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Abstract—In this paper, we show a class of relationships
which link Discrete Cosine Transforms (DCT) and Discrete Sine
Transforms (DST) of types V, VI, VII and VIII, which have
been recently considered for inclusion in the future video coding
technology. In particular, the proposed relationships allow to
compute the DCT-V and the DCT-VIII as functions of the
DCT-VI and the DST-VII respectively, plus simple reordering
and sign-inversion. Moreover, this paper exploits the proposed
relationships and the Winograd factorization of the Discrete
Fourier Transform to construct low-complexity factorizations for
computing the DCT-V and the DCT-VIII of length 4 and 8.
Finally, the proposed signal-flow-graphs have been implemented
using an FPGA technology, thus showing reduced hardware
utilization with respect to the direct implementation of the
matrix-vector multiplication algorithm.

I. INTRODUCTION

Transform coding has become one among the fundamental
data compression techniques to remove the correlation within
image, video, speech and audio. In particular, the type-II
Discrete Cosine Transform (DCT-II) [1] has been largely
adopted as the core transform in many image and video coding
standards, such as JPEG, MPEG-2, AVC and HEVC [2].
Several relationships between the DCT-II, DCT-III and the
DCT-IV have been studied, thus leading to low-complexity
factorizations for this kind of transforms [3]–[10].

Recently, Saxena et al. [11], [12] have shown that trans-
forms other than the DCT-II can better represent signals
produced by the intra prediction of an image/video coding
scheme. In particular, they demonstrated that the type-VII
Discrete Sine Transform (DST-VII) approaches the optimal
Karhunen-Loeve Transform in terms of decorrelation for intra-
predicted signals. For this reason, the DST-VII was specified
in the HEVC standard to code intra-predicted 4 × 4 luminance
blocks.

During these last years, the Joint Video Exploration Team
(JVET) of ITU-T VCEG and ISO/IEC MPEG has been and is
still developing the future video coding technology, which will
improve significantly the compression efficiency with respect
to the current HEVC standard [13]. Novel and enhanced
coding tools have been adopted to improve frame partitioning,
intra and inter prediction and the transform stage of the future
codec. Specifically, an Adaptive Multiple Transform (AMT)
scheme, derived from the Enhanced Multiple Transform in
[14], has been specified to encode the residual signal for

both inter and intra coded blocks. Depending on the coding
mode, for each block the encoder chooses the best set of
transforms in a pool of previously selected transforms from
the DCT/DST families. The newly introduced transforms are
the DCT-V, DCT-VIII, DST-I and DST-VII [14]. When the
block is intra predicted, a mode-dependent transform candidate
selection process is used because of the different residual
statistics associated to each mode. On the other hand, only
one transform set, composed of the DST-VII and DCT-VIII,
is used when the block is inter predicted. Since each set is
composed of two transform candidates, which have to be
evaluated for both the horizontal and the vertical transform,
a total of five different transform candidates (DCT-II plus
four multiple transform candidates of the AMT) have to be
computed for each block in all the different prediction modes.
This raises the issue of very high complexity at the encoder
side [15].

Therefore, the need for low-complexity factorizations to
efficiently compute the DCT-V and DCT-VIII is an open
research topic, which has not been completely addressed in the
literature. While several fast algorithms have been proposed
for computing the so-called “even type” DCTs and DSTs
[3], [4], only few works addressed the problem of finding
factorizations of the so-called “odd type” transforms (i.e. types
V, VI, VII and VIII).

Starting from the knowledge that all the DCT and DST
types can be viewed as special cases of the Discrete Fourier
Transform (DFT), with proper input mapping and output
selection [16], [17], Chivukula and Reznik [18] derived the
mapping between type VI-VII DSTs and the DFT. Moreover,
they exploited this mapping to propose fast algorithms to
compute DST-VI and DST-VII of lengths N = 4, 8. In [19],
[20], Reznik showed how to decompose the 2N + 1-point
DCT-II matrix into an N + 1-point DCT-VI and an N -
point DST-VII. Since the odd-length DCT-II can be viewed
as a real-valued DFT of the same length [21], the author
showed how to use DFT factorization available in the literature
[22] to derive low-complexity algorithms for the N + 1-
point DCT-VI and the N -point DST-VII. In this paper, we
derive low-complexity factorizations and the corresponding
Signal-Flow-Graphs (SFGs) for the DCT-V and DCT-VIII
of lengths N = 4 and 8. To this purpose, we exploit the
relationships between the DFT, DCT-II, DCT-VI and DST-



VII and we define a new class of relationships among the
odd type DCTs and DSTs, in particular between the DCT-VI
and the DCT-V, and between the DST-VII and the DCT-VIII.
Finally, hardware architectures to implement such transforms
by means of the proposed low-complexity factorizations have
been synthesized on FPGA, thus showing lower complexity
with respect to a straightforward implementation based on
matrix-vector multiplication (MVM).

The paper is organized as follows. Section II provides
definitions of the DCT and DST transforms. The relationships
between transforms are presented in Section III, while the
derivation of low-complexity factorizations of the 4-point and
8-point DCT-V and DCT-VIII is reported in Section IV.
Finally, Section V reports the hardware implementation results
and Section VI concludes the paper.

II. NOTATIONS AND DEFINITIONS

First, the transform matrices of the DFT, DCT of types
II and the odd type DCTs and DSTs (V, VI, VII and VIII)
have to be defined. Differently from the transform definitions
provided in [3], normalization constants are not included in
the following definitions, as they do not affect transforms
factorization. Moreover, for the sake of clarity, the transform
definition reported in this paper is not following the notation
used in [3], but each definition has been modified so that N
is the length of the transform.

DFT: [FN ]k,l = exp−j 2πkl
N k, l = [0, N − 1]

DCT-II: [CII
N ]k,l = cos

πk(l+ 1
2 )

N k, l = [0, N − 1]

DCT-V: [CV
N ]k,l = cos 2πkl

2N−1 k, l = [0, N − 1]

DCT-VI: [CV I
N ]k,l = cos

2πk(l+ 1
2 )

2N−1 k, l = [0, N − 1]

DCT-VII: [CV II
N ]k,l = cos

2π(k+ 1
2 )l

2N−1 k, l = [0, N − 1]

DCT-VIII: [CV III
N ]k,l = cos

2π(k+ 1
2 )(l+

1
2 )

2N+1 k, l = [0, N − 1]

DST-V: [SV
N ]k,l = sin 2π(k+1)(l+1)

2N+1 k, l = [0, N − 1]

DST-VI: [SV I
N ]k,l = sin

2π(k+1)(l+ 1
2 )

2N+1 k, l = [0, N − 1]

DST-VII: [SV II
N ]k,l = sin

2π(k+ 1
2 )(l+1)

2N+1 k, l = [0, N − 1]

DST-VIII: [SV III
N ]k,l = sin

2π(k+ 1
2 )(l+

1
2 )

2N−1 k, l = [0, N − 1]

Furthermore, it is worth recalling that the following rela-
tionships hold true:

CV
N = (CV

N )T = (CV
N )−1 (1)

CV III
N = (CV III

N )T = (CV III
N )−1 (2)

Stemming from these properties of the DCT-V and DCT-VIII,
for which the inverse transforms are equal to the corresponding
forward ones, one can note that the low-complexity factoriza-
tions proposed in this current work for the forward transforms
serve for the inverse computations as well.

III. ODD TYPE TRANSFORMS RELATIONSHIPS

In order to derive low-complexity factorizations for the
DCT-V and the DCT-VIII, the DCT-II mapping over the DFT
and the decomposition of the 2N +1-point DCT-II are briefly
reported. Moreover, this Section introduces a new class of
relationships among odd type transforms, which is used to
prove the connections that link the DCT-V and the DCT-VIII
to the DCT-VI and the DST-VII respectively.

A. Mapping of the DCT-II on the DFT

As explained in [16], it is known that all the DCTs and
DSTs can be viewed as special cases of the DFT, with real-
valued inputs and limited set of outputs. In particular, Vetterli
and Nussbaumer [7] showed how to map the N -point DCT-II
over a 4N -point DFT of real inputs, where the even-indexed
inputs are zero and where only one fourth of the outputs is
computed.

A more strict relationship presented in [21] shows that an
odd-length DCT-II can be derived from the real-valued DFT
of the same length, namely:

CII
2N+1 = H1 ·

[
ℜ[F2N+1]rows 0,...,N
ℑ[F2N+1]rows N+1,...,2N

]
·H2, (3)

where ℜ(F2N+1) and ℑ(F2N+1) denote the real and imag-
inary part of the 2N + 1-point DFT respectively, while H1

and H2 are sign-inversion and permutation matrices. Thus, the
DCT-II input sequence x(n) must be reordered to generate
a new sequence x̂(n), which is the input to the real-valued
DFT. Therefore, the H2 matrix is described by the following
permutation:

x̂(n) =

x (γn,N · n+N) n = [0, N ]

x (γn,N · (2N + 1− n) +N) n = [N + 1, 2N ]
,

(4)
where γn,N = (−1)n+N+1. In the following we will refer to
the sets of indices defined by (4) as Heidemann indices n =
[0, N ] and Heidemann indices n = [N + 1, 2N ] respectively.
Then, the DFT of x̂(n) produces ŷ(n) and the final DCT-II
result (y(n)) is extracted from ŷ(n) by using the following
relation, which implements H1:

y(2n) = (−1)n · ℜ[ŷ(n)] n = [0, N ]

y(2N + 1− 2n) = (−1)n+1 · ℑ[ŷ(n)] n = [1, N ]
. (5)

According to the mapping proposed in [21], it is possible
to efficiently compute the DCT-II using low-complexity DFT
algorithms already available in the literature [22]–[24].

B. Decomposition of the DCT-II by means of the DCT-VI and
the DST-VII Transforms

The second interesting relationship is the decomposition of
the 2N+1-point DCT-II by means of the N+1-point DCT-VI
and the N -point DST-VII, which has been shown in [20]:

CII
2N+1 = Q2N+1 ·

[
CV I

N+1

SV II
N

]
·

 IN JN

1
−JN IN

 , (6)
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Fig. 1. Input mapping of the 5-point DCT-VI (a) and of the 4-point DST-VII
(b) on the 9-point DCT-II.

where IN and JN are the N -order identity and anti-diagonal
identity matrices respectively, while Q2N+1 is a sign alteration
and reordering matrix, which acts as in the following:

x̂(2n) = x(n) n = [0, N ]

x̂(2n+ 1) = (−1)n · x(N + 1 + n) n = [0, N − 1]
. (7)

Reznik [20] derived low-complexity factorizations for the
N + 1-point DCT-VI and for the N -point DST-VII by com-
bining the decomposition of (6) with the mapping of (3) and
by relying to the DFT algorithms in [22]–[24].

From these observations, it is straightforward to find the
mapping that allows to exactly compute the DCT-VI and the
DST-VII transforms from a DCT-II, hence from the DFT.
Specifically, the N + 1-point DCT-VI can be calculated as
the 2N + 1-point DCT-II with zeros on the inputs with the
Heidemann indices n = [N + 1, 2N ], and taking the even-
indexed outputs. An example of this approach is shown in
Fig. 1a, which illustrates the input mapping of a 5-point DCT-
VI on a 9-point DCT-II, where the five inputs of the DCT-VI,
marked as white dots, are interleaved with zeros, denoted as
black dots. On the other hand, the N -point DST-VII can be
calculated by means of the 2N+1-point DCT-II with zeros on
the inputs with the Heidemann indices n = [0, N ], and taking
the odd-indexed outputs. The input mapping of a 4-point DST-
VII on a 9-point DCT-II is reported in Fig. 1b.

C. Relationships Between Odd Type Transforms

The aim of this Section is to show a class of relationships
which hold among different odd type DCTs and DSTs, with
a particular focus on the connections which link the DCT-
VI and the DST-VII with the DCT-V and the DCT-VIII
respectively. All the relationships belonging to this class are
derived by applying the trigonometric identity of the cosine of
the difference of angles. Four relationships between the input
and the output N -order transform matrices XN and YN hold
true:

YN = DN ·XN · JN , (8)

YN = JN ·XN ·DN , (9)

YN = (DNJN ) ·XN · (DNJN ), (10)

YN = (JNDNJN ) ·XN · (DNJNDN ), (11)

S
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N

Eq. (8)

S
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N
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NC
VIII

N

C
VII

N

C
VI

N

C
V

N

Eq. (9)

Eq. (10)

Eq. (11)

Fig. 2. Relationships between odd type DCT and DST transforms.

where JN is the anti-diagonal identity matrix of order N and
DN is the diagonal matrix implementing sign-alternation:

DN =


1
−1

. . .
1
−1

 . (12)

Fig. 2 shows a diagram, where all the relationships between
odd type DCTs and DSTs are highlighted. It is worth noting
that all the relationships are bidirectional, thus the output
matrix YN can be any of the two transforms linked by one
connection. As it can be observed from Fig. 2, the relationship
in (10) is obtained as the combinations of (8) and (9), while
(11) is derived using (10) and (9).

Example (connection between CV I
N and CV

N ). According to
(8), the following relationship holds true:

CV
N = DN ·CV I

N · JN . (13)

Proof. Let us consider:

α =
2πk(N − 1

2 )

2N − 1
, β =

2πk(N − l − 1
2 )

2N − 1
(14)

and the trigonometric identity:

cos(α− β) = cos(α) · cos(β) + sin(α) · sin(β), (15)

which becomes (16), where the term sin (kπ) is equal to
zero when k is integer in the range [0, N − 1]. Moreover,
i) cos (kπ) = (−1)k represents the sign-alternation described
by the DN matrix and ii) by introducing m = N − l − 1 the
last cosine term becomes the product between

[CV I
N ]k,m = cos

2πk(m+ 1
2 )

2N − 1
, (17)

with k,m = [0, N −1] and the reverse-order permutation JN .

Using the same method, it is straightforward to prove also
(9). Then the relationships in (10) and (11) can be easily
derived as combinations of the previous ones. According to
(11), the following relationship between the DCT-VIII and the
DST-VII holds true:

CV III
N = (JNDNJN ) · SV II

N · (DNJNDN ). (18)



cos

(
2πkl

2N − 1

)
= cos (kπ) · cos

(
2πk(N − l − 1

2 )

2N − 1

)
+ sin (kπ) · sin

(
2πk(N − l − 1

2 )

2N − 1

)
= (−1)k · cos

(
2πk(N − l − 1

2 )

2N − 1

)
k, l = [0, N − 1]

(16)
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Fig. 4. SFG of 4-point DCT-V.

IV. LOW-COMPLEXITY FACTORIZATIONS FOR
COMPUTING DCT-V AND DCT-VIII

In this Section we exploit the relationships among DCTs
and DSTs introduced in Section III to derive low-complexity
factorizations for the DCT-V and DCT-VIII transforms of
length N = 4 and 8.

A. DCT-V SFGs

In order to derive the SFG of the 4-point DCT-V, we start
from the real-valued 7-point DFT [24] and we apply the
decomposition in (3) to obtain the 7-point DCT-II, which is
depicted in Fig. 3. Then, the 4-point DCT-VI, denoted by black
lines in the figure, is extracted from the 7-point DCT-II SFG
according to (6). Finally, the 4-point DCT-V is obtained by
reordering the inputs and applying the sign-alternation to the
4-point DCT-VI, as indicated in (13). The resulting SFG is
reported in Fig. 4, which needs only 4 multiplications and 13
additions with respect to 9 multiplications and 12 additions
required by the direct implementation of the MVM algorithm.
Table I reports the coefficients C71-C78 in Fig. 3 and 4, which
are the Winograd DFT factors taken from the low-complexity
algorithms available at [24].

Concerning the derivation of the 8-point DCT-V, the 15-
point DFT and the same length DCT-II are needed. Since 15 is
not a prime number, the Prime Factor Algorithm (PFA) in [23],
[25] has been employed. Assuming N1 and N2 mutually prime
numbers, the PFA technique allows to compute a transform of
composite length N = N1 · N2 as the cascade of N1 and
N2 stages, where the first N1 stages are N2-point transforms
whereas the second N2 stages are N1-point transforms, with
proper input mapping and N1 ·N2−N1−N2+1 final additions.
As shown in Fig. 5, the 15-point DCT-II is derived using the
SFG of the 3-point and the 5-point DCT-II [4], which factors
are listed in Table I. Observing that the N + 1-point DCT-VI
can be derived from the 2N+1-point DCT-II with zeros on the
inputs corresponding to Heidemann indices n = [N +1, 2N ],

TABLE I
CONSTANT COEFFICIENTS FROM DFT FACTORIZATIONS IN [24].

Coefficient Value Coefficient Value
C31 0.86602540 C71 -1.16666667
C32 1.50000000 C72 -0.79015647

C73 0.05585427
C51 0.95105652 C74 0.73430220
C52 -1.53884180 C75 0.44095855
C53 -0.36327126 C76 -0.34087293
C54 -0.55901699 C77 0.53396936
C55 -1.25000000 C78 0.87484229
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Fig. 6. SFG of 4-point DCT-VIII.

and taking the even-indexed outputs only, we have deleted all
the paths coming from the null inputs or connected to unused
outputs, which are denoted using gray lines in Fig. 5. The
resulting 8-point DCT-VI SFG is highlighted in black in Fig.
5. Finally the 8-point DCT-V could be obtained by applying
(13). This implementation requires only 16 multiplications and
36 additions instead of 28 multiplications and 56 additions.

B. DCT-VIII SFGs

The SFGs of the 4-point and the 8-point DCT-VIII are
derived directly from the DST-VII SFGs in [18] by applying
input and output sign-inversion and reordering, as specified
by (18). For brevity, only the SFG of the 4-point DCT-VIII
is reported in Fig. 6, where only 5 multiplications and 11
additions are needed with respect to the 11 multiplications
and 11 additions required by the reference MVM algorithm.
On the other hand, the SFG of the 8-point DCT-VIII requires
only 21 multiplications and 77 additions instead of 64 and 56
respectively.

V. IMPLEMENTATION RESULTS

The proposed low-complexity DCT-V and DCT-VIII SFGs
have been described in Matlab for functional validation [26].
Then, they have been implemented in VHDL using the HDL
Coder toolbox, which translates Matlab scripts into VHDL
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code, and finally synthesized on an Altera Cyclone II FPGA
(device EP2C35F672C6) using Quartus II.

The proposed hardware implementations have been de-
signed to work as accelerators of the one-dimensional trans-
form functions of the reference software developed by the
JVET group, named Joint Exploration Model (JEM) [27].
Therefore, the internal signal representation has been chosen
in order to be compliant with the reference model. The JEM
specifies to use integers on 16 bits to represent the input
samples and the output transform coefficients of the designed
module and to use 32 bits for the internal signals. To determine

the fractional representation of the internal coefficients, we
employed the Matlab Fixed-Point Designer, which automat-
ically selects the number of fractional bits for each signal,
given the internal word-length.

We compare the implementation results of our proposed
architectures with the reference ones, which implements the
corresponding MVM algorithm. It is worth noting that the
MVM algorithm adopted in this work exploits the symmetries
of the coefficients, which compose the transform matrices,
indeed reducing the number of additions and multiplications
with respect to the N · (N − 1) additions and N2 multipli-



TABLE II
SYNTHESIS RESULTS OF THE MVM BASED IMPLEMENTATION AND THE

PROPOSED DCT-V AND DCT-VIII ARCHITECTURES.

Design Complexity Synthesis Results
Add Mult LEs fCK (MHz) ADP

DCT-V N=4 Proposed 13 4 1809 47.32 38.23
MVM 12 9 2926 54.39 53.80

DCT-V N=8 Proposed 36 16 5390 26.21 205.65
MVM 56 28 9582 42.67 224.56

DCT-VIII N=4 Proposed 11 5 2086 52.78 39.52
MVM 11 11 4604 57.78 79.68

DCT-VIII N=8 Proposed 77 21 9462 26.7 354.38
MVM 56 64 20476 45.13 453.71

cations of the MVM approach without optimization. Table
II reports the number of additions and multiplications, the
number of logic elements (LEs), the maximum achievable
clock frequency (fCK) and the Area-Delay Product (ADP)
of each implementation. By observing the number of LEs,
the proposed schemes nearly halve the required hardware
complexity of both 4-point and 8-point DCT-V and DCT-
VIII. This because the number of LEs mainly depends on the
number of multipliers, which has been significantly reduced
with respect to the MVM based implementation. On the other
hand, the MVM based architectures achieve higher clock
frequency, hence reduced delay. This is due to the fact that the
critical path of the MVM implementations is always composed
of only one multiplier plus an addition tree, while several
multipliers and adders are cascaded in the proposed low-
complexity implementations. However, the proposed schemes
are more efficient, featuring lower ADP as highlighted in the
last column of Table II.

VI. CONCLUSION

In this paper we have introduced a new class of relationships
among odd type DCTs and DSTs. These relationships allow
to reuse the already known factorizations of the DCT-VI
and DST-VII to obtain all the other odd type transforms by
simply applying permutations and sign inversions. Then, low-
complexity SFGs for the 4-point and 8-point DCT-V and DCT-
VIII have been derived resorting to the Winograd DFT factor-
ization and applying the aforementioned relationships. Finally,
we have implemented the proposed scheme as accelerators of
the transform functions of the future video coding technology,
thus showing lower hardware complexity and improved ADP
with respect to the reference MVM based implementations.
Future works include the design of a reconfigurable unit for
different DCT and DST calculations exploiting multiplexers
and integer coefficients and the evaluation of the timing and
the rate-distortion performance within the video codec.
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