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Abstract—A number of algorithms capable of iteratively cal-
culating a polynomial matrix eigenvalue decomposition (PEVD)
have been introduced. The PEVD is an extension of the ordinary
EVD to polynomial matrices and will diagonalise a parahermitian
matrix using paraunitary operations. Inspired by recent work
towards a low complexity divide-and-conquer PEVD algorithm,
this paper analyses the performance of this algorithm — named
divide-and-conquer sequential matrix diagonalisation (DC-SMD)
— for applications involving broadband sensor arrays of various
dimensionalities. We demonstrate that by using the DC-SMD
algorithm instead of a traditional alternative, PEVD complexity
and execution time can be significantly reduced. This reduction
is shown to be especially impactful for broadband multichannel
problems involving large arrays.

I. INTRODUCTION

Polynomial matrix representations can be used to express

broadband multichannel problems. Such formulations can be

used in a number of areas, including broadband MIMO pre-

coding and equalisation [1], polyphase analysis and synthesis

matrices for filter banks [2], broadband beamforming [3], [4],

and broadband angle of arrival estimation [5], [6]. Typically,

these problems involve parahermitian polynomial matrices,

which are identical to their parahermitian conjugate, i.e.,

R(z) = R̃(z) = R
H(1/z∗) [2]. This matrix R(z) can arise

as the z-transform of a space-time covariance matrix R[τ ],

R(z) =
∑

τ R[τ ]z−τ , (1)

where R(z) is a cross power spectral density (CSD) matrix,

R[τ ] = E{x[n]xH[n− τ ]} , (2)

and x[n] ∈ CM is a data vector collected by an M -element

broadband array. Here, E{·} denotes the expectation operator.

As an extension of the eigenvalue decomposition to para-

hermitian matrices, a polynomial matrix eigenvalue decompo-

sition (PEVD) has been defined in [7], [8]. The PEVD uses a

finite impulse response (FIR) paraunitary matrix [9] F (z) to

approximately diagonalise and spectrally majorise [10] a cross

power spectral density matrix R(z) such that

D(z) ≈ F (z)R(z)F̃ (z) , (3)

where D(z) = diag{D1(z) D2(z) . . . DM (z)}
is diagonalised and spectrally majorised with PSDs

Di+1(e
jΩ) ≥ Di(e

jΩ) ∀ Ω, i = 1 . . . (M − 1), with

Di(e
jΩ) = Di(z)|z=ejΩ . The diagonal of D(z) contains

polynomial eigenvalues, and the rows of F (z) are polynomial

eigenvectors. Equation (3) has only approximate equality, as

the PEVD of a finite order polynomial matrix is generally not

of finite order. The paraunitary matrix F (z) is important for

broadband signal processing applications such as MIMO [1] or

beamforming [3], [4], which rely on accurate but numerically

inexpensive subspace decompositions.

Existing PEVD algorithms include sequential matrix di-

agonalisation (SMD) [11], second-order sequential best ro-

tation (SBR2) [8], and various evolutions of the algorithm

families [12]–[14]. Each of these algorithms uses an iterative

approach to approximately diagonalise a parahermitian matrix.

For matrices of high dimensionality, these algorithms can be

computationally costly to compute; therefore, any cost savings

will be advantageous for applications.

In an effort to reduce the cost of PEVD algorithms, previous

work in [8], [15]–[18] has focussed on the trimming of

polynomial matrices to curb growth in order, as such growth

translates directly into an increase in computational complex-

ity and memory storage requirements. Recently, techniques

in [19], [20] have successfully reduced the complexity of

existing PEVD algorithms through the removal of algorithmic

redundancy.

Inspired by research in [21]–[23], which demonstrates that

complexity reduction can be obtained by using a divide-and-

conquer approach to eigenproblems, work in [24] describes

a divide-and-conquer approach for the PEVD. This algorithm

— titled divide-and-conquer sequential matrix diagonalisation

(DC-SMD) — can be utilised to reduce algorithm complexity

with minimal loss in accuracy, and has a framework based on

the SMD algorithm.

Here, we investigate the performance increase DC-SMD

offers over the existing sequential matrix diagonalisation al-

gorithm [11] for the decomposition of parahermitian matrices

with varying spatial dimension. Such matrices are generated

when computing the space-time covariance matrix according

to (2) for data from a broadband sensor array with M
elements; in this scenario, R[τ ] ∈ CM×M . By testing the

performance of DC-SMD for various M , we can therefore

establish its ability to process data from various sizes of

broadband sensor array. Performance is measured as the



cumulative complexity — in terms of multiply-accumulate

(MAC) operations — and algorithm execution time required

to decompose matrix R(z).
In [24], it was demonstrated that DC-SMD generally pro-

duces paraunitary filters of greater order than SMD for a

similar level of performance. Work in [15], [16] has shown

that by employing a row-shift truncation (RST) scheme for

paraunitary matrices, filter order can be reduced. We investi-

gate the utilisation of this approach alongside DC-SMD to test

if similar paraunitary matrix order reductions are possible.

Below, Sec. II will provide a brief overview over the DC-

SMD algorithm. A row-shift truncation method to reduce the

order of paraunitary filters generated by DC-SMD is outlined

in Sec. III. Simulation results comparing the performance

of DC-SMD to SMD for various scenarios are presented in

Sec. IV, with conclusions drawn in Sec. V.

II. DIVIDE-AND-CONQUER SEQUENTIAL MATRIX

DIAGONALISATION

This section outlines the components of the divide-and-

conquer sequential matrix diagonalisation (DC-SMD) PEVD

algorithm [24]. Following an overview of DC-SMD in

Sec. II-A, Sec. II-B and Sec. II-C explain the key stages

of this algorithm by detailing the divide and conquer steps,

respectively. The complexity requirements of this algorithm

are derived in Sec. II-D.

A. Divide-and-Conquer Sequential Matrix Diagonalisation

The DC-SMD algorithm approximates the PEVD using

a series of elementary paraunitary operations to iteratively

diagonalise a parahermitian matrix R(z) ∈ CM×M and its

associated coefficient matrix, R[τ ]. Similarly to other PEVD

algorithms, DC-SMD generates an output diagonal matrix

D(z) containing eigenvalues, and a paraunitary matrix F (z)
containing eigenvectors, such that (3) is satisfied.

While traditional PEVD algorithms — such as SMD [11] —

attempt to diagonalise an entire M ×M parahermitian matrix

at once, the DC-SMD algorithm first divides the matrix into a

number of smaller, independent parahermitian matrices, before

diagonalising — or conquering — each matrix separately. For

example, a matrix R(z) ∈ C20×20 might be brought into

block-diagonal form comprising of four 5 × 5 parahermitian

matrices, each of which can be diagonalised independently.

Fig. 1 shows the state of the parahermitian matrix at each

stage of the process for this example.

If matrix R(z) is of spatial dimension greater than M̂ × M̂
— where M̂ is an arbitrary user-defined value — an algorithm

named sequential matrix segmentation (SMS) [24] is used

to recursively divide the matrix into multiple independent

parahermitian matrices. Each parahermitian matrix is then di-

agonalised in sequence through the use of the SMD algorithm.

If M ≤ M̂ , the divide step is skipped, and the input matrix is

processed via SMD. To reduce the order of the paraunitary

matrix prior to implementation, F (z) is truncated using a

parameter µ; this process is described in Sec. III-A.

The individual steps of DC-SMD are summarised in more

detail in [24].
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Fig. 1. (a) Original matrix R[τ ] ∈ C20×20 , (b) segmented result R′[τ ], and
(c) diagonalised output D[τ ]. NR, NR′ , and ND are the maximum lags for
matrices R[τ ], R′[τ ], and D[τ ], respectively.

B. Recursive Polynomial Matrix Segmentation

If R(z) has spatial dimension M > M̂ , the divide stage

of DC-SMD comes into effect. This stage recursively applies

sequential matrix segmentation (SMS) [24] to divide R(z)
into multiple independent parahermitian matrices. SMS is a

novel variant of SMD designed to segment an input matrix

R̂(z) ∈ CM ′×M ′

into two independent parahermitian matrices

R̂11(z) ∈ C
(M ′−P )×(M ′−P ) and R̂22(z) ∈ C

P×P , and two

matrices R̂12(z) ∈ C(M ′−P )×P and R̂21(z) ∈ CP×(M ′−P ),

where R̂12(z) =
˜̂
R21(z) are approximately zero.

The divide step of DC-SMD operates recursively. In the first

recursion, the matrix R̂(z) input to SMS is equal to R(z) and

M ′ = M . Output matrix R̂22(z) is stored and subsequently

diagonalised during the conquer step. If the second output

matrix R̂11(z) is of spatial dimension greater than M̂ × M̂ ,

the second recursion of the divide step uses R̂11(z) as the

input to SMS, and M ′ is set equal to M − P . Recursions

continue in this fashion until (M ′−P ) ≤ M̂ . The dimensions

of the smaller matrix produced during division, P , is forced

to satisfy P ≤ M̂ .

SMS iteratively minimises the energy in select regions of

a parahermitian matrix in an attempt to segment the matrix.

Fig. 2 illustrates the segmentation process for M ′ = 5 and

P = 2.

The SMS algorithm continues operating until ID iterations

have been executed, or when the energy in the targeted regions,

E(R̂12(z))+E(R̂21(z)), falls below a threshold 2δE(R̂(z)).
Here, δ is some arbitrary value, and E(·) computes the energy

in a polynomial matrix according to

E(R̂(z)) =
∑

τ ‖R̂[τ ]‖2F , (4)

where ‖ · ‖F is the Frobenius norm. A parameter µ is used to
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Fig. 2. (a) Original matrix R̂[τ ] ∈ C5×5, (b) regions (red) to be iteratively
driven to zero in SMS for P = 2, and (c) segmented result. N

R̂
and N

R̂′

are the maximum lags for the original and segmented matrices, respectively.

truncate the parahermitian and paraunitary matrices generated

at each iteration of SMS. More detail on the implementation

of this truncation can be found in [17], [24].

C. Independent Conquering of Divided Polynomial Matrices

At this stage of DC-SMD, R(z) has been segmented into

multiple independent parahermitian matrices. Each matrix can

now be diagonalised individually through the use of the SMD

PEVD algorithm [11]. Each instance of SMD is provided with

a parameter IC — which defines the maximum possible num-

ber of algorithm iterations — and a truncation parameter µ.

D. Algorithm Complexity

A matrix multiplication step dominates the complexity of

the SMS and SMD functions internal to DC-SMD [19]. In this

step, which occurs at every iteration i of both algorithms, every

matrix-valued coefficient in a parahermitian matrix of length

L(i) must be left- and right-multiplied with a unitary matrix.

Note that L(i) is not known in advance, and only emerges

during an iteration. Accounting for a multiplication of 2 M ×
M matrices by M3 MACs, a total of 2L(i)M3 MACs arise to

generate the updated parahermitian matrix in each algorithm.

In DC-SMD, one instance of the SMS algorithm has a maxi-

mum cumulative complexity of
∑ID

i=1 2L
(i)M3

α, and SMD has

a similar maximum of
∑IC

i=1 2L
(i)M3

γ , where Mα and Mγ

are the dimensions of the matrices input to each algorithm,

respectively. The total cumulative complexity of DC-SMD can

be approximated by summing the cumulative complexities of

each instance of the SMS and SMD algorithms.

III. ROW-SHIFT TRUNCATION APPROACH

In [24], it was found that DC-SMD generally produces pa-

raunitary filters of greater order than SMD for a similar level of

performance. Work in [15], [16] has shown that by employing

a row-shift truncation (RST) scheme for paraunitary matrices,

filter order can be reduced with little loss to paraunitarity,

such that F (z)F̃ (z) ≈ IM — where IM is an M × M
identity matrix. By employing this approach alongside DC-

SMD, similar paraunitary matrix order reductions should be

possible.

A. Traditional Truncation Method

The paraunitary matrix truncation method from [18] is

employed within DC-SMD. This approach reduces the order

of the paraunitary matrix F (z) by removing the N1 leading

and N2 trailing lags using a trim function

ftrim(F[n]) =

{

F[n+N1], 0 ≤ n < N −N2 −N1

0, otherwise
.

(5)

The proportion of energy removed in the N1 leading and N2

trailing lags of F[n] by the ftrim(·) operation is given by

γtrim = 1−

∑

n ‖ftrim(F[n])‖
2
F

∑

n ‖F[n]‖
2
F

= 1−
1

M

∑

n

‖ftrim(F[n])‖
2
F . (6)

A parameter µ is used to provide an upper bound for γtrim.

Given the above, the truncation procedure can be expressed as

the constrained optimisation problem:

maximise (N1 +N2) , s.t. γtrim ≤ µ . (7)

This is implemented by removing the outermost matrix coef-

ficients of matrix F (z) until γtrim approaches µ from above.

B. Row-Shift Truncation Method

The row-shift truncation method [15], [16] exploits the

ambiguity in paraunitary matrices [15], [25]. This arises as

a generalisation of a phase ambiguity inherent to eigenvectors

from a standard EVD [26], which in the polynomial case

extends to arbitrary phase responses or all-pass filters. The

simplest manifestation of such filters can form an integer

number of unit delays. Therefore, following completion of

the DC-SMD algorithm, this ambiguity permits F (z) to be

replaced by F̂ (z), where F̂ (z) = Γ(z)F (z). From [15], Γ(z)
must take the form

Γ(z) = diag{z−τ1 z−τ2 . . . z−τM} . (8)

The delay matrix Γ(z) therefore has the effect of shifting the

mth row of the paraunitary matrix F (z) by τm. These row

shifts can be used to align the maximum values in each row

of F (z) such that F̂ (z) can be truncated more effectively.

Paraunitary matrix F̂ (z) can be subdivided into its M row

vectors f̂m(z), m = 1 . . .M ,

F̂ (z) =







f̂1(z)
...

f̂M (z)






. (9)



Each row is then truncated individually according to

fshift(̂fm[n]) =

{

f̂m[n+N1,m], 0 ≤ n < Tm

0, otherwise
, (10)

where the length of row m becomes Tm = N −N2,m −N1,m.

The row shifts, τm, in (8) are then set equal to

N1,m ∀ m = 1 . . .M .

As each row has unit energy, the proportion of energy to be

removed is given by

γshift,m = 1−
∑

n

‖fshift(̂fm[n])‖22 . (11)

As with the traditional truncation method, a constrained opti-

misation problem is obtained:

maximise (N1,m +N2,m) ,

s.t. γshift,m ≤ µRST ∀ m = 1 . . .M . (12)

The maximum possible proportion of energy removed from

each row is limited by µRST. Following row-shift truncation,

each row has length Tm, and the length of the paraunitary

matrix is max
m=1...M

{Tm}.

IV. RESULTS

To benchmark the proposed approach, this section first

defines the performance metrics for evaluating the SMD and

DC-SMD algorithms before setting out a simulation scenario,

over which an ensemble of simulations will be performed.

A. Performance Metrics

Since SMD and DC-SMD both iteratively minimise off-

diagonal energy, a suitable metric Enorm, defined in [11],

is used; this metric divides the off-diagonal energy at each

iteration of each algorithm by the total energy. During compu-

tation of Enorm, squared covariance terms are used; therefore

a logarithmic notation of 5 log10 Enorm is employed.

Metrics E
{

C(.),−10 dB,M

}

and E
{

t(.),−10 dB,M

}

represent

the ensemble-averaged cumulative complexity and execution

time required for a PEVD algorithm to achieve a diagonalisa-

tion of 5 log10 Enorm = −10 dB for spatial dimension M .

When truncation is employed, the eigenvectors and eigen-

values output from PEVD algorithms are only able to approx-

imately reconstruct the input matrix. DC-SMD also introduces

a segmentation error in its divide step, due to imperfect

segmentation in SMS, which is higher for a larger threshold

δ. A metric capable of measuring the difference between the

original and reconstructed matrices is the mean squared error

MSE = 1
M2L′

∑

τ ‖ER[τ ]‖
2
F , (13)

where ER[τ ] = R̄[τ ] − R[τ ] ∀ τ , R̄(z) = F̃ (z)D(z)F (z),
L′ is the length of ER(z), and F (z) and D(z) are obtained

from SMD or DC-SMD.

The contents of Sec. II-D allow approximate measurements

of cumulative complexity to be made at each iteration of both

algorithms. The output paraunitary matrix F (z) can be used in

broadband signal processing applications such as MIMO [1]

or beamforming [3], [4]. A useful metric for gauging the

implementation cost of F (z) is its length.

B. Simulation Scenario

The simulations below have been performed over an en-

semble of 102 instantiations of R(z) ∈ CM×M , M ∈
{10; 20; 30; 40; 50; 60; 70}, based on the randomised

source model in [11]. This source model generates R(z) =
Ũ(z)W (z)U(z), whereby the diagonal W (z) ∈ CM×M

contains the power spectral densities (PSDs) of M/2 in-

dependent sources. These sources are spectrally shaped by

innovation filters such that W (z) has an order of 120, and

limits the dynamic range of the PSDs to about 30 dB. Random

paraunitary matrices U(z) ∈ CM×M of order 60 perform a

convolutive mixing of these sources, such that R(z) has an

order of 240.

During iterations, truncation parameters of µ = 10−6 and

µRST ∈ {10−6; 10−9; 10−12} were used. The standard SMD

implementation was run until an input matrix was sufficiently

diagonalised, such that the off-diagonal energy in the output

matrix equalled one-tenth of the total energy in the matrix.

DC-SMD was executed with input parameters ID = 100,

IC = 200, P = 10, and M̂ = 10. At every iteration step of

both algorithms, the diagonalisation and cumulative complex-

ity metrics defined in Sec. IV-A were recorded together with

the elapsed execution time. The MSE metric defined in (13)

and the length of F (z) were recorded upon each algorithm’s

completion.

Simulations were performed within Matlab R2014a under

Ubuntu 16.04 on an MSI GE60-2OE with Intel® CoreTM i7-

4700MQ 2.40GHz× 8 cores and 8GB RAM.

C. Diagonalisation

The ensemble-averaged diagonalisation was calculated for

the SMD and DC-SMD implementations. By evaluating

the cumulative complexities and execution times required

for both algorithms to achieve a diagonalisation level of

5 log10 Enorm = −10 dB, it is possible to directly compare

the performance of both algorithms. Fig. 3 uses the ratio

of these metrics to demonstrate algorithm performance for

various spatial dimensions, where

Cratio =
E{CSMD,−10 dB,M}

E{CDC−SMD,−10 dB,M}
, (14)

and

tratio =
E{tSMD,−10 dB,M}

E{tDC−SMD,−10 dB,M}
. (15)

From Fig. 3, it is clear that both Cratio and tratio increase

with increasing spatial dimension M ; i.e., the use of DC-

SMD over SMD becomes more important the larger the matrix

to be factorised. Indeed, tratio reaches a value of 36 for

M = 70, signifying that DC-SMD is 36 times faster than SMD

on average for this dimensionality. Similarly, Cratio reaches

69 for M = 70; this demonstrates that DC-SMD requires

approximately 69 times fewer multiply-accumulate operations

(MACs) than SMD in this scenario.
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Fig. 3. Ratio of SMD to DC-SMD algorithm cumulative complexity (Cratio)
and execution time (tratio) required to achieve 5 log10 Enorm = −10 dB for
M ∈ {10; 20; 30; 40; 50; 60; 70}.
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D. Reconstruction Error

The ensemble-averaged mean squared reconstruction error

was calculated for both algorithms, according to (13). For DC-

SMD, this metric was recorded before and after the utilisation

of row-shift truncation, to estimate the method’s impact. Fig. 4

shows the results for M ∈ {10; 20; 30; 40; 50; 60; 70};

from this, it is clear that the increased diagonalisation speed

and lower cumulative complexity of DC-SMD come at the cost

of a higher reconstruction error. To reduce this error, parameter

δ can be decreased; however, this will reduce the speed and

increase the complexity of the algorithm, as more effort will be

contributed to the divide step. Note that the relative difference

in average MSE remains reasonably constant for increasing

M , and that the use of row-shift truncation results in a slightly

higher reconstruction error for all dimensionalities.

The row-shift truncation step introduces further error by

truncating small values from each row of F (z). This error

can be decreased by using a smaller truncation parameter

within the row-shift truncation step; however, this comes at the

expense of a decreased reduction in paraunitary filter length.

It can be observed that, for larger M , increasing µRST has

little impact on the reconstruction error.

E. Paraunitary Filter Length

The ensemble-averaged paraunitary (PU) filter lengths were

calculated for both algorithms. For DC-SMD, this metric was

recorded before and after the utilisation of row-shift truncation,
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Fig. 5. Paraunitary filter length versus spatial dimension M for
SMD and DC-SMD with and without row-shift truncation for M ∈
{10; 20; 30; 40; 50; 60; 70} and µRST ∈ {10−6; 10−9; 10−12}.

to estimate the method’s impact. Fig. 5 shows the results for

M ∈ {10; 20; 30; 40; 50; 60; 70}. It can be seen from

this graph that the average paraunitary filter length is larger

for DC-SMD than SMD for all M . The relative difference in

average paraunitary filter length becomes larger for increasing

M ; however, the use of row-shift truncation has successfully

narrowed the gap.

Increasing µRST for this method of truncation only slightly

increased reconstruction error for larger M in Fig. 4; however,

in Fig. 5, a significant decrease in paraunitary filter length is

observed as µRST is increased for M > 10.

Note that — as in [16] — row-shift truncation was found

to have minimal impact when applied to the paraunitary filters

generated by SMD.

While larger paraunitary filters are disadvantageous for

application purposes, the increased performance of DC-SMD

in other areas may be of greater importance. In addition, for

applications where a small change in reconstruction error is

acceptable, increasing parameter µRST can offer significant

filter length reduction.

V. CONCLUSION

In this paper, we have analysed the performance of a

recently developed PEVD algorithm, DC-SMD, for parahermi-

tian matrices of various spatial dimensionality. The parameter

M used to describe the dimensionality of such matrices

can be directly related to the number of elements within a

sensor array. Simulation results have demonstrated that DC-

SMD offers significant complexity reduction over a traditional

PEVD algorithm, SMD, when processing data analogous to

that obtained from large sensor arrays. Furthermore, DC-SMD

is able to provide substantially lower execution times than

SMD; however, such benefits come with the disadvantage

of increasing the mean squared reconstruction error and the

paraunitary filter order.

By coupling a row-shift truncation step with DC-SMD, it

has been shown that paraunitary filter order can be reduced.

Unfortunately, this step also increases the error associated

with the decomposition. Depending on the application scenario

in which DC-SMD is deployed, a trade-off between mean

squared error and paraunitary filter length can be reached.



When designing PEVD implementations for real applica-

tions, the potential for the DC-SMD algorithm to increase

diagonalisation performance while reducing complexity re-

quirements offers benefits. A further advantage of the DC-

SMD algorithm is its ability to produce multiple independent

parahermitian matrices, which may be processed in parallel.

Given the results of this paper, it can be concluded that DC-

SMD is suitable for broadband multichannel applications with

a large number of sensors.
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