
This is a self-archived – parallel published version of this article in the 
publication archive of the University of Vaasa. It might differ from the original. 

Author(s): 

Please cite the original version: 

Title:

Year: 

Version: 

Copyright 

Neural Network-based Vehicle Image 
Classification for IoT Devices

Payvar, Saman; Khan, Mir; Stahl, Rafael; Mueller-Gritschneder, Daniel; 
Boutellier, Jani 

Neural Network-based Vehicle Image Classification for IoT Devices

2019

Final draft (post print, aam, accepted manuscript)

©2019 IEEE. Personal use of this material is permitted. Permission 
from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or 
promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component 
of this work in other works.

Payvar, S., Khan, M., Stahl, R., Mueller-Gritschneder, D., & Boutellier, 
J., (2019). Neural Network-based Vehicle Image Classification for IoT 
Devices. IEEE International Workshop on Signal Processing Systems 
(SiPS), Nanjing, China, 2019, pp. 148-153. https://doi.org/10.1109/
SiPS47522.2019.9020464



Neural Network-based Vehicle Image Classification for IoT Devices

Saman Payvar
Unit of Computing Sciences

Tampere University
Tampere, Finland

saman.payvar@tuni.fi

Daniel Mueller-Gritschneder
Chair of Electronic Design Automation

Technical University of Munich
Munich, Germany

daniel.mueller@tum.de

Mir Khan
Unit of Computing Sciences

Tampere University
Tampere, Finland

mir.markhan@tuni.fi

Jani Boutellier
Tampere University /
University of Vaasa

Finland
jani.boutellier@tuni.fi

Rafael Stahl
Chair of Electronic Design Automation

Technical University of Munich
Munich, Germany

r.stahl@tum.de

Abstract—Convolutional Neural Networks (CNNs) have previ-
ously provided unforeseen results in automatic image analysis and
interpretation, an area which has numerous applications in both
consumer electronics and industry. However, the signal processing
related to CNNs is computationally very demanding, which
has prohibited their use in the smallest embedded computing
platforms, to which many Internet of Things (IoT) devices belong.
Fortunately, in the recent years researchers have developed many
approaches for optimizing the performance and for shrinking
the memory footprint of CNNs. This paper presents a neural-
network-based image classifier that has been trained to classify
vehicle images into four different classes. The neural network is
optimized by a technique called binarization, and the resulting
binarized network is placed to an IoT-class processor core
for execution. Binarization reduces the memory footprint of
the CNN by around 95% and increases performance by more
than 6×. Furthermore, we show that by utilizing a custom
instruction ’popcount’ of the processor, the performance of the
binarized vehicle classifier can still be increased by more than 2×,
making the CNN-based image classifier suitable for the smallest
embedded processors.

Index Terms—model compression, convolutional neural net-
works, image classification, internet-of-things

I. INTRODUCTION

Convolutional neural networks (CNNs) have enabled a
significant advance in automatic image analysis, such as image
classification [1], image segmentation [2], image captioning
[3] and object detection [4]. Unfortunately, up to recently
the computational requirements of CNNs have restricted their
use to server or desktop class computers, although their
deployment to edge devices could open up a variety of new
applications [5]. In the Internet-of-Things (IoT), the network
edge refers to devices that are within immediate connection
to sensors that provide input data for the whole IoT system.
Such an edge device can be a smartphone [6], or a tiny sensor
node commonly equipped with less than a megabyte of RAM
[7].

A CNN consists of a sequence of layers, of which the most
common types are fully-connected layers and convolutional
layers. Once a CNN has been trained [8], e.g. for image

classification, the parameters and weights of the layers are
fixed for deployment to a target device. On the target device,
the process that evaluates given input data is called inference,
where the input data flows through the layers of the CNN,
providing the requested output (e.g. classification result) from
the last layer.

In terms of computation, convolutional layers consist of
repeated 2D convolutions, where the input data of the layer
is convolved by 2D kernels with common sizes of 5×5,
3×3 or 1×1 [9]. The computational effort of convolutional
layers grows rapidly as the size of input images or kernels
grows [10]. However, it has been well-known for some time
that 2D convolution can also be interpreted and computed as
a 2D matrix multiplication [11]. The inference of a fully-
connected layer is also commonly performed by 2D matrix
multiplication.

Optimization of CNN processing can be performed by
optimizing software, hardware, or both [12]. Examples for
software-based optimizations are model compression [9][13]
or reduction of arithmetic precision [14][12]. Software-based
optimizations that target convolutional layers include separable
convolution [15] and depthwise convolution [16], whereas
fully-connected layers can be optimized by weight pruning
[13]. All of these optimizations have some negative impact on
the CNN accuracy.

Reduction of arithmetic precision, on the other hand, is
not limited to separate types of layers, but can be applied
to the whole CNN. Arithmetic precision can be reduced from
floating-point to, e.g., 16-bit fixed point [12] with minimal
degradation of CNN (classification) accuracy, or by extreme
quantization down to two [17] bits or one bit [18][14] of
weight precision. When the precision of weights (and possibly
also input data) is reduced to a single bit, the CNN is
binarized. Binarization dramatically reduces the memory foot-
print of a CNN, as the original weights, which are normally
expressed in 32-bit floating point, can be represented with
a single bit. This evidently has an impact on the CNN’s
accuracy [18]. However, besides shrinking the size of the



TABLE I
RELATED NEURAL NETWORK OPTIMIZATION WORKS

Work Type Optimization Platform
Courbariaux et al. SW Binarization NVidia GPU

[18] only (fc layers only)
Rastegari et al. SW Binarization 64-bit CPU

[24] only (conv and fc layers)
Khan et al. SW Binarization NVidia and

[14] only (conv and fc layers) OpenCL GPUs
ESPRESSO SW Binarization NVidia GPU,

[25] only (conv and fc layers) CPU
Park et al. HW Zero skipping, Nvidia GPU,

[26] SW Data reuse GPU simulation
(conv layers only)

Conti et al. HW Binarization HW accelerator
[27] SW (conv and fc layers) for MCUs

Proposed HW Binarization RISC-V MCU
SW (conv and fc layers) (simulation)

network, binarization also enables CNN inference on devices
that have no support for floating-point arithmetic, such as
microcontrollers and FPGAs [19].

This paper presents a CNN for vehicle image classification
[20] that has been binarized including the weights of all
layers, as well as the input data, following the principles
of our recent work [14]. However, unlike our recent work
that concentrated on CNN inference on graphics processing
units, in this paper we focus on microcontroller-class devices
that can be found on edge nodes of an IoT system. As
the target microcontroller, we have selected PULPino [21],
which is based on the open-source instruction-set architecture
RISC-V [22], which is gaining interest in both academia and
industry.

The contributions of this paper are as follows:
• Performance and memory footprint measurements of our

binarized CNN-based image classifier on a RISC-V mi-
crocontroller, and

• Optimization of binarized CNN computations by the
custom instruction ’popcount’ found in a proposal for
RISC-V instruction set extensions [23].

The structure of this paper is as follows: Section II intro-
duces other works related to optimization of CNNs; Section III
describes the PULPino microcontroller that we use as the
target device for our image classifier; Section IV covers the
structure and binarization process of our CNN; Section V
presents our experimental results, and Section VI concludes
the paper.

II. RELATED WORK

This section describes previous works related to acceleration
of CNNs, some also considering acceleration by hardware.
Table I presents a summary of these works and the target
platforms they consider.

Binarized neural networks (BNN) were originally intro-
duced in [18]: network weights and activations are restricted
to +1 and −1, which enables replacing multiplications and
additions with bit-wise operations. Experiments have been

performed on MNIST and CIFAR-10 datasets. The authors
demonstrate a speedup of 7× for a multi-layer perceptron
network trained for MNIST handwritten digit classification.
Experimental results are limited to GPU acceleration of bina-
rized fully-connected layers.

Somewhat later the binarization optimization was extended
to the large-scale ImageNet image classification challenge
[24]. The authors of [24] concentrate on CPU targets and
report up to 58× execution time reduction on 64-bit CPUs
for binarized convolution and fully-connected layers. Also, the
authors claim an accuracy improvement of 16% compared to
[18] in the ImageNet top-1 classification challenge.

Our previous work [14] was among the first ones to present
GPU acceleration of both binarized convolution and fully-
connected layers. Experimental results are presented for two
mobile GPUs (NVidia Jetson and ARM Mali-T860), as well as
for a desktop GPU (NVidia GTX1080). Layer implementations
have been written from scratch in OpenCL and CUDA and
made available open source. Additionally, the accuracy impact
of various input image binarization approaches are analyzed.

In [25] a self-contained library ESPRESSO for binarized
neural networks is presented. The library provides layer im-
plementations in C and CUDA for both CPU and NVidia
GPU targets. ESPRESSO [25] uses an optimization called
unrolling (similar to im2col used in our previous work [14] and
the proposed work) for reshaping tensors prior to computing
convolution.

Optimization of CNN convolution operations is studied in
[26]. The authors have observed that Winograd convolutions
can involve a high number of multiplications by zero, espe-
cially if weight pruning (see, e.g. [13]) has been applied. This
redundancy is avoided by skipping zero weights by a software-
only and by a hardware-assisted approach. Additionally, the
authors present a data reuse approach for reducing the number
of additions. Both optimizations target NVidia GPUs.

In [27] the XNOR Neural Engine (XNE) is presented, a
hardware accelerator for binary neural networks to be closely
coupled with an MCU (micro controller unit) system. The
XNE is capable of executing both binarized convolutional and
fully-connected layers. The authors provide post-layout results
where the accelerator has been placed on the same chip and
same clock domain with a RISC-V microcontroller that acts
as the host processor for the accelerator.

The proposed work is similar to the work of Conti et al.
[27] in the sense that both consider an IoT edge computing
scenario, build on binarized CNNs, and consider RISC-V
MCU cores. However, a substantial difference is that the XNE
accelerator of [27] is a dedicated datapath for CNNs next to the
MCU core, whereas our proposed solution builds on a basic
microcontroller architecture with just one custom processor
instruction (’popcount’) for accelerating BNNs. Evidently, the
specialized circuit of [27] can achieve much higher energy
efficiency than our proposed solution, whereas our solution
only requires a tiny modification to a basic RISC-V MCU
system, and otherwise remains very generic and capable of
accelerating other types of applications as well.



Fig. 1. From left to right, a ’bus’, ’normal car’, ’truck’, and a ’van’.

III. THE PULPINO RISC-V PROCESSOR FOR IOT
APPLICATIONS

RISC-V is an open source instruction set architecture (ISA)
that is gaining interest in both academia and industry [22]. The
ISA is open and standardized, such that it is free to use for both
academia and industry. To promote adoption of the new ISA,
another goal was to design a modern ISA: it is designed in
a modular way by providing a small base instruction set with
optional extensions. Additionally, certain instruction opcodes
are reserved for custom extensions. This flexibility allows to
design RISC-V processors that are customized for special
workloads, which makes the ISA interesting for specialized
IoT devices.

While the open standard is just referring to the ISA itself and
not any micro-architecture, the community around RISC-V has
provided many open-source cores. An important motivation
for open hardware is security, especially with recent micro-
architecture bugs Spectre and Meltdown appearing in popular
media [28][29]. Kerckhoff’s principle and a long history of
research suggests that open systems provide certain advantages
over closed systems in terms of security [30][31][32].

The Parallel Ultra-Low-Power (PULP) project has devel-
oped several RISC-V-based microcontrollers that are suitable
for IoT applications [21]. The PULPino is particularly suited
for low cost, low power tasks, because it is a simple in-order
single-core microcontroller with many configuration options.
Due to these advantages, the custom processor used in this
work was derived from the PULPino-based SoC (System-on-
Chip).

IV. NEURAL NETWORK DESIGN

A. Network for Vehicle Classification

The neural network model we use is that of the vehicle
classifier network presented in [20]. The network has five
layers in total, starting with two convolutional layers, each
one with 32 output feature maps, and kernel sizes 5×5. Each
of the convolutional layers is followed by a 2×2 maxpooling
operation. The second convolutional layer is followed by three
fully-connected layers. The first fully-connected layer (the 3rd
layer in the network) has 100 neurons, resulting in the shape
24×24×32×100. The two layers that follow have shapes
100×100, and 100×4, in that order.

The dataset we use for training the network has 6555 photos
of vehicles from four categories: bus, normalcar, truck, and
van. Each vehicle image is a full-color image of size 96× 96.
Example images from each class in the data set are shown in
Fig. 1. We split the data into a training set (80%), validation

set (10%) and a test set (10%). Our test-set accuracy reports
are the recorded accuracy reports that correspond to the best
validation set accuracy.

B. Neural Network Binarization

We implement a binarized version of the vehicle classifier
network introduced in [20] reducing the precision of CNN
weights and their activations to 1-bit. This concept was first
introduced in [18], with reports of substantial reductions of
model execution time and size. In this work, we replace all
ReLU activations in the network with the sign function, which
is given as

sign(x) =

{
−1 if x ≤ 0

+1 if x > 0
(1)

We binarize the weights of the network using the sign function
as well. During training, the gradient of sign activations are
explicitly defined to be the identity function in the backward
pass so that ∂sign(x)

∂x = x. The full-precision version of
the network (non-binarized) is trained using the RMSprop
optimizer, and the binarized version is trained with the ADAM
optimizer. For the binarized version of the network, only the
binarized weights, where all have a value of either −1 or +1,
are used for inference on the target device. The network is
trained from scratch using binarization in a separate training
process. It would also have been possible to quantize the
network to ternary values [17] (or even higher 8- or 16-
bit precision), but that would have multiplied the memory
footprint of the solution compared to binarization.

We use the terms packing or bit-packing to denote the
encapsulation of an array of 1-bit values (+1’s and −1’s) into
one 32-bit unsigned integer. For example, if we wish to pack a
vector x ∈ {−1,+1}32, its packed representation, xp, is given
by

xp =

31∑
i=0

(xi + 1)2i−1, (2)

where xi is the ith element of x. This then allows operations
such as vector-summations and dot products to be performed
using binary (bit manipulation) operations. The dot-product,
for example, can be represented as

a·b = 32− 2× popcount(xor(A,B)), (3)

where both A and B are 32-bit unsigned integers holding
the packed representations of the vectors a, b ∈ {−1,+1}32.
The operation ’popcount’ (also known as Hamming weight
calculation) is a function for computing the number of bits set
to 1, which can essentially simulate vector summation. The
operation xor in Eq. 3 is the bit-wise ’xor’ operation.

C. Acceleration by Bit Manipulation Instructions

Looking at Eq. 3 we see that both ’xor’ and ’popcount’ are
used in inference of binarized CNNs to perform an operation
that emulates multiplication for packed weights; this means
that both for fully-connected and convolutional layers ’xor’



and ’popcount’ are in heavy use and offer a clear optimization
target.

The hardware implementation of ’xor’ can be found on any
programmable processor, whereas a hardware implementation
for ’popcount’ is mostly available on graphics processing units
or CPU SIMD extensions such as ARM NEON. For our target
processor, the PULPino microcontroller, the base ISA does
not include ’popcount’ – this instruction is only present in
the bit manipulation extension of RISC-V that is still under
development [23].

In our experiments, in cases where the target processor did
not have a hardware instruction for ’popcount’, the LLVM
C language description1 shown in Algorithm 1 was called
through builtin popcount().

Algorithm 1 LLVM ’popcount’, i.e. Hamming weight
int32 popcountsi2 (int32 a) {
uint32 x = (uint32) a;
x = x− ((x >> 1) & 0x55555555);
x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
x = (x + (x >> 4)) & 0x0F0F0F0F;
x = (x + (x >> 16));
return (x + (x >> 8)) & 0x0000003F;
}

V. EXPERIMENTS

The experimental evaluation of this work consisted of
two parts: 1) evaluating the effect of the software-based
binarization optimization for our image classifier, and 2)
evaluating the effect of the ’popcount’ custom instruction on
the binarized classifier. Unfortunately, as our ultimate target
platform was the PULPino microcontroller for IoT devices,
it was not possible to benchmark the original non-binarized
vehicle classifier on this device as it has no hardware support
for floating point computations. Hence it was necessary to use
two different target platforms to complete our experiments,
and these platforms are summarized in Table II.

The ARM Cortex A53 core is a powerful mobile processor
and in our experiments the processor was used under Linux
for benchmarking a C language implementation of the original
vehicle classifier [20], as well as for the C language imple-
mentation of the binarized vehicle classifier.

Experiments on the PULPino microcontroller platform were
performed in a simulation environment, which is described
next.

A. The ETISS Simulator

The RISC-V ISA is still in a phase of development, as for
example the specification is not officially standardized yet.
Still, the central components of the specification have matured
and have been used to fabricate various chips such as the
SiFive FE310 SoC [33]. The application being evaluated in

1https://github.com/sifive/riscv-llvm/blob/master/compiler-
rt/lib/builtins/popcountsi2.c

this work however requires the bit manipulation instruction
extension (’B extension’) of the RISC-V ISA. This extension
is still in active development [23] and not part of the current
specification. Therefore, there is no RISC-V chip available
that could be used for evaluating our results, however an
alternative way to estimate the performance gain achievable
through custom instructions is by simulation.

An RTL (Register-Transfer Level) hardware simulation
would not be suitable for fast prototyping as the micro-
architecture should be modified to enable the execution of
the chosen custom instructions. Additionally, for a time-
consuming workload such as our CNN application, the RTL
simulation time would be prohibitively high.

The Extensible Translating Instruction Set Simulator
(ETISS) focuses on extensibility [34] to support fast prototyp-
ing. As ETISS already supports the standard RISC-V base in-
struction sets, contains a virtual prototype of the PULPino [21]
SoC, and allows profiling the application execution time, the
use of this simulator was a natural decision our binarized
image classifier application.

B. Implementation of the Popcount Instruction

As the PULPino virtual prototype of ETISS currently only
supports the RISC-V base ISA, a temporary modification of
the virtual prototype was required to enable profiling with
support for ’popcount’. From ETISS execution traces it was
discovered that the ’xori’ instruction of the RISC-V base ISA
remained almost unused throughout the whole execution of the
binarized vehicle classifier. Therefore, in the PULPino virtual
prototype the functional description of ’xori’ was modified to
provide alternative functionality, i.e. ’popcount’, toggled by
the value of the 2nd instruction operand.

In the software implementation of the binarized vehicle
classifier, the calls to ’popcount’ were then replaced with inline
assembly calls to ’xori’ with the specific operand value that
would invoke ’popcount’ behavior.

C. Execution Time and Memory Footprint Analysis

Table III shows the experimental results for both A53 and
PULPino. From top to bottom the table rows report execution
time on A53, execution time on PULPino, data memory
footprint, PULPino instruction memory footprint, and CNN
classification accuracy.

Looking at the A53 results it can be seen that binarization
alone reduced the execution time by more than 80%, and
dropped the data memory usage close to 95% when compared
to the original floating point C version.

Acceleration by the hardware ’popcount’ instruction re-
duced the computation time of the binarized vehicle classifier
by around 55% on the PULPino platform, and also reduced
the instruction memory footprint by around 2 kB. The reason
for the 55% reduction in execution time can be seen from
Table IV that shows the count of executed instructions on the
PULPino platform for the binarized vehicle classifier with and
without the hardware ’popcount’ instruction: the code version
that calls the hardware ’popcount’ instruction has respectively



TABLE II
PLATFORMS USED FOR EXPERIMENTS.

Tag CPU Platform type Compiler Operating System
A53 ARM Cortex A53 (1416 MHz) Silicon SoC g++ 5.4.0 Linux Firefly 4.4
PULPino PULPino (33 MHz) Virtual prototype on ETISS riscv32-unknown-elf-gcc 7.1.1 n/a

TABLE III
EXECUTION TIME, MEMORY FOOTPRINT AND ACCURACY

Application version Baseline Binarized Bin+pop
Arithmetic float32 int32 int32
A53 Execution time 0.362 s 0.057 s -
PULPino Exec. time - 2.62 s 1.18 s
Data Memory 7.2 MB 369 kB 369 kB
Pulpino Instr. Memory - 21 kB 19 kB
Accuracy [14] 97.09% 92.52% 92.52%

55% less executed instructions. This is because if there is no
hardware support for ’popcount’, the functionality must be
implemented by means of several regular instructions, which
can be seen in increased execution counts of ’srli’, ’and’,
’sub’ and ’add’ instructions for the binarized version without
the hardware ’popcount’ instruction. Algorithm 1 shows that
these instructions are needed for the software implementation
of ’popcount’

The accuracy results shown in Table III are identical to our
previous work on binarization that targeted graphics process-
ing units [14].

VI. CONCLUSIONS

In this paper we have presented a convolutional neural
network based vehicle image classifier that has been opti-
mized for real-time execution and small memory footprint
by a technique called binarization. We show that by using
’popcount’, a custom instruction in our target processor, the
runtime of the binarized image classifier can be reduced by
55%. This result is important due to the fact that ’popcount’
has been proposed to be included to a standardized instruction
set extension (’B extension’) of the recently introduced open
source RISC-V instruction set architecture. Besides RISC-V,
’popcount’ is already supported in graphics processing units
and e.g. in the NEON SIMD extension of ARM processors.

Our work shows that the software-based binarization trans-
formation coupled with the hardware-based ’popcount’ in-
struction yields an extremely powerful combination for opti-
mizing inference of convolutional neural networks. Together,
the memory footprint is reduced by close to 95%, and exe-
cution time is reduced by a magnitude while maintaining an
acceptable loss in accuracy. As a results, image classification
is performed in 1.18 seconds on the tiny 33 MHz RISC-V
microcontroller that is well suited for IoT applications.

As binarization inevitably reduces classification accuracy
(most clearly on larger datasets), a potential step for improving

2’popcount’ implemented as ’xori’ alternative behavior

TABLE IV
NUMBER OF EXECUTED INSTRUCTIONS

Instruction Binarized Bin+pop
name int32 int32

lw 8797430 8797417
lbu 272 272
addi 6372539 6354083
slli 2801668 2801668

popcount/xori2 4 3302052
srli 16510241 1
srai 4 4
ori 1 1

andi 3302062 14
sb 268 268
sh 4 4
sw 782165 782109
add 16704267 3496013
mul 0 0
sub 3670893 368845
sll 18632 18632
slt 2553032 2553032
xor 3302048 3302048
or 2451656 2451656

and 13208192 0
bne 3232555 3232555
blt 0 0
bge 370058 370058
bltu 4 4
jalr 39 39
jal 57 57

csrrw 1 1
Total 84078092 37830833

accuracy would be the adoption of heterogeneous bitwidth bi-
narization [35]. This approach degrades accuracy considerably
less than full binarization, already when on average 1.4 bits
per weight are used [35].

ACKNOWLEDGMENT

This work was partially funded by the Academy of Finland
project 309903 CoEfNet, and by the ITEA3 project 16018
COMPACT (Business Finland diary number 3098/31/2017,
German ministry of education and research reference number
01IS17028).

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE conference on computer vision and pattern
recognition (CVPR), 2016, pp. 770–778.

[2] J. Dai, K. He, Y. Li, S. Ren, and J. Sun, “Instance-sensitive fully
convolutional networks,” in European Conference on Computer Vision
(ECCV). Springer, 2016, pp. 534–549.

[3] J. Johnson, A. Karpathy, and L. Fei-Fei, “DenseCap: Fully convolutional
localization networks for dense captioning,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 4565–
4574.



[4] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in IEEE
conference on computer vision and pattern recognition (CVPR), 2017,
pp. 7263–7271.

[5] G. Ananthanarayanan, P. Bahl, P. Bodı́k, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha, “Real-time video analytics: The killer
app for edge computing,” Computer, vol. 50, no. 10, pp. 58–67, 2017.

[6] W. Shi and S. Dustdar, “The promise of edge computing,” Computer,
vol. 49, no. 5, pp. 78–81, 2016.

[7] M. Alioto and M. Shahghasemi, “The Internet of Things on its edge:
Trends toward its tipping point,” IEEE Consumer Electronics Magazine,
vol. 7, no. 1, pp. 77–87, 2018.

[8] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2016, pp. 265–283.

[9] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “SqueezeNet: Alexnet-level accuracy with 50x fewer
parameters and <0.5 MB model size,” arXiv preprint arXiv:1602.07360,
2016.

[10] J. Shen, Y. Huang, Z. Wang, Y. Qiao, M. Wen, and C. Zhang, “Towards
a uniform template-based architecture for accelerating 2D and 3D
CNNs on FPGA,” in ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA). ACM, 2018, pp. 97–106.

[11] K. Chellapilla, S. Puri, and P. Simard, “High performance convolutional
neural networks for document processing,” in International Workshop
on Frontiers in Handwriting Recognition, 2006.

[12] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “EIE: efficient inference engine on compressed deep
neural network,” in ACM/IEEE International Symposium on Computer
Architecture (ISCA). IEEE, 2016, pp. 243–254.

[13] M. Zhu and S. Gupta, “To prune, or not to prune: exploring the efficacy
of pruning for model compression,” in International Conference on
Learning Representations (ICLR) Workshops, 2018.

[14] M. Khan, H. Huttunen, and J. Boutellier, “Binarized convolutional
neural networks for efficient inference on GPUs,” in European Signal
Processing Conference (EUSIPCO). IEEE, 2018, pp. 682–686.

[15] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional
neural networks with low rank expansions,” in British Machine Vision
Conference (BMVC). BMVA Press, 2014.

[16] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[17] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” arXiv preprint
arXiv:1605.04711, 2016.

[18] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks: Training deep neural networks with
weights and activations constrained to +1 or -1,” arXiv preprint
arXiv:1602.02830, 2016.

[19] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “FINN: A framework for fast, scalable binarized neural

network inference,” in ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA). ACM, 2017, pp. 65–74.

[20] H. Huttunen, F. S. Yancheshmeh, and K. Chen, “Car type recognition
with deep neural networks,” in IEEE Intelligent Vehicles Symposium
(IV). IEEE, 2016, pp. 1115–1120.

[21] A. Traber, F. Zaruba, S. Stucki, A. Pullini, G. Haugou, E. Flamand,
F. K. Gurkaynak, and L. Benini, “PULPino: A small single-core RISC-
V SoC,” in RISC-V Workshop, 2016.

[22] The RISC-V Instruction Set Manual, RISC-V Foundation, 2017, version
2.2.

[23] RISC-V Bitmanip Extension, Clifford Wolf, 2019, version 0.37.
[24] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:

Imagenet classification using binary convolutional neural networks,” in
European Conference on Computer Vision (ECCV). Springer, 2016,
pp. 525–542.

[25] F. Pedersoli, G. Tzanetakis, and A. Tagliasacchi, “Espresso: Efficient
forward propagation for binary deep neural networks,” in International
Conference on Learning Representations (ICLR), 2018.

[26] H. Park, D. Kim, J. Ahn, and S. Yoo, “Zero and data reuse-aware fast
convolution for deep neural networks on GPU,” in International Confer-
ence on Hardware/Software Codesign and System Synthesis (CODES+
ISSS). IEEE, 2016, pp. 1–10.

[27] F. Conti, P. D. Schiavone, and L. Benini, “XNOR neural engine: A
hardware accelerator IP for 21.6-fJ/op binary neural network inference,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 37, no. 11, pp. 2940–2951, 2018.

[28] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” arXiv preprint arXiv:1801.01203,
2018.

[29] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,” arXiv
preprint arXiv:1801.01207, 2018.

[30] J.-H. Hoepman and B. Jacobs, “Increased security through open source,”
arXiv preprint arXiv:0801.3924, 2008.

[31] B. Witten, C. Landwehr, and M. Caloyannides, “Does open source
improve system security?” IEEE Software, vol. 18, no. 5, pp. 57–61,
2001.

[32] C. Cowan, “Software security for open-source systems,” IEEE Security
& Privacy, vol. 99, no. 1, pp. 38–45, 2003.

[33] SiFive FE310-G000 Manual, SiFive, Inc., 2017, version v2p3.
[34] D. Mueller-Gritschneder, M. Dittrich, M. Greim, K. Devarajegowda,

W. Ecker, and U. Schlichtmann, “The extendable translating instruction
set simulator (ETISS) interlinked with an MDA framework for fast RISC
prototyping,” in International Symposium on Rapid System Prototyping
(RSP). IEEE, 2017, pp. 79–84.

[35] J. Fromm, S. Patel, and M. Philipose, “Heterogeneous bitwidth bi-
narization in convolutional neural networks,” in Advances in Neural
Information Processing Systems, 2018, pp. 4006–4015.


