, = 96
(deadline miss at t = 24). Therefore, the new lower bound is
T = [84,120].

Algorithm 2: QPA* (T, o)
if U(T) > 1 then return ¢;
t =max{d|d < L(T)ANd <t};
while h(T,t) <t Ah(T,t) > min{d} do
if h(T,t) <t thent = h(T,t);
L else ¢t = max{d|d < t};

return h(7,1);

Let U(T), L(T), and h(T,t) denote the processor utiliza-
tion, the feasibility bound, and the processor demand function
at a given point 7 in the 7T -space, respectively. As shown in
Algorithm 2, function QPA*(T, ¢o) performs QPA (i.e. testing

h(t) <t in a backward manner) for a given value 7 in the 7 -
space starting from point min{to, L(7)}. It ends when there
is a deadline miss or if the task set is schedulable. If ¢ is the
returned value, then there is no deadline miss in the interval
[t,min{L(7T),to}]. In case U(T) > 1, the procedure returns
immediately.

Algorithm 3: DF-B&B PQPA

Procedure main() begin
Est = 76; Ubst = UO;
7Eur = Tl;
t = QPA" (%ur; OO);
if ¢t <min{d} then return 7, ;
else
| VisitTree(Teur, 1); return Tog;

Procedure visitTree(7, t) begin

for j =1,2,...,N do

Teur < increase Tj in T;

if Tj > T or U{Te) < Upy then
L prune this node;

else
t = QPA™ (Teur, 1);
if t < min{d} then
L 7—bst = 7Zur; Ubst = U(ﬁur);

else VisitTree(7eyr, 1);

Algorithm 3 (DF-B&B PQPA) is a depth-first branch and
bound parametric EDF schedulability analysis. It is based on
the QPA* function and Observations 1 and 2. We will illustrate
this algorithm using the UCSDF example.

An initial feasible solution is 7 which is obtained when
computing the lower bound 7. Hence, the optimal solution
is initialized at Tpgy = To and Upy = Up. The algorithm
explores the T -space starting from point 7, and at each time
increments one component of the vector (i.e. T; = T + Bj).
The constructed tree, obtained by this process, is illustrated
in Figure 3 where nodes are numbered in order of their
appearance.

@ [84,120]

U>1

[96, 120] 84, 144]
L = 565 ’
e @ e & L = 500

) t =335

'[96, 144]

L:180

[108, 120]
L =200 (3)
t =105

(84, 168]
L =155
t =095

[120, 120]
L =200
U = 0.875

[84,192]
L =155
t =85

(96, 192]

[84,216]
Fig. 3. Tllustration of the DF-B&B PQPA algorithm.

Initially, the current node is Ty = [84,120]. Since
U(Tewr) > 1, function QPA* returns immediately. Component

T, is incremented first by B; (i.e. node number 2 with
Tewr = [96,120]). Function QPA* checks deadlines starting
from L(Tew) = 565. It detects a deadline miss (at d = 511)
and returns ¢ = 515. Component 77 is incremented again (node
number 3 with 7¢,, = [108,120]). Thanks to Observations 1
and 2, we do not have to recheck the already checked dead-
lines, and hence QPA* starts from min{L(7") = 200,¢ = 515}.
At node number 4, QPA* starts from min{L(7) = 200,t =
105}, and hence skips many deadlines. Since the task set is
schedulable at node number 4, the best solution is updated (i.e.
Tost = [120,120] and Upg = 0.875).

Nodes are pruned in two cases: (1) if the value of one
component exceeds its upper bound (i.e. T; > T]“), and (2) if
U(Tewr) < Tou since increasing periods will result in smaller
processor utilization. For instance, node number 5 is pruned
because U([108, 144]) < Upy = 0.875.

The number of explored nodes depends on factors B;. It is
larger for small factors since components are incremented each
time by small quantities which are not enough to resolve the
deadline miss. Algorithm DF-B&B PQPA can be easily turned
to a heuristic that increments a component 1} by k;B; for a
given constant k; € N5g. This way, the number of explored
nodes is reduced but at a cost of less accurate results.

B. Partitioned multiprocessor scheduling

One advantage of partitioned scheduling compared with
global scheduling is that, once an allocation of actors to
processors has been achieved, it is possible to apply unipro-
cessor schedulability analyses [5]; for instance, the technique
proposed in the previous section. Since partitioning the tasks
on M identical processors is NP-hard, we propose a best-fit
heuristic.

If P is the set of all actors and S C P, then func-
tion DF-B&B PQPA*(S, To) performs the previous parametric
uniprocessor EDF schedulability analysis on just actors of
subset S starting from point 7 (not from 7). We note that this
function aims at maximizing U as it is defined for set P (and
not only for subset S). Let (V;);—1,as be the set of, initially
empty, M partitions. Our heuristic consists of the following
steps:

Algorithm 4: Best-fit allocation heuristic

77:ur = Tl;

while P # () do
1. Select actor p € P with the smallest deadline at
point Ty
2.fori=1,...,M do

| 7i =DF-B&B PQPA*(V; U {p}, Teur);

3. Assign actor p to partition Vj, with maximum
U(Tx), put Tewr = Tg, and remove p from P;

At each iteration, DF-B&B PQPA* explores the 7T -space
starting from the solution obtained in the previous iteration.
This ensures that assigning one actor to a partition does not
jeopardize the schedulability of other partitions.

Example. We illustrate this algorithm on the UCSDF example
for M = 2. As illustrated in the following table, the obtained

partitions are Vi = {p4,p1,p2} and Vo = {ps,p3}, while the
overall processor utilization is U = 1.458.

Teur actor T Ts assignment
[36,72] | p4 [36, 72] (36, 72] %]
[36,72] | ps [36,120] | [36,72] Vs
[36,72] | ps3 [36,120] | [36,72] 1%
[36,72] | p1 [48,72] | [48,168] %]
[48,72] | p2 [72,72] | [48,216] %]

IV. EXPERIMENTAL RESULTS

In this section, we will evaluate the performance of the
DF-B&B PQPA algorithm in comparison with that of a basic
enumerative solution which proceeds as follows: starting from
Tewr = T', test condition h(7,t) < t at each absolute
deadline in [0, L(7¢y)]. If there is a deadline miss, then put
Tewr = getNext() and repeat the same process until reaching
the first feasible task set. Function getNext () returns the next
unexplored point in the 7-space with maximum utilization.
Algorithms are compared in terms of the number of checked
deadlines. This experiment will also demonstrate that our al-
gorithm computes the same solutions as the basic enumerative
algorithm.

We randomly generate N task sets with equal number of
nodes, each task set corresponds to an independent dataflow
graph and is generated as follows: for each actor p;, we
generate three parameters (C;,ay, ;) such that m;, = ;T
and d; = 3;T};. The UUniFast algorithm is used to generate
uniformly distributed g— values. Worst-case execution times
are uniformly distributed in the interval [100, 1000]. Parameters
«; and f3; are uniformly generated by fixing the value of factor
B; and the value of an experimental parameter D €]0, 1]
so that Vp;, : fB; € [Day, ;). Hence, deadlines are more
constrained for small values of parameter D. As a throughput
requirement, we suppose that the lower bound on the processor
utilization of each graph is equal to 0.1.

60

u
o

—>— confl: E=565.9 * - . ;
—&— conf2: E=885.9 v RPN

IS
o
’

- -® - conf3: E=1699.9 ’
- & -conf4: E=2822.5

N
o

Checked deadlines
w
o

=
o

o

6 12 18 24 30 36 42 48 54 60 66 72 78 8 90 96
#actors

Fig. 4. Performance of the DF-B&B PQPA algorithm.

Figure 4 shows the obtained results for N = 2 and 4
configurations of parameters IB; and D. Parameters B; are
uniformly distributed in the interval [10,15] for the first and
second configurations (confl and conf2), and in the interval
[5,10] for con£3 and conf4. Parameter D takes either value
0.3 (confl and conf3) or value 0.8 (conf2 and conf4).
Each point in the diagram is the average (over 20 generated
task sets) of ratios of the number of checked deadlines by
the enumerative solution to the number of checked deadlines
by DF-B&B PQPA. For each configuration, we denote by E

the average number of checked deadlines per task (obtained
by the enumerative solution) to indicate the complexity of the
problem. As expected and explained in the previous section,
the number of checked deadlines is larger for small values
of factors B;. It is also slightly larger when D = 0.8. Our
algorithm largely outperforms the enumerative solution in most
cases except when there is a considerable proportion of actors
with highly constrained deadlines. When deadlines are too
constrained, deadline misses could be detected earlier by a
forward search than by a backward search (i.e. QPA).

V. CONCLUSION

As an extension to our abstraction-refinement framework
for priority-driven schedule construction of UCSDF graphs,
this paper presents a new parametric EDF schedulability
analysis that can handle multiple independent dataflow graphs.
Our future work will address the parametric fixed-priority
schedulability analysis of multiple independent graphs.

REFERENCES

[11 E. A. Lee and D. G. Messerchmitt, “Synchronous data flow,” Proceed-
ings of the IEEE, 1987.

[2] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cycle-static
dataflow,” IEEE Transactions on Signal Processing, 1996.

[3] Y. Oliva, M. Pelcat, J.-F. Nezan, J.-C. Prevotet, and S. Aridhi, “Building
a RTOS for MPSoC dataflow programming,” in SOC, 2011.

[4] L. Sha et al., “Real time scheduling theory: a historical perspective,”
Real-Time Syst., 2004.

[5] R. I Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Comput. Surv., 2001.

[6] A. Bouakaz, J.-P. Talpin, and J. Vitek, “Affine data-flow graphs for the
synthesis of hard real-time applications,” in ACSD, 2012.
[71 M. Bamakhrama and T. Stefanov, “Hard-real-time scheduling of data-

dependent tasks in embedded streaming applications,” in EMSOFT,
2011.

[8] M. A. Bamakhrama and T. Stefanov, “Managing latency in embedded
streaming applications under hard-real-time scheduling,” in CODES,
2012.

[9] E. Cannella, M. A. Bamakhrama, and T. Stefanov, “System-level
scheduling of real-time streaming applications using a semi-partitioned
approach,” in DATE, 2014.

[10] A. Bouakaz and J.-P. Talpin, “Buffer minimization in earliest-deadline
first scheduling of dataflow graphs,” SIGPLAN Not., 2013.

[11] A. Bouakaz, “Real-time scheduling of dataflow graphs,” Ph.D. disser-
tation, University of Rennes 1, 2013.

[12] A. Bouakaz and T. Gautier, “An abstraction-refinement framework for
priority-driven scheduling of static dataflow graphs,” in MEMOCODE,
2014.

[13] A. Bouakaz and J.-P. Talpin, “Design of safety-critical Java level 1
applications using affine abstract clocks,” in M-SCOPES, 2013.

[14] J. P. H. M. Hausmans, M. H. Wiggers, S. Geuns, and M. J. G. Bekooij,
“Dataflow analysis for multiprocessor systems with non-starvation-free
schedulers,” in M-SCOPES, 2013.

[15] J. P. H. M. Hausmans et al., “Temporal analysis flow based on an
enabling rate characterization for multi-rate applications executed on
MPSoCs with non-starvation-free schedulers,” in SCOPES, 2014.

[16] S. Goddard and K. Jeffay, “Analyzing the real-time properties of a
dataflow execution paradigm using a synthetic aperture radar applica-
tion,” in RTAS, 1997.

[17] I. M. Smarandache, T. Gautier, and P. Le Guernic, “Validation of
mixed signal-alpha real-time systems through affine calculus on clock
synchronisation constraints,” in FM, 1999.

[18] I. Ripoll, A. Crespo, and A. K. Mok, “Improvement in feasibility testing
for real-time tasks,” Real-Time Syst., 1996.

[19] F. Zhang and A. Burns, “Schedulability analysis for real-time systems
with EDF scheduling,” IEEE Transactions on Computers, 2009.

