
Extended-Forward Architecture for Simplified

Check Node Processing in NB-LDPC Decoders

Cédric Marchand, Emmanuel Boutillon,

Hassan Harb and Laura Conde-Canencia

Lab-STICC, CNRS UMR 6285

Université de Bretagne Sud, Lorient, France

Email: emmanuel.boutillon@univ-ubs.fr

Ali Al Ghouwayel

CCE Department

Lebanese International University (LIU), Beirut, Lebanon.

Email: ali.ghouwayel@liu.edu.lb

Abstract—This paper focuses on low complexity architectures
for check node processing in Non-Binary LDPC decoders. To
be specific, we focus on Extended Min-Sum decoders and
consider the state-of-the-art Forward-Backward and Syndrome-
Based approaches. We recall the presorting technique that
allows for significant complexity reduction at the Elementary
Check Node level. The Extended-Forward architecture is then
presented as an original new architecture for efficient syndrome
calculation. These advances lead to a new architecture for check
node processing with reduced area. As an example, we provide
implementation results over GF(64) and code rate 5/6 showing
complexity reduction by a factor of up to 2.6.

Index Terms—NB-LDPC, Check Node, Syndrome-Based,
Foward-Backward, VLSI.

I. INTRODUCTION

Low-Density Parity-Check (LDPC) codes [1] have now

been adopted for a wide range of standards (WiMAX, WiFi,

DVB-C2, DVB-S2X, DVB-T2) because of their near-channel-

capacity performance. However, this performance is mainly

obtained for long codeword lengths. The last decade witnessed

a great deal of research effort devoted to the extended version

of LDPC codes defined over (GF(q), q > 2). These codes

called Non-Binary (NB) LDPC codes have shown strong

potential in error correction capability with moderate and short

codeword lengths [2]. NB-LDPC codes retain the benefits of

steep waterfall region (typical of convolutional turbo-codes)

and low error floor (typical of binary LDPC). Compared to

their binary counterparts, NB-LDPC codes generally present

higher girths, which leads to better decoding performance.

Moreover, the NB nature of such NB-LDPC codes makes

them suitable for high-spectral-efficiency modulation schemes

where the constellation symbols are directly mapped to GF(q)

symbols. This mapping bypasses the marginalization process

of binary LDPC codes that causes information loss. These

characteristics place NB-LDPC codes as serious competitors

of classical binary LDPC and Turbo-Codes in future wire-

less communication and digital video broadcasting standards.

However, NB-LDPC codes suffer from high decoding com-

plexity. In the NB decoder each message exchanged between

processing nodes is an array of values, each value correspond-

ing to a GF element. From an implementation point of view,

this leads to a highly increased complexity compared to binary

LDPC.

TABLE I
CN ARCHITECTURES BASED ON THE EMS ALGORITHM.

CN architectures Input processing

Abbreviation Name Normal PreSorted

T-EMS Trellis EMS [6] -

FB Forward-Backward [4],[5],[9] [10]*

SB Syndrome-Based [7]*,[8]*, [11] [12]*

EF Extended Forward-SB This paper This paper

The extension of the well-known binary Min-Sum algorithm

to the NB domain, called Extended Min-Sum (EMS), repre-

sents an interesting compromise between hardware complexity

and error correction performance [3], [4]. The computational

bottleneck in the EMS algorithm is the Check Node (CN)

processing. State-of-the-art architectures apply the Forward-

Backward (FB) algorithm [4], [5] to efficiently implement the

CN. The FB approach uses Elementary Check Nodes (ECN)

in a 3-layer structure to reduce the hardware cost of the

CN as well as the number of computations, as it is possible

to reuse intermediate results. However, the FB CN structure

suffers from high latency and low throughput rate. The Trellis-

EMS (T-EMS) introduced in [6] reduces the latency of the

FB computation but presents a hardware complexity that

significantly increases with q when a parallel implementation

is considered. The Syndrome-Based Check Node (SB CN)

algorithm, recently presented in [7] [8], is an efficient method

to perform in parallel the CN computations for high order

Galois fields (q ≥ 16). However, the complexity of the SB

CN algorithm is dominated by the number of syndromes to be

computed, which increases quadratically with dc. This limits

its interest for high coding rates, i.e. high dc values.

Recently, we showed that sorting the input vector of the CN

according to a reliability criterion [12] [10] allows significant

reduction of the hardware complexity of the CN architecture

without affecting the performance. This technique, named

presorting, has been successfully combined with the SB CN

leading to the PreSorted SB CN (or PS-SB CN) architecture

[12] and with the FB CN to give the PS-FB CN [10]. Table

I summarizes the different CN architectures based on the

EMS algorithm and introduces the architecture proposed in

this paper, i.e. the Extended-Forward CN, with and without

application of the presorting technique. The references with an

asterisk correspond to previous contributions of the authors.

The rest of the paper is organized as follows: Section II

briefly introduces NB-LDPC codes as well as the Min-Sum

and the Extended Min-Sum algorithms. It also reminds the

principles of the Forward-Backward and the Syndrome-Based

CN architectures. Section III presents the new Extended-

Forward approach and how the presorting technique can lead

to a more efficient architecture. Performance and synthesis

results are presented in Section IV, for comparison with the

state-of-the-art architectures. Finally, section V concludes the

work.

II. NB-LDPC CODES AND EXTENDED MIN-SUM

DECODING

This Section first introduces NB-LDPC codes and their

notations. NB-LDPC decoding is then considered with the de-

scription of the Min-Sum algorithm and its extended version.

A. NB-LDPC codes

An NB-LDPC code is a linear block code defined over a

Galois Field of size q, GF(q), and with a sparse parity-check

matrix H of size M ×N . The M rows of the matrix H refer

to M parity-check equations. The ith parity-check equation is

expressed as
dc(i)
∑

k=1

hi,ji(k)x(ji(k)) = 0,

where dc(i) in the number of non-zero GF(q) values which

are denoted as {hi,ji(k)}k=1...dc(i) and {x(ji(k))}k=1...dc(i) is

a subset of size dc(i) of the N GF(q) symbols of the code. A

NB-LDPC code is regular if the number dc of non-zero values

per row and the number dv of non-zero values per column are

constant. The authors in [13] showed that robust NB-LDPC

codes can be constructed with dv = 2 . In that case, assuming

a full rank parity check matrix H, the rate of the code is

r = 1−2/dc. An (M,N) GF(q) NB-LDPC code has a binary

counterpart of size (M ×m,N ×m) with m = log2(q).

B. Min-Sum algorithm

For simplicity, the algorithms are described only at the CN

level. The reader can refer to [14] for a complete description

of the variable node and edge node processors.

Let us define a CN equation of degree dc in GF(q) as e1 ⊕
e2⊕e3⊕. . .⊕edc

= 0 where the operator ⊕ represents addition

over GF(q). Fig. 1 shows a CN for dc = 4 and the associated

messages. Inputs ei, i ∈ 1, . . . , dc take their values on the

alphabet of size q. The a priori information about variable e
is the discrete probability distribution P (e = x), x ∈ GF(q).

Each element of the probability distribution E associated to

e can be expressed in the log domain as the Log Likelihood

Ratio (LLR) e+(x) defined as

e+(x) = − log

(

P (e = x)

P (e = x̄)

)

, (1)

Fig. 1. Message notation on a CN

where x̄ is the hard decision on e obtained by taking the most

probable GF symbol, i.e. x̄ = argmaxx∈GF(q) P (e = x). By

definition of the LLR, we have: e+(x̄) = 0 and ∀x ∈ GF(q),
e+(x) ≥ 0. The distribution (or message) E associated to e is

thus E = {e+(x)}x∈GF(q).

The Min-Sum algorithm computes the LLR value of the ith

output for the GF symbol x as v+i (x)

v+i (x) = min







dc
∑

i′=1,i′ 6=i

e+i′ (xi′) |

dc
⊕

i′=1,i′ 6=i

xi′ = x







, (2)

where xi′ ∈ GF(q) for i′ = 1, . . . , dc, i′ 6= i.

C. EMS algorithm

The main characteristic of the EMS algorithm is to truncate

message E from q values to the nm most reliable ones, with

nm ≪ q. The resulting message U is composed of nm couples

sorted in increasing order of LLRs (the higher the LLR value,

the lower the reliability). Fig. 1 illustrates the principle of CN

processing. Input U of a CN is a list {U [j]}j=0...nm−1 of

couples U [j] = (U+[j], U⊕[j]), where U+[j] denotes the jth

smallest LLR value of E and U⊕[j] denotes its associated GF

element, i.e., e+(U⊕[j]) = U+[j]. Note also that U+[0] = 0,

U⊕[0] = x̄, and that j ≤ j′ ⇒ U+[j] ≤ U+[j′]. The same

representation is used for each output V of a CN.

The EMS algorithm is a simplification of the Min-Sum

algorithm and can be described in two steps:

1) Evaluate: eq. (2) is modified by replacing xi′ ∈ GF(q)
by xi′ in the set of available GF data, i.e., xi′ ∈ U⊕

i ,

with U⊕
i = {U⊕

i [j]}j=0,1,...,nm−1:

v+i (x) = min







dc
∑

i′=1,i′ 6=i

U+
i′ [ji′] |

dc
⊕

i′=1,i′ 6=i

U⊕
i′ [ji′] = x







,

(3)

where ji′ ∈ {0, 1, . . . nm−1} for i′ = 1, 2, . . . dc, i′ 6= i.
2) Sort: the v+i (x) are sorted in increasing order and the

first nm smallest values are kept to generate the output

vector Vi.

D. Forward-Backward CN

As described in [4], the FB consists of three layers of dc−2
ECNs each. An ECN processes a single output C as a function

of two inputs A and B. Intermediate results of the ECNs

are reused in the later stages to avoid re-computations, thus

reducing the amount of processing to generate each output

message.

The ECN processing [15] can be described in three steps.

Fig. 2. Example of a deviation path

1) Addition: For each couple of index (a, b) ∈
{0, 1, . . . , nm−1}2, the output tuple Ca,b = (C+(x), x)
is computed as

Ca,b = (A+[a] +B+[b], A⊕[a]⊕B⊕[b]) (4)

2) Sorting: The couples (c+(x), x) are sorted in increasing

order of c+(x).
3) Redundancy Elimination (RE): In case of two couples

with the same GF value, the one with the higher LLR

is suppressed during this RE step.

For the sake of clarity, the three ECN steps are represented

using the symbol ⊞ and the ECN equation is

C = A⊞B. (5)

E. Syndrome-Based CN

The SB CN algorithm [7] relies on the definition of a

deviation path and its associated syndrome. In the sequel,

nm,in (resp. nm,out) refers to the size of the input (resp.

output) vector of a CN.

A deviation path, denoted by δ, is defined as a dc-

tuple of integer values between 0 and nm,in − 1, i.e. δ =
(δ(1), δ(2), . . . , δ(dc)), with δ(i) ∈ {0, 1, . . . , nm,in − 1},

i = 1, 2 . . . , dc.

The SB considers a set ∆ of deviation paths on the dc input

messages to compute associated syndromes.

The syndrome S(δ) associated to deviation path δ is defined

by the 3-tuple (S+(δ), S⊕(δ), SD(δ)), with

S+(δ) =

dc
∑

i=1

U+
i [δ(i)], S⊕(δ) =

dc
⊕

i=1

U⊕
i [δ(i)] and (6)

SD(δ)[i] =

{

0, if δ(i) = 0

1, otherwise
, (7)

where S+(δ) is an LLR value, S⊕ ∈ GF(q), and SD(δ) is a

binary vector of size dc called Discard Binary Vector (DBV).

An example of deviation path δ and its associated syndrome

S(δ) is shown in Fig. 2.

After syndromes computation, they are sorted and then

decorrelated for each output message Vi, i = 1, ..., dc. The

SB CN architecture is given in Fig. 3. In particular, decor-

relation is performed by dc Decorrelation Units (DU). DUs

are represented in parallel to show the inherent parallelism of

Fig. 3. Syndrome-based CN processing (left part), details of the DU unit
(right part)

the SB CN. Fig. 3 also shows the schematic operations of the

DUi. SD is the dc-wide bit vector that indicates for which

output edges the syndrome should be discarded during the

decorrelation process. A simple reading of bit i in the binary

vector SD validates or not the syndrome for the output edge

i.

F. Presorting technique

The presorting technique consists in permuting the input

vectors as a function of U+
i [1], i = 1, 2, ..., dc. Fig. 4 illus-

trated an application of the presorting algorithm on the EMS-

based CN, where nm = 4 and dc = 4. In this particular exam-

ple, the hatched tuples represent tuples that are not involved

in the computation of the first 8 syndromes. Compared to the

standard CN, the presorting process requires extra hardware:

a dc-input vector sorter and two permutation networks (or

switches). However, it allows some simplifications in the

CN itself, globally leading to a complexity reduction of the

whole CN processing. The presorting technique was applied

to both FB [10] and SB [12], leading to significant complexity

reductions in the decoder CN architectures.

III. NEW CN ARCHITECTURE: SYNDROME COMPUTATION

WITH EXTENDED-FORWARD PROCESSING

In this section, we present an architecture that dynamically

generates a set of syndromes, keeping the complexity linear

with dc. The output of a forward layer in a FB decoder

processes all input except last one Udc
. The idea is to add

an ECN to merge the forward layer with Udc
. The output of

this Extended Forward (EF) generates in fact a set of sorted

syndromes Sb. The syndrome computation is thus equivalent

to the equation

Sb = ⊞
dc

i=1Ui. (8)

The associated EF CN architecture with dc = 6 is presented

in Fig. 5. Thus dc − 1 ECNs with parameters (nm, nm, nm)

will provide nm syndromes sorted in increasing order of their

associated LLR values.

Sb can also be computed in log2(dc) layers of ECNs using

a tree structure as shown in Fig. 6 or in any semi-parallel

Fig. 4. Presorting principle applyed on an EMS-based CN architecture

Fig. 5. EF CN Architecture

compromise. As shown in Fig. 5 and Fig. 6 the complexity is

of dc − 1 ECNs and is thus linear with dc.

A. Construction of the Discard Binary Vector

Thanks to the use of ECNs, the computed syndrome set is

sorted and can be directly applied to the decorrelation process.

Fig. 6. EF CN with tree architecture

However, each ECN must perform an additional operation to

generate a new term cDa,b, that is needed to construct the DBV

SD required in the decorrelation process ((7) and right part

of Fig. 3). The ECN addition is modified as

Ca,b = (c+a,b, c
⊕
a,b, c

D
a,b) = (A+[a] +B+[b],

A⊕[a]⊕B⊕[b],

AD[a]‖BD[b])

(9)

where ‖ represents the concatenation operation of two binary

vectors.

In the EF processing, the CN inputs are initialized with

a DBV value of one bit, as follows: UD
i [j] = 1, ∀j 6= 0 and

UD
i [0] = 0. Thanks to the DBV computation, the output of the

EF processing is similar to (6) and (7) with the only difference

that the set of deviation paths ∆EF is input dependent, while

it is predefined offline for the SB [7], [8].

B. The effect of RE in ECNs

In the EF processing, the number of computed syndromes is

typically 3×nm,out to compensate for the discarded redundant

syndromes [7], [8]. However, even with this approach, the

first simulation results of the EF algorithm showed significant

performance degradation compared to the FB algorithm (red

curve in Fig. 8). The reason of this performance degradation

resides in the RE step performed by each ECN: since each

ECN performs RE, no more than one syndrome can be

associated to a given GF value. Let us consider two syndromes

with same GF value x and different deviation paths at the input

of a DU where the second syndrome is validated by the DU

and not the first one. If the second (valid) syndrome has been

discarded previously by a RE then no syndrome with GF value

x can be validated and the default maximum LLR is associated

with x leading to performance degradation. The solution for

this problem is to make sure that there is no RE before DU

and to perform RE after DU as shown in Fig. 5 and Fig. 6.

C. Extended Forward CN with presorting

The presorting technique leads to significant hardware sav-

ings by reducing the number of candidate GF symbols in

the ECNs [10]. This technique can also be applied to the

EF CN architecture for complexity reduction thanks to the

limited number of bubbles to be considered in each ECN.

For this, we perform a statistical study based on Monte-

Carlo simulation that traces the paths of the GF symbols that

contribute to the output of the CN, on their way across the

different ECNs. With this information we know, for each ECN,

how often a specific bubble contributes to an output and we

can then prune the bubbles that never or rarely contribute

to an output. A short simulation on less than 10000 frames

is more than enough to produce reliable statistics on the

bubble order of importance. However, the best method on

how to prune low-score bubbles is still an open question. We

obtained good results by cumulating the sorted bubble scores

and discard bubbles above a threshold given by a percentage

of the total cumulated scores. In a second step, bubbles are

Fig. 7. Architecture of the proposed EF CN with dc = 12, nb ≤ 4 (nm,in = 4), n12
c = z = 20.

3.5 4 4.5 5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

o
(dB)

F
E

R

FB, n
m

=16, n
op

=18

EF, z=30, ECNs with RE

EF, z=20, RE after DUs

EF, z=30, RE after DUs

Fig. 8. Simulation results of NB-LDPC decoding algorithms for (576, 480)
code over GF(64) and dc = 12 under AWGN channel.

discarded when complexity can be reduced without significant

performance degradation.

After this pruning process, the structure of some ECNs is

greatly simplified.

• 1B: only a single bubble is considered where Ci is given

by Ci = {(0, U ′⊕
i [0] ⊕ C⊕

i−1[0], C
D
i−1[0]||0)} for i > 1

and C1 = {(0, U ′⊕
1 [0]⊕ U ′⊕

2 [0], 00)}.

• S-1B: it generates directly the ni
b sorted output Ci as

Ci = {(0, U ′⊕
i [0] ⊕ C⊕

i−1[0], C
D
i−1||0), (U

′+
i [b], U ′⊕

i [b] ⊕
C⊕

i−1[0], C
D
i−1||1)b=1...ni

b
−1}. For this operation, a single

GF-adder is required.

• S-1B+1: only one comparator and one GF-adder are

required.

• S-xB: also known as S-bubble ECN. As described in [16],

this architecture compares x bubbles per clock cycle. It

is composed of x FIFO blocks, x − 1 comparators, x
arithmetic adders and x GF-adders, implemented with

XOR gates.

Note that, as shown in Fig. 7, V ′
12 can be directly obtained

from C11.

IV. PERFORMANCE AND COMPLEXITY COMPARISON

A. Performance

We consider bit-true Monte-Carlo simulations over the

AWGN channel with a BPSK modulation scheme. Extrinsic

and intrinsic LLR messages are quantified on 6 bits and a

TABLE II
POST-SYNTHESIS RESULTS FOR DIFFERENT ECN ARCHITECTURES AND

ENTITIES ON A XILINX VIRTEX 6 FPGA.

Number of slices Fmax Latency
total register LUT (MHz) (cycles)

E
C

N
s

1B 7 25 7 >500 1
S-1B 17 53 23 >500 1

S-1B+1 29 92 60 494 1
S-2B 49 89 112 338 1
S-3B 103 218 218 296 1
S-4B 117 157 275 319 2

S-4B RE 138 222 376 269 2
E

n
ti

ti
es

Sorter 160 325 368 325 6
Switch 283 273 657 >500 1

DU 21 55 14 >500 1
RE 43 104 141 462 1

Mult 8 18 19 >500 1

posteriori LLRs on 8 bits. The maximum number of iterations

is set to 10. Fig. 8 shows the Frame Error Rate (FER)

performance of the FB and the EF algorithms for a GF(64)-

LDPC code of size (576, 480). This code is regular with

dv = 2 and dc = 12. As a reference, the FB decoder uses

the S-bubble algorithm as in [16] with 4 bubbles, nm = 16
and nop = 18, where nop represents the number of outputs of

an ECN before RE. The simulation EF CN with RE performed

in ECNs shows a performance degradation and it shows that

RE should not be done in ECN but after decorrelation as

demonstrated in sub-section III-B and shown in Fig. 5 and

Fig. 6. Simulation with z = 30 shows negligible performance

degradation. For the EF CN with z = 20, the ECNs are as

represented in Fig. 7 and simulation shows that performance

versus complexity compromise can be found.

B. Implementation results

For hardware complexity evaluation, we implemented the

different CN architectures and CN sub-unit on a Xilinx VIR-

TEX 6 FPGA device. The 6 types of ECNs used in PS EF CN

represented in Fig. 7 and the 4S-bubble with RE used in FB

CN were synthesized to obtain the results presented in Table

II. The sorter and the switch (Fig. 4), the DU and the RE

(Fig. 5) and the GF multiplier implementation results are also

presented. For all implementations, the LLR and GF values

are quantified on 6 bits. The latency in cycles (or number of

pipeline stage) between input and output of each entity is also

presented.

Table III summarizes the implementation results for the

considered architectures for GF(64) and dc = 12. In some

TABLE III
POST SYNTHESIS RESULTS FOR GF(64) CN ARCHITECTURES

CN Number of slices Fmax LCN

GF(64) Total REG LUT (MHz) (cycles)

FB RE 3904 6019 10314 227 22

PS FB RE 2729 4119 6733 229 20

EF RE 2633 4628 6768 217 24

PS EF RE 1987 3151 4814 222 19

PS EF 1495 2383 3616 227 19

decoder implementations [9], [15], when code with dv = 2
are considered, the VNs are cascaded after the CN and a RE

is performed in the VN. Since that in the PS EF architecture

the RE block is performed at each CN output (as shown in

Fig. 5 and Fig. 6), and is performed again in the VN, the RE

can be removed from the CN output without performance loss.

The EF shows significant complexity reduction compared with

standard FB CN implementation. The PS EF CN with RE and

without RE show 1.96 and 2.6 times less complexity than the

standard FB CN, respectively.

LCN gives the latency in cycles of a CN. For the FB

architecture, LCN = Lmult +(dc − 2)×LS−4B +Ldiv = 22.

For PS EF architecture (Fig. 7), LCN = LSorter +LSwitch +
LECNs+LDU+LSwitch = 6+1+12+1+1 = 19, considering

that the multiplication is performed in the same cycle as the

switch and the division is performed during the DU cycle.

C. Thoughput

High throughput can be obtained by processing p CNs in

parallel in a layered decoder [17], [9]. Because we focus on

code with dv = 2, the VN update can be cascaded after the CN

update as in [9], [15]. The throughput of the layered decoder

is then given by T (Mbps) = (Kb×Fmax× p)/(M ×PCN ×
itavr) where p is the parallelism, itavr is the average number

of iteration and PCN is the periodicity of the CN computations

in a layered decoder. PCN in a layered decoder as in [9] is

given by PCN = LCN + LV N + nm,in with LV N = 3 +
nm,out+nm,int where nm,int is the number of intrinsic values

considered in the second phase of the VN [9]. The (576,480)

code allows a parallelism of up to 4 and simulation shown is

Fig. 8 gives itavr = 1.2 at SNR = 4.5. With nm,int set to 4,

the throughput can reach 534 Mbps with the FB architecture

and 544 Mbps with the PS EF architecture.

V. CONCLUSION

The presented solutions efficiently incorporate Elementary

Check Nodes into a Syndrome-based architecture. Moreover

the CN inputs are presorted leading to drastic simplification

of most of the ECNs. The resulting architecture benefits from

flexibility and linear complexity of the Extended Forward

solution and complexity reduction due to presorting. The final

architecture shows area reduction by up to a factor of 2.6
compared with standard FB decoder using S-bubble ECNs.

REFERENCES

[1] R. Gallager, “Low-density parity-check codes,” Ph.D. dissertation, Cam-
bridge, 1963.

[2] M. C. Davey and D. J. C. MacKay, “Low density parity check codes over
GF(q),” in Information Theory Workshop, 1998, Jun 1998, pp. 70–71.

[3] D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary
LDPC codes over GF(q),” IEEE Transactions on Communications,
vol. 55, no. 4, pp. 633–643, April 2007.

[4] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Low-
complexity decoding for non-binary LDPC codes in high order fields,”
IEEE Transactions on Communications, vol. 58, no. 5, pp. 1365–1375,
May 2010.

[5] Y. L. Ueng, K. H. Liao, H. C. Chou, and C. J. Yang, “A high-throughput
trellis-based layered decoding architecture for non-binary LDPC codes
using max-log-QSPA,” IEEE Transactions on Signal Processing, vol. 61,
no. 11, pp. 2940–2951, June 2013.

[6] E. Li, D. Declercq, and K. Gunnam, “Trellis-based extended Min-Sum
algorithm for non-binary LDPC codes and its hardware structure,” IEEE

Transactions on Communications, vol. 61, no. 7, pp. 2600–2611, July
2013.

[7] P. Schläfer, N. Wehn, M. Alles, T. Lehnigk-Emden, and E. Boutillon,
“Syndrome based check node processing of high order NB-LDPC
decoders,” in 22nd International Conference on Telecommunications

(ICT), April 2015, pp. 156–162.
[8] P. Schläfer, V. Rybalkin, N. Wehn, M. Alles, T. Lehnigk-Emden, and

E. Boutillon, “A new architecture for high throughput, low latency nb-
ldpc check node processing,” in Personal, Indoor, and Mobile Radio

Communications (PIMRC), 2015 IEEE 26th Annual International Sym-

posium on, Aug 2015, pp. 1392–1397.
[9] C. L. Lin, S. W. Tu, C. L. Chen, H. C. Chang, and C. Y. Lee, “An

efficient decoder architecture for nonbinary ldpc codes with extended
min-sum algorithm,” IEEE Transactions on Circuits and Systems II:

Express Briefs, vol. 63, no. 9, pp. 863–867, Sept 2016.
[10] H. Harb, C. Marchand, A. Ghouwayel, A. Conde-Canencia, L., and

E. Boutillon, “Pre-sorted forward-backward NB-LDPC check node ar-
chitecture,” in 2016 IEEE International Workshop on Signal Processing

Systems (SiPS), Oct 2016, pp. 142–147.
[11] V. Rybalkin, P. Schläfer, and N. Wehn, “A new architecture for high

speed, low latency NB-LDPC check node processing for GF(256),” in
2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), May
2016, pp. 1–5.

[12] C. Marchand and E. Boutillon, “NB-LDPC check node with pre-sorted
input,” in 2016 9th International Symposium on Turbo Codes and

Iterative Information Processing (ISTC), Sept 2016, pp. 196–200.
[13] C. Poulliat, M. Fossorier, and D. Declercq, “Design of regular (2,dc)-

LDPC codes over GF(q) using their binary images,” IEEE Transactions

on Communications, vol. 56, no. 10, pp. 1626–1635, October 2008.
[14] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Low-

complexity decoding for non-binary LDPC codes in high order fields,”
IEEE Transactions on Communications, vol. 58, no. 5, pp. 1365–1375,
May 2010.

[15] E. Boutillon, L. Conde-Canencia, and A. A. Ghouwayel, “Design of a
GF(64)-LDPC decoder based on the EMS algorithm,” IEEE Transac-

tions on Circuits and Systems I: Regular Papers, vol. 60, no. 10, pp.
2644–2656, Oct 2013.

[16] O. Abassi, L. Conde-Canencia, A. A. Ghouwayel, and E. Boutillon, “A
novel architecture for elementary-check-node processing in nonbinary
ldpc decoders,” IEEE Transactions on Circuits and Systems II: Express

Briefs, vol. 64, no. 2, pp. 136–140, Feb 2017.
[17] Y. L. Ueng, C. Y. Leong, C. J. Yang, C. C. Cheng, K. H. Liao, and S. W.

Chen, “An efficient layered decoding architecture for nonbinary QC-
LDPC codes,” IEEE Transactions on Circuits and Systems I: Regular

Papers, vol. 59, no. 2, pp. 385–398, Feb 2012.

