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Abstract—In this paper, we propose a finite alphabet message
passing algorithm for LDPC codes that replaces the standard
min-sum variable node update rule by a mapping based on
generic look-up tables. This mapping is designed in a way that
maximizes the mutual information between the decoder messages
and the codeword bits. We show that our decoder can deliver the
same error rate performance as the conventional decoder with
a much smaller message bit-width. Finally, we use the proposed
algorithm to design a fully unrolled LDPC decoder hardware
architecture.

I. INTRODUCTION

The excellent error correction performance of low-density
parity-check (LDPC) codes, alongside with the availability of
low-complexity and highly parallel decoding algorithms and
hardware architectures makes them an attractive choice for
many high throughput communication systems. LDPC codes
are traditionally decoded using iterative message passing (MP)
algorithms like the sum-product (SP) algorithm and variants
thereof [1], most notably the min-sum (MS) algorithm. Those
conventional algorithms rely on the exchange of continuous
messages, which are usually quantized with resolutions of 4 to
7 bits in most in hardware implementations. Lower resolutions
are possible but entail severe performance penalties, especially
in the error-floor region [2].

Previous work on quantized MP algorithms for LDPC
decoding has shown that decoders which are designed to
operate directly on message alphabets of finite size can lead
to improved performance. There are numerous different ap-
proaches towards the design of such decoders. For example,
the authors of [3], [4] and [5] consider look-up table (LUT)
based update rules that are designed such that the resulting
decoders can correct most of the error events contributing to
the error floor. However, their design is restricted to codes with
column weight 3 and to binary output channels. In [6] a quasi-
uniform quantization was proposed which extends the dynamic
range of the messages at later iterations and improves the error
floor performance. However, the design of [6] still relies on
the conventional message update rules and therefore does not
reduce the required message bit-width. Finally, the authors of
[7], [8] consider message updates based on an information
theoretic fidelity criterion. While [3], [4], and [6] analyze
the performance of their decoding schemes by means of
frame error rate (FER) simulations, [7] only provides density
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evolution results and [8] focuses solely on the algorithm
for designing the message update rules. To the best of our
knowledge, none of the above schemes have been assessed in
terms of their impact on hardware implementations.

Contribution: In this paper, we derive a low-complexity
decoding algorithm that is designed to directly operate with
a finite message alphabet and that manages to achieve bet-
ter error-rate performance than conventional algorithms with
message resolutions as low as 3 bits. Based on this algorithm,
we synthesize a fully unrolled LDPC decoder and compare
our results with our implementation of the only existing fully
unrolled LDPC decoder [9]. Our approach for the design of
the variable node update rule is similar to [7], [8], but we use
a more sophisticated tree structure as well as a different check
node update rule.

II. LDPC CODES AND MIN-SUM DECODING

A (dv, dc)-regular LDPC code is the set of codewords{
c ∈ {0, 1}N

∣∣Hc = 0
}
, (1)

where all operations are performed modulo 2. The parity check
matrix H ∈ {0, 1}M×N contains dv ones per column and dc
ones per row and is sparse in the sense that dv < dc � N . The
parity-check matrix forms an incidence matrix for a Tanner
graph which contains N variable nodes (VNs) and M check
nodes (CNs). Variable node n is connected to check node m
if and only if Hmn = 1.

LDPC codes are traditionally decoded using MP algorithms,
where information is exchanged between the VNs and the CNs
over the course of several decoding iterations. Let the message
alphabet be denoted by M. For simplicity, in this work we
assume that M does not change over the iterations. At each
iteration the messages from VN n to CN m are computed
using the mapping Φv : L ×Mdv−1 →M, which is defined
as

µn→m = Φv
(
Ln, µ̄N (n)\m→n

)
, (2)

where N (n) denotes the neighbours of node n in the Tanner
graph, µ̄N (n)\m→n ∈ Mdv−1, is a vector that contains
the incoming messages from all neighboring CNs except m,
and Ln ∈ L denotes the channel log-likelihood ratio (LLR)
corresponding to VN n. Similarly, the CN-to-VN messages
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Fig. 1: VN update (a) and CN update (b) for N (n) =
{m,m1, . . . ,mdv−1} and N (m) = {n, n1, . . . , ndc−1}

are computed using the mapping Φc : Mdc−1 → M, which
is defined as

µ̄m→n = Φc
(
µN (m)\n→m

)
, (3)

Figure 1 illustrates the message updates in the Tanner graph.
In addition to Φv and Φc, a third mapping Φd : L ×Mdv →
{0, 1} is needed to provide an estimate of the transmitted
codeword bit based on the incoming check node messages
and the channel LLR Ln

ĉn = Φd(Ln, µ̄N (n)→n). (4)

For the widely used MS algorithm, the mappings read

ΦMS
v (L, µ̄

)
= L+

∑
i

µ̄i, (5)

ΦMS
c (µ

)
= signµ min |µ|, (6)

where min |µ| denotes the minimum of the absolute values of
the vector components, signµ =

∏
j signµj and M = L =

R. The decision mapping Φd is defined as

ΦMS
d (L, µ̄) =

1

2

(
1− sign

(
L+

∑
i

µ̄i

))
. (7)

III. FINITE-ALPHABET DECODER DESIGN ALGORITHM

The MS algorithm assumes that the message setM and the
LLR set L are real numbers. However, it is impractical to use
floating-point arithmetic in hardware implementations of such
decoders and the message alphabets are usually discretized
using a relatively low number of uniformly spaced quanti-
zation levels. This uniform quantization, together with the
well-established two’s complement and sign-magnitude binary
encoding, leads to efficient arithmetic circuits, but it is not
necessarily the best choice in terms of error-rate performance.

Recently, efforts have been made to devise decoders that are
designed to work directly with finite message and LLR alpha-
bets [3], [7]. Instead of arithmetic computations such as (5)

and (6), the update rules for these decoders are implemented
as look-up tables (LUTs). There are numerous approaches
to the design of such LUTs. In the following, we provide
an algorithm that is a mixture between the conventional MS
algorithm and purely LUT-based decoders. More specifically,
we only replace the VN update rules with LUTs, which are
designed using an information theoretic metric. For the design
of the CNs, we exploit the fact that the outputs of the LUT-
based VNs, although not representing real numbers, can be
ordered and for symmetric channels, the message sign can be
directly inferred from the labels, cf. section III-B. This allows
us to use the standard MS update rule, thereby avoiding the
high hardware complexity that a LUT-based CN design would
cause for codes with high CN degree. Our hybrid algorithm
provides excellent performance even with very few message
levels and leads to an efficient hardware architecture, which
is described in detail in Section IV.

A. Mutual Information Based VN LUT Design

The key idea behind the LUT design method that we employ
is that, given the CN-to-VN message distributions of the previ-
ous iterations, one can design the VN LUTs for each iteration
in a way that maximizes the mutual information between the
VN output messages and the codeword bit corresponding to
the VN in question.

We first describe how the distribution of the CN-to-VN
messages can be computed based on the distribution of the
incoming CN-to-VN messages. If the Tanner graph is cycle-
free, then the individual input messages of a CN at iteration i
are iid conditioned on the transmitted bit x1, and their distri-
bution is denoted by p(i)

m|x(µ|x). Then, the joint distribution of
the (dc− 1) incident messages conditioned on the transmitted
bit value corresponding to the recipient VN (cf. Fig. 1) reads

p
(i)
m|x(µ|x) =

(
1

2

)dc−2 ∑
x:

⊕
x=x

dc−1∏
j=1

p
(i)
m|x(µj |xj), (8)

where
⊕
x denotes the modulo-2 sum of the components of

x. Using the update rule (6), the distribution of the outgoing
CN-to-VN message is then given by

p
(i)
m|x(µ̄|x) =

∑
µ∈Mµ̄

p
(i)
m|x(µ|xn), (9)

where Mµ̄ ,
{
µ
∣∣∣ min |µ| = |µ̄| ∧ signµ = sign µ̄

}
. The

output message values are given by

µ , log
p

(i)
m|x(µ|0)

p
(i)
m|x(µ|1)

. (10)

Conventional decoding algorithms need a high dynamic range
in order to represent the growing message magnitudes, as they
are using the same message representation for every iteration.
In our LUT-based decoder, the message representation changes
from one iteration to the next and the message values grow

1In the following, random variables are denoted by sans-serif letters.



implicitly as the distributions p
(i)
m|x(µ|x) become more and

more concentrated over the course of the iterations, thus
providing an explanation for the good performance we can
achieve with very low resolutions.

Let µ̄ =
(
µ̄1, . . . , µ̄dv−1

)
denote the (dv − 1) incident CN-

to-VN messages that are involved in the update of a certain
VN (one of which is always the channel LLR L) and let x
be the transmit bit corresponding to this VN. Then, the joint
distribution of the VN input messages is given by [7]

p
(i)
L,m|x(L, µ̄|x) =

∑
x: x0=···=xdv−1=x

pL|x(L|x0)

dv−1∏
j=1

p
(i)
m|x(µ̄j |xj).

(11)
Given this distribution, we can construct an update rule

Φ(i) MI
v = arg max

Q∈Q
I(m; x) = arg max

Q∈Q
I
(
Q(L,m); x

)
, (12)

where Q is the set of all deterministic mappings in the form
of (2) and I(m; x) denotes the mutual information between m
and x. Hence, the resulting update rule locally maximizes the
information flow between the CNs and the VNs.

An algorithm that solves (12) with complexity
O
(
|L|3|M|3(dv−1)

)
was provided in [8]. Using the update

rule (12), we can compute the message conditional distribution
of the next iteration

p
(i+1)
m|x (µ|x) =

∑
(L,µ̄): Φ

(i) MI
v (L,µ̄)=µ

p
(i)
L,m|x(L, µ̄|x). (13)

Given an initial message distribution p(0)
m|x(µ|x) and a distri-

bution of the channel LLRs pL|x(L|x), the repeated alternating
application of (8), (9) and (11) to (13) produces a sequence of
locally optimal VN update mappings Φ

(i) MI
v , i ∈ {1, . . . , I},

where I denotes a pre-determined maximum number of per-
formed iterations.

B. Discussion and Practical Considerations

1) LUT-based VN and Tree Structure: As the mappings Φv
take |L|·|M|(dv−1) inputs, a direct application of the algorithm
described in Section III-A is restricted to low weight codes.
However, we can construct a hierarchy of mappings where
each partial mapping only processes a subset of the inputs and
the intermediate outputs of preceding stages.2 The quantizer
design for such a hierarchy follows directly by considering
only the messages incident to the respective mapping in (11)
and, for the intermediate nodes, replacing the distributions (9)
of the incident CN messages by the distributions (13) of the
previous stage.

2) Channel Output Quantization: So far we considered the
initial distributions p(0)

m|x(µ|x) and pL|x(L|x) as given. When
designing practical decoders for communication applications,
the initial distributions follow from the transmission channel
and the LLR quantization of the preceding signal processing.

2In our simulations, we observe that the choice of LUT tree structure can
significantly affect the FER performance of the decoder. It is an interesting
open problem to identify the best possible tree structure under some com-
plexity constraint (e.g., we could limit the number of LUT inputs to two).

Throughout the rest of the paper, we consider a binary input
additive white Gaussian noise (BI-AWGN) channel followed
by maximum mutual information quantization of the LLRs
[10]. In this case, the initial distributions depend on the SNR,
which renders the LUT design SNR-specific. Nevertheless, we
observe in our simulations that the decoder generally performs
well also for SNRs other than the design SNR.

3) Message Representation for Symmetric Channels: Con-
sider the practically relevant case where |M| and |L| are even
and the distributions p(0)

m|x(µ|x) and pL|x(L|x) are symmetric
in the sense that

pL|x(Lk|0) ≡ pL|x(L|L|−k+1|1), k = 1, . . . ,
|L|
2

(14)

p
(0)
m|x(µk|0) ≡ p(0)

m|x(µ|M|−k+1|1), k = 1, . . . ,
|M|

2
(15)

or equivalently, expressed in terms of the LLRs values

Lk ≡ −L|L|−k+1 µk ≡ −µ|M|−k+1. (16)

For that case, computing the CN update (6) is simplified as the
sign follows immediately from the message labels. Thus, for
the CN update the message values do not need to be stored and
the entire decoder can be implemented based on the message
labels.

4) Decision Stage: Since the discrete messages of our
decoder do not represent real numbers but are labels, a
simple arithmetic decision mapping such as (7) is not possible.
Instead, Φd has to be implemented as a generic mapping as
well. The construction of Φd is similar to the construction
of Φv , with the difference that all dv input messages and the
channel LLR have to be processed and that the output is binary.

IV. LUT-BASED FULLY UNROLLED DECODER HARDWARE
ARCHITECTURE

In the previous section, we have described an algorithm
that can construct locally optimal variable node update rules
in the form of LUTs for a given quantization bit-width for
each iteration for any given (dv, dc)-regular LDPC code. Most
conventional LDPC decoder architectures are either partially
parallel, meaning that fewer than N VNs and M CNs are
instantiated, or fully parallel, meaning that N VNs and M CNs
are instantiated. Using a LUT-based decoder with a carefully
designed quantization scheme can significantly reduce the
memory required to store the messages exchanged by the
VNs and CNs due to the reduced message bit-width required
to achieve the same FER performance. However, both for
partially parallel and for fully parallel decoders, separate
LUTs would be required within each VN for each one of
the performed decoding iterations, significantly increasing the
size of each VN, and thus possibly outweighing the gain in
the memory area.

An additional degree of parallelism was recently explored
in [9], where a fully unrolled and fully parallel LDPC decoder
was presented. This decoder instantiates N VNs and M CNs
for each iteration of the decoding algorithm, leading to a
total of NI VNs and MI CNs. While such a fully unrolled



Fig. 2: Top level decoder architecture processing pipeline. The channel LLRs are the input of the left-hand side and the decoded codeword
is obtained as the output of the right-hand side.

decoder requires significant hardware resources, it also has
a very high throughput since one decoded codeword can be
output in each clock cycle. Thus, the hardware efficiency
(i.e., throughput per unit area) of the fully unrolled decoder
presented in [9] turns out to be significantly better than the
hardware efficiency of partially parallel and fully parallel (non-
unrolled) approaches. Since in a fully unrolled LDPC decoder
architecture VNs and CNs are instantiated for each iteration,
it is a very suitable candidate for the application of our LUT-
based decoding algorithm.

In this section, we describe the hardware architecture of
our fully unrolled LUT-based LDPC decoder. Our hardware
architecture is similar to the architecture used in [9], while
the most important differences are the optimized LUT-based
variable node and the significantly reduced bit-width of all
quantities involved in the decoding process.

A. Decoder Architecture

An overview of our decoder architecture is shown in Fig. 2.
Each decoding iteration is mapped to a distinct set of variable
nodes and check nodes which then form a processing pipeline.
In essence, a fully unrolled and fully parallel LDPC decoder is
a systolic array in which data flows from left to right. A new
set of N channel LLRs can be read in each clock cycle, and
a new decoded codeword is output in each clock cycle. The
decoding latency as well as the maximum frequency depend
on the number of performed iterations as well as the number of
pipeline registers present in the decoder. Our decoder consist
of three types of stages, namely the CN stage, the VN stage,
and the DN stage, which are described in detail in the sequel.
As long as a steady flow of input channel LLRs can be
provided to the decoder, there is no control logic required
apart from the clock and reset signals.

1) Check Node Stage: Each CN stage contains M check
node units, as well as Mdc Qmsg-bit registers which store
the check node output messages, where Qmsg denotes the
number of bits used to represent the internal decoder messages.
Moreover, each CN stage contains N Qch-bit channel LLR
registers which are used to forward the channel LLRs required
by the following variable node stages, where Qch denotes the

number of bits used to represent the channel LLRs.
Due to (16), we can use a check node architecture which is

practically identical to the check node architecture used in [9].
More specifically, each check node consists of a sorting unit
that identifies the two smallest messages among all dc input
messages and an output unit which selects the first or the
second minimum for each output, along with the appropriate
sign. The sorting unit contains 4-input compare-and-select
(CS) units in a tree structure, which identify and output the two
smallest values out of the four input values [9]. We use sign-
magnitude (SM) to represent all message labels. The SM2TC
unit used in the check node of [9] is not required in our archi-
tecture since the variable node does not perform any arithmetic
operations where the two’s complement representation could
be favorable.

2) Variable Node Stage: Each VN stage contains N vari-
able node units, as well as Ndv Qmsg-bit registers that store
the variable node output messages. Moreover, each VN stage
contains N Qch-bit channel LLR registers which are used
to forward the channel LLRs required by the following VN
stages.

In the variable node architecture used in the adder-based
decoder of [9], all input messages are added and then the input
message corresponding to each output is subtracted from the
sum in order to form the output message, thus implementing
the conventional MS update rule given in (5). In order to avoid
overflows, in our implementation of [9] the bit-width of the
internal signals is increased by one bit for each addition.

For our LUT-based decoder the adder tree is replaced by dv
LUT trees, each of which computes one of the dv outputs of
the variable node. One possible LUT-tree structure is shown
in Fig. 3a, where µ̄ denotes an internal message from a check
node and L denotes the channel LLR. LUT sharing between
the dv LUT trees can be achieved by identifying the nodes that
appear in more than one tree and instantiating them only once,
thus significantly reducing the required hardware resources.
Moreover, keeping the number of inputs of each LUT as low
as possible ensures that the size of the LUTs, which grows
exponentially with the number of inputs, is manageable for
the automated logic synthesis process.
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ĉ

(b)

Fig. 3: (a) A variable node LUT tree for the calculation of one output
of a variable node of degree dv = 6. Each LUT-based variable node
contains dv such LUT trees, one for each of the

(
dv

dv−1

)
possible

combinations of input messages.
(b) A decision node LUT tree for a variable node of degree dv = 6.
Each LUT-based decision node contains a single decision tree.

3) Decision Node Stage: The variable node that corre-
sponds to the final decoding iteration is called a decision
node (DN). The DN stage contains N decision nodes, as well
N single-bit registers that store the decoded codeword bits.
The DN stage does not contain channel LLR registers, as
there are no subsequent decoding stages where the channel
LLRs would be used. The architecture of a decision node is
generally simpler than that of a variable node, as a single
output value (i.e., the decoded bit) is calculated instead of dv
distinct outputs.

More specifically, in the architecture of [9], the decision
metric of (4) is already calculated as part of the variable node
update rule. However, for the decision node, there is no need to
subtract each input message from the sum in order to generate
dv distinct output messages. It suffices to check whether the
sum is positive or negative, and output the corresponding
decoded codeword bit.

In our LUT-based decoder, as discussed in Section III-B4, a
LUT tree is designed whose tree node has an output bit-width
of a single bit, which is the corresponding decoded codeword
bit. An example of a decision LUT tree for a decision node
that corresponds to a code with dv = 6 is shown in Fig. 3b.
Each decision node contains a single LUT tree, in contrast
with the variable nodes which contain dv LUT trees.

B. Decoding Latency and Throughput

Our LUT-based architecture contains pipeline registers at
the output of each stage (VN, CN, and DN). Thus, for a given
number of decoding iterations I , the decoding latency is 2I
clock cycles. Since one decoded codeword is output in each
clock cycle, the decoding throughput of the decoder, measured
in Gbits/s, is given by T = Nf , where f denotes the operating
frequency measured in GHz.

C. Memory Requirements

Each pipeline stage except the DN stage requires an NQch
channel LLR register. Moreover, each VN and CN stage
requires NdvQmsg (equivalently, MdcQmsg) registers to store
the output messages. Finally, the DN stage requires N registers

3 3.5 4 4.5 5 5.5 6

10−8

10−5

10−2

Eb/N0 [dB]

F
E

R

LUT-based, (Qch = 4, Qmsg = 3)

Fixed-point, (Qch = 4, Qmsg = 4)

Fixed-point, (Qch = 5, Qmsg = 5)

Floating-point, I = 5

Floating-point, I = 10

Fig. 4: FER vs Eb/N0 for the N = 2048 (6, 32)-regular LDPC code
defined in IEEE 802.3an.

to store the decoded codeword bits. Thus, the total number
of register bits required by our LUT-based decoder can be
calculated as

Btot = (2I − 1)N(dvQmsg +Qch) +N. (17)

Naturally, (17) can also be used to calculate the register bits
required by an adder-based MS architecture with the same
pipeline register structure.

V. IMPLEMENTATION RESULTS

In this section, we present synthesis results for a fully
unrolled LUT-based LDPC decoder and we compare it with
synthesis results of our implementation of a fully unrolled
adder-based MS LDPC decoder. We have used the parity-
check matrix of the LDPC code defined in the IEEE 802.3an
standard [11] (10 Gbit/s Ethernet), which is a (6, 32)-regular
LDPC code of rate R = 13/16 and blocklength N = 2048.
For the fixed point decoder and the LUT-based decoder, a
total of I = 5 decoding iterations are performed, since from
Fig. 4 we observe that increasing the number of iterations
to, e.g., I = 10, does not lead to a significant improvement
in performance for this LDPC code. All synthesis results are
obtained by using a TSMC 90nm CMOS library under typical
operating conditions.

A. Quantization Parameters

For the LUT-based decoder, we have used Qch = 4 bits for
the representation of the channel LLRs and Qmsg = 3 bits for
the representation of the internal messages, as this leads to an
error correction performance that is very close the floating-
point MS decoder (cf. Fig. 4). For the variable nodes, we use
the LUT tree structure of Fig. 3a and for the decision nodes
we use the LUT tree structure of Fig. 3b. The design SNR is
set to 4.5 dB. For the adder-based MS decoder which serves
as a reference, we use Qch = 5 bits for the representation of
the channel LLRs and Qmsg = 5 bits for the representation
of the internal messages, as this leads to practically the same
FER performance for the LUT-based and the adder-based MS
decoder, as can be seen in Fig. 4.



TABLE I: Synthesis Results

Adder-based MS LUT-based
Area 35.63 mm2 33.79 mm2

Frequency 495 MHz 813 MHz
Latency 20.20 ns 12.30 ns

Throughput 1014 Gbps 1665 Gbps
Area Efficiency 28.46 Gbps/mm2 49.27 Gbps/mm2

TABLE II: Area Breakdown

Adder-based MS LUT-based
Check Node Stage

Check Nodes 2.77 mm2 1.11 mm2

Pipeline Registers 1.11 mm2 0.70 mm2

Total 3.88 mm2 1.81 mm2

Variable Node Stage
Variable Nodes I1 2.35 mm2 4.62 mm2

Variable Nodes I2 2.35 mm2 4.78 mm2

Variable Nodes I3 2.35 mm2 4.64 mm2

Variable Nodes I4 2.35 mm2 4.68 mm2

Pipeline Registers 1.11 mm2 0.57 mm2

Total I1 3.46 mm2 5.32 mm2

Total I2 3.46 mm2 5.48 mm2

Total I3 3.46 mm2 5.34 mm2

Total I4 3.46 mm2 5.38 mm2

Decision Node Stage
Decision Nodes 2.035 mm2 3.21 mm2

Pipeline Registers 0.03 mm2 0.03 mm2

Total 2.38 mm2 3.24 mm2

Top-Level Decoder
Logic Area 25.58 mm2 27.46 mm2

Register Area 10.05 mm2 6.33 mm2

Total Area 35.63 mm2 33.79 mm2

B. Adder-based vs. LUT-based Decoder

We present synthesis results for the adder-based and the
LUT-based decoders in Table I. For fair comparison, we
synthesized both designs for various clock constraints and
selected the result with the highest hardware efficiency for
each design. These results should not be regarded in absolute
terms, as the placement and routing of such a large design is
highly non-trivial and will increase the area and the delay of
both designs significantly. However, it is safe to make relative
comparisons, especially when considering the fact that the
LUT-based decoder will be easier to place and route due to
the fact that it requires approximately 40% fewer wires for the
interconnect between the VN, CN, and DN stages. We observe
that the LUT-based decoder is approximately 8% smaller as
well as 64% faster than the adder-based MS decoder. As a
result, the area efficiency of the LUT-based decoder is 73%
higher than that of the adder-based MS decoder. For both
designs, the critical path goes through the CN, but in the
LUT-based decoder the delay is smaller due to the reduced
bit-width.

We show the area breakdown of the LUT-based and the
adder-based decoders in Table II. We observe that the VN stage
area of the LUT-based decoder varies significantly over the
iterations, even though the LUT tree structures are identical.
This is not unexpected, since the contents of the LUTs are
different for different iterations and the resulting logic circuits
can have very different complexities. Moreover, we see that
the CN stage of the LUT-based decoder is approximately 53%

smaller than the CN stage of the adder-based decoder due to
the bit-width reduction enabled by the optimized LUT design.
The VN stage of the LUT-based decoder, on the other hand, is
larger than the VN stage of the adder-based decoder. However,
the reduction in the CN stage is larger than the increase in
the VN stage, leading to an overall reduction in area. From
Table II we can see that this reduction stems mainly from the
reduced number of required registers, as the area occupied by
the logic of each decoder is similar.

VI. CONCLUSION

In this paper, we described a method that can be applied to
design a discrete message-passing decoder for LDPC codes by
replacing the standard VN update rules with locally optimal
LUT-based update rules. Moreover, we presented a hardware
architecture for a LUT-based fully unrolled LDPC decoder
which can reduce the area and increase the operating frequency
compared to a conventional adder-based MS decoder by 8%
and 64%, respectively, due to the significantly reduced bit-
width required to achieve identical error correction perfor-
mance. Finally, the LUT-based decoder requires approximately
40% fewer wires, simplifying the routing step, which is a
known problem in fully parallel architectures.
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